1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 *  Contributor:     Lake Stevens Instrument Division$
24 *  Written by:      Glenn Engel $
25 *  Updated by:	     Amit Kale<akale@veritas.com>
26 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28 *  Modified for 386 by Jim Kingdon, Cygnus Support.
29 *  Origianl kgdb, compatibility with 2.1.xx kernel by
30 *  David Grothe <dave@gcom.com>
31 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/smp.h>
43#include <linux/nmi.h>
44#include <linux/hw_breakpoint.h>
45#include <linux/uaccess.h>
46#include <linux/memory.h>
47
48#include <asm/debugreg.h>
49#include <asm/apicdef.h>
50#include <asm/apic.h>
51#include <asm/nmi.h>
52
53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54{
55#ifdef CONFIG_X86_32
56	{ "ax", 4, offsetof(struct pt_regs, ax) },
57	{ "cx", 4, offsetof(struct pt_regs, cx) },
58	{ "dx", 4, offsetof(struct pt_regs, dx) },
59	{ "bx", 4, offsetof(struct pt_regs, bx) },
60	{ "sp", 4, offsetof(struct pt_regs, sp) },
61	{ "bp", 4, offsetof(struct pt_regs, bp) },
62	{ "si", 4, offsetof(struct pt_regs, si) },
63	{ "di", 4, offsetof(struct pt_regs, di) },
64	{ "ip", 4, offsetof(struct pt_regs, ip) },
65	{ "flags", 4, offsetof(struct pt_regs, flags) },
66	{ "cs", 4, offsetof(struct pt_regs, cs) },
67	{ "ss", 4, offsetof(struct pt_regs, ss) },
68	{ "ds", 4, offsetof(struct pt_regs, ds) },
69	{ "es", 4, offsetof(struct pt_regs, es) },
70#else
71	{ "ax", 8, offsetof(struct pt_regs, ax) },
72	{ "bx", 8, offsetof(struct pt_regs, bx) },
73	{ "cx", 8, offsetof(struct pt_regs, cx) },
74	{ "dx", 8, offsetof(struct pt_regs, dx) },
75	{ "si", 8, offsetof(struct pt_regs, si) },
76	{ "di", 8, offsetof(struct pt_regs, di) },
77	{ "bp", 8, offsetof(struct pt_regs, bp) },
78	{ "sp", 8, offsetof(struct pt_regs, sp) },
79	{ "r8", 8, offsetof(struct pt_regs, r8) },
80	{ "r9", 8, offsetof(struct pt_regs, r9) },
81	{ "r10", 8, offsetof(struct pt_regs, r10) },
82	{ "r11", 8, offsetof(struct pt_regs, r11) },
83	{ "r12", 8, offsetof(struct pt_regs, r12) },
84	{ "r13", 8, offsetof(struct pt_regs, r13) },
85	{ "r14", 8, offsetof(struct pt_regs, r14) },
86	{ "r15", 8, offsetof(struct pt_regs, r15) },
87	{ "ip", 8, offsetof(struct pt_regs, ip) },
88	{ "flags", 4, offsetof(struct pt_regs, flags) },
89	{ "cs", 4, offsetof(struct pt_regs, cs) },
90	{ "ss", 4, offsetof(struct pt_regs, ss) },
91	{ "ds", 4, -1 },
92	{ "es", 4, -1 },
93#endif
94	{ "fs", 4, -1 },
95	{ "gs", 4, -1 },
96};
97
98int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
99{
100	if (
101#ifdef CONFIG_X86_32
102	    regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103#endif
104	    regno == GDB_SP || regno == GDB_ORIG_AX)
105		return 0;
106
107	if (dbg_reg_def[regno].offset != -1)
108		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109		       dbg_reg_def[regno].size);
110	return 0;
111}
112
113char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114{
115	if (regno == GDB_ORIG_AX) {
116		memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
117		return "orig_ax";
118	}
119	if (regno >= DBG_MAX_REG_NUM || regno < 0)
120		return NULL;
121
122	if (dbg_reg_def[regno].offset != -1)
123		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124		       dbg_reg_def[regno].size);
125
126#ifdef CONFIG_X86_32
127	switch (regno) {
128	case GDB_SS:
129		if (!user_mode(regs))
130			*(unsigned long *)mem = __KERNEL_DS;
131		break;
132	case GDB_SP:
133		if (!user_mode(regs))
134			*(unsigned long *)mem = kernel_stack_pointer(regs);
135		break;
136	case GDB_GS:
137	case GDB_FS:
138		*(unsigned long *)mem = 0xFFFF;
139		break;
140	}
141#endif
142	return dbg_reg_def[regno].name;
143}
144
145/**
146 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
148 *	@p: The &struct task_struct of the desired process.
149 *
150 *	Convert the register values of the sleeping process in @p to
151 *	the format that GDB expects.
152 *	This function is called when kgdb does not have access to the
153 *	&struct pt_regs and therefore it should fill the gdb registers
154 *	@gdb_regs with what has	been saved in &struct thread_struct
155 *	thread field during switch_to.
156 */
157void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158{
159#ifndef CONFIG_X86_32
160	u32 *gdb_regs32 = (u32 *)gdb_regs;
161#endif
162	gdb_regs[GDB_AX]	= 0;
163	gdb_regs[GDB_BX]	= 0;
164	gdb_regs[GDB_CX]	= 0;
165	gdb_regs[GDB_DX]	= 0;
166	gdb_regs[GDB_SI]	= 0;
167	gdb_regs[GDB_DI]	= 0;
168	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
169#ifdef CONFIG_X86_32
170	gdb_regs[GDB_DS]	= __KERNEL_DS;
171	gdb_regs[GDB_ES]	= __KERNEL_DS;
172	gdb_regs[GDB_PS]	= 0;
173	gdb_regs[GDB_CS]	= __KERNEL_CS;
174	gdb_regs[GDB_PC]	= p->thread.ip;
175	gdb_regs[GDB_SS]	= __KERNEL_DS;
176	gdb_regs[GDB_FS]	= 0xFFFF;
177	gdb_regs[GDB_GS]	= 0xFFFF;
178#else
179	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
180	gdb_regs32[GDB_CS]	= __KERNEL_CS;
181	gdb_regs32[GDB_SS]	= __KERNEL_DS;
182	gdb_regs[GDB_PC]	= 0;
183	gdb_regs[GDB_R8]	= 0;
184	gdb_regs[GDB_R9]	= 0;
185	gdb_regs[GDB_R10]	= 0;
186	gdb_regs[GDB_R11]	= 0;
187	gdb_regs[GDB_R12]	= 0;
188	gdb_regs[GDB_R13]	= 0;
189	gdb_regs[GDB_R14]	= 0;
190	gdb_regs[GDB_R15]	= 0;
191#endif
192	gdb_regs[GDB_SP]	= p->thread.sp;
193}
194
195static struct hw_breakpoint {
196	unsigned		enabled;
197	unsigned long		addr;
198	int			len;
199	int			type;
200	struct perf_event	* __percpu *pev;
201} breakinfo[HBP_NUM];
202
203static unsigned long early_dr7;
204
205static void kgdb_correct_hw_break(void)
206{
207	int breakno;
208
209	for (breakno = 0; breakno < HBP_NUM; breakno++) {
210		struct perf_event *bp;
211		struct arch_hw_breakpoint *info;
212		int val;
213		int cpu = raw_smp_processor_id();
214		if (!breakinfo[breakno].enabled)
215			continue;
216		if (dbg_is_early) {
217			set_debugreg(breakinfo[breakno].addr, breakno);
218			early_dr7 |= encode_dr7(breakno,
219						breakinfo[breakno].len,
220						breakinfo[breakno].type);
221			set_debugreg(early_dr7, 7);
222			continue;
223		}
224		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225		info = counter_arch_bp(bp);
226		if (bp->attr.disabled != 1)
227			continue;
228		bp->attr.bp_addr = breakinfo[breakno].addr;
229		bp->attr.bp_len = breakinfo[breakno].len;
230		bp->attr.bp_type = breakinfo[breakno].type;
231		info->address = breakinfo[breakno].addr;
232		info->len = breakinfo[breakno].len;
233		info->type = breakinfo[breakno].type;
234		val = arch_install_hw_breakpoint(bp);
235		if (!val)
236			bp->attr.disabled = 0;
237	}
238	if (!dbg_is_early)
239		hw_breakpoint_restore();
240}
241
242static int hw_break_reserve_slot(int breakno)
243{
244	int cpu;
245	int cnt = 0;
246	struct perf_event **pevent;
247
248	if (dbg_is_early)
249		return 0;
250
251	for_each_online_cpu(cpu) {
252		cnt++;
253		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254		if (dbg_reserve_bp_slot(*pevent))
255			goto fail;
256	}
257
258	return 0;
259
260fail:
261	for_each_online_cpu(cpu) {
262		cnt--;
263		if (!cnt)
264			break;
265		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266		dbg_release_bp_slot(*pevent);
267	}
268	return -1;
269}
270
271static int hw_break_release_slot(int breakno)
272{
273	struct perf_event **pevent;
274	int cpu;
275
276	if (dbg_is_early)
277		return 0;
278
279	for_each_online_cpu(cpu) {
280		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281		if (dbg_release_bp_slot(*pevent))
282			/*
283			 * The debugger is responsible for handing the retry on
284			 * remove failure.
285			 */
286			return -1;
287	}
288	return 0;
289}
290
291static int
292kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293{
294	int i;
295
296	for (i = 0; i < HBP_NUM; i++)
297		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298			break;
299	if (i == HBP_NUM)
300		return -1;
301
302	if (hw_break_release_slot(i)) {
303		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304		return -1;
305	}
306	breakinfo[i].enabled = 0;
307
308	return 0;
309}
310
311static void kgdb_remove_all_hw_break(void)
312{
313	int i;
314	int cpu = raw_smp_processor_id();
315	struct perf_event *bp;
316
317	for (i = 0; i < HBP_NUM; i++) {
318		if (!breakinfo[i].enabled)
319			continue;
320		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321		if (!bp->attr.disabled) {
322			arch_uninstall_hw_breakpoint(bp);
323			bp->attr.disabled = 1;
324			continue;
325		}
326		if (dbg_is_early)
327			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328						 breakinfo[i].type);
329		else if (hw_break_release_slot(i))
330			printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331			       breakinfo[i].addr);
332		breakinfo[i].enabled = 0;
333	}
334}
335
336static int
337kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338{
339	int i;
340
341	for (i = 0; i < HBP_NUM; i++)
342		if (!breakinfo[i].enabled)
343			break;
344	if (i == HBP_NUM)
345		return -1;
346
347	switch (bptype) {
348	case BP_HARDWARE_BREAKPOINT:
349		len = 1;
350		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351		break;
352	case BP_WRITE_WATCHPOINT:
353		breakinfo[i].type = X86_BREAKPOINT_WRITE;
354		break;
355	case BP_ACCESS_WATCHPOINT:
356		breakinfo[i].type = X86_BREAKPOINT_RW;
357		break;
358	default:
359		return -1;
360	}
361	switch (len) {
362	case 1:
363		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364		break;
365	case 2:
366		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367		break;
368	case 4:
369		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370		break;
371#ifdef CONFIG_X86_64
372	case 8:
373		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374		break;
375#endif
376	default:
377		return -1;
378	}
379	breakinfo[i].addr = addr;
380	if (hw_break_reserve_slot(i)) {
381		breakinfo[i].addr = 0;
382		return -1;
383	}
384	breakinfo[i].enabled = 1;
385
386	return 0;
387}
388
389/**
390 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 *	@regs: Current &struct pt_regs.
392 *
393 *	This function will be called if the particular architecture must
394 *	disable hardware debugging while it is processing gdb packets or
395 *	handling exception.
396 */
397static void kgdb_disable_hw_debug(struct pt_regs *regs)
398{
399	int i;
400	int cpu = raw_smp_processor_id();
401	struct perf_event *bp;
402
403	/* Disable hardware debugging while we are in kgdb: */
404	set_debugreg(0UL, 7);
405	for (i = 0; i < HBP_NUM; i++) {
406		if (!breakinfo[i].enabled)
407			continue;
408		if (dbg_is_early) {
409			early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410						 breakinfo[i].type);
411			continue;
412		}
413		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414		if (bp->attr.disabled == 1)
415			continue;
416		arch_uninstall_hw_breakpoint(bp);
417		bp->attr.disabled = 1;
418	}
419}
420
421#ifdef CONFIG_SMP
422/**
423 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 *	@flags: Current IRQ state
425 *
426 *	On SMP systems, we need to get the attention of the other CPUs
427 *	and get them be in a known state.  This should do what is needed
428 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 *	the NMI approach is not used for rounding up all the CPUs. For example,
430 *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 *	this case, we have to make sure that interrupts are enabled before
432 *	calling smp_call_function(). The argument to this function is
433 *	the flags that will be used when restoring the interrupts. There is
434 *	local_irq_save() call before kgdb_roundup_cpus().
435 *
436 *	On non-SMP systems, this is not called.
437 */
438void kgdb_roundup_cpus(unsigned long flags)
439{
440	apic->send_IPI_allbutself(APIC_DM_NMI);
441}
442#endif
443
444/**
445 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 *	@e_vector: The error vector of the exception that happened.
447 *	@signo: The signal number of the exception that happened.
448 *	@err_code: The error code of the exception that happened.
449 *	@remcomInBuffer: The buffer of the packet we have read.
450 *	@remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 *	@linux_regs: The &struct pt_regs of the current process.
452 *
453 *	This function MUST handle the 'c' and 's' command packets,
454 *	as well packets to set / remove a hardware breakpoint, if used.
455 *	If there are additional packets which the hardware needs to handle,
456 *	they are handled here.  The code should return -1 if it wants to
457 *	process more packets, and a %0 or %1 if it wants to exit from the
458 *	kgdb callback.
459 */
460int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461			       char *remcomInBuffer, char *remcomOutBuffer,
462			       struct pt_regs *linux_regs)
463{
464	unsigned long addr;
465	char *ptr;
466
467	switch (remcomInBuffer[0]) {
468	case 'c':
469	case 's':
470		/* try to read optional parameter, pc unchanged if no parm */
471		ptr = &remcomInBuffer[1];
472		if (kgdb_hex2long(&ptr, &addr))
473			linux_regs->ip = addr;
474	case 'D':
475	case 'k':
476		/* clear the trace bit */
477		linux_regs->flags &= ~X86_EFLAGS_TF;
478		atomic_set(&kgdb_cpu_doing_single_step, -1);
479
480		/* set the trace bit if we're stepping */
481		if (remcomInBuffer[0] == 's') {
482			linux_regs->flags |= X86_EFLAGS_TF;
483			atomic_set(&kgdb_cpu_doing_single_step,
484				   raw_smp_processor_id());
485		}
486
487		return 0;
488	}
489
490	/* this means that we do not want to exit from the handler: */
491	return -1;
492}
493
494static inline int
495single_step_cont(struct pt_regs *regs, struct die_args *args)
496{
497	/*
498	 * Single step exception from kernel space to user space so
499	 * eat the exception and continue the process:
500	 */
501	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502			"resuming...\n");
503	kgdb_arch_handle_exception(args->trapnr, args->signr,
504				   args->err, "c", "", regs);
505	/*
506	 * Reset the BS bit in dr6 (pointed by args->err) to
507	 * denote completion of processing
508	 */
509	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510
511	return NOTIFY_STOP;
512}
513
514static int was_in_debug_nmi[NR_CPUS];
515
516static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517{
518	switch (cmd) {
519	case NMI_LOCAL:
520		if (atomic_read(&kgdb_active) != -1) {
521			/* KGDB CPU roundup */
522			kgdb_nmicallback(raw_smp_processor_id(), regs);
523			was_in_debug_nmi[raw_smp_processor_id()] = 1;
524			touch_nmi_watchdog();
525			return NMI_HANDLED;
526		}
527		break;
528
529	case NMI_UNKNOWN:
530		if (was_in_debug_nmi[raw_smp_processor_id()]) {
531			was_in_debug_nmi[raw_smp_processor_id()] = 0;
532			return NMI_HANDLED;
533		}
534		break;
535	default:
536		/* do nothing */
537		break;
538	}
539	return NMI_DONE;
540}
541
542static int __kgdb_notify(struct die_args *args, unsigned long cmd)
543{
544	struct pt_regs *regs = args->regs;
545
546	switch (cmd) {
547	case DIE_DEBUG:
548		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
549			if (user_mode(regs))
550				return single_step_cont(regs, args);
551			break;
552		} else if (test_thread_flag(TIF_SINGLESTEP))
553			/* This means a user thread is single stepping
554			 * a system call which should be ignored
555			 */
556			return NOTIFY_DONE;
557		/* fall through */
558	default:
559		if (user_mode(regs))
560			return NOTIFY_DONE;
561	}
562
563	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
564		return NOTIFY_DONE;
565
566	/* Must touch watchdog before return to normal operation */
567	touch_nmi_watchdog();
568	return NOTIFY_STOP;
569}
570
571int kgdb_ll_trap(int cmd, const char *str,
572		 struct pt_regs *regs, long err, int trap, int sig)
573{
574	struct die_args args = {
575		.regs	= regs,
576		.str	= str,
577		.err	= err,
578		.trapnr	= trap,
579		.signr	= sig,
580
581	};
582
583	if (!kgdb_io_module_registered)
584		return NOTIFY_DONE;
585
586	return __kgdb_notify(&args, cmd);
587}
588
589static int
590kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
591{
592	unsigned long flags;
593	int ret;
594
595	local_irq_save(flags);
596	ret = __kgdb_notify(ptr, cmd);
597	local_irq_restore(flags);
598
599	return ret;
600}
601
602static struct notifier_block kgdb_notifier = {
603	.notifier_call	= kgdb_notify,
604};
605
606/**
607 *	kgdb_arch_init - Perform any architecture specific initalization.
608 *
609 *	This function will handle the initalization of any architecture
610 *	specific callbacks.
611 */
612int kgdb_arch_init(void)
613{
614	int retval;
615
616	retval = register_die_notifier(&kgdb_notifier);
617	if (retval)
618		goto out;
619
620	retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
621					0, "kgdb");
622	if (retval)
623		goto out1;
624
625	retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
626					0, "kgdb");
627
628	if (retval)
629		goto out2;
630
631	return retval;
632
633out2:
634	unregister_nmi_handler(NMI_LOCAL, "kgdb");
635out1:
636	unregister_die_notifier(&kgdb_notifier);
637out:
638	return retval;
639}
640
641static void kgdb_hw_overflow_handler(struct perf_event *event,
642		struct perf_sample_data *data, struct pt_regs *regs)
643{
644	struct task_struct *tsk = current;
645	int i;
646
647	for (i = 0; i < 4; i++)
648		if (breakinfo[i].enabled)
649			tsk->thread.debugreg6 |= (DR_TRAP0 << i);
650}
651
652void kgdb_arch_late(void)
653{
654	int i, cpu;
655	struct perf_event_attr attr;
656	struct perf_event **pevent;
657
658	/*
659	 * Pre-allocate the hw breakpoint structions in the non-atomic
660	 * portion of kgdb because this operation requires mutexs to
661	 * complete.
662	 */
663	hw_breakpoint_init(&attr);
664	attr.bp_addr = (unsigned long)kgdb_arch_init;
665	attr.bp_len = HW_BREAKPOINT_LEN_1;
666	attr.bp_type = HW_BREAKPOINT_W;
667	attr.disabled = 1;
668	for (i = 0; i < HBP_NUM; i++) {
669		if (breakinfo[i].pev)
670			continue;
671		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
672		if (IS_ERR((void * __force)breakinfo[i].pev)) {
673			printk(KERN_ERR "kgdb: Could not allocate hw"
674			       "breakpoints\nDisabling the kernel debugger\n");
675			breakinfo[i].pev = NULL;
676			kgdb_arch_exit();
677			return;
678		}
679		for_each_online_cpu(cpu) {
680			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
681			pevent[0]->hw.sample_period = 1;
682			pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
683			if (pevent[0]->destroy != NULL) {
684				pevent[0]->destroy = NULL;
685				release_bp_slot(*pevent);
686			}
687		}
688	}
689}
690
691/**
692 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
693 *
694 *	This function will handle the uninitalization of any architecture
695 *	specific callbacks, for dynamic registration and unregistration.
696 */
697void kgdb_arch_exit(void)
698{
699	int i;
700	for (i = 0; i < 4; i++) {
701		if (breakinfo[i].pev) {
702			unregister_wide_hw_breakpoint(breakinfo[i].pev);
703			breakinfo[i].pev = NULL;
704		}
705	}
706	unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
707	unregister_nmi_handler(NMI_LOCAL, "kgdb");
708	unregister_die_notifier(&kgdb_notifier);
709}
710
711/**
712 *
713 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
714 *	@exception: Exception vector number
715 *	@regs: Current &struct pt_regs.
716 *
717 *	On some architectures we need to skip a breakpoint exception when
718 *	it occurs after a breakpoint has been removed.
719 *
720 * Skip an int3 exception when it occurs after a breakpoint has been
721 * removed. Backtrack eip by 1 since the int3 would have caused it to
722 * increment by 1.
723 */
724int kgdb_skipexception(int exception, struct pt_regs *regs)
725{
726	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
727		regs->ip -= 1;
728		return 1;
729	}
730	return 0;
731}
732
733unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
734{
735	if (exception == 3)
736		return instruction_pointer(regs) - 1;
737	return instruction_pointer(regs);
738}
739
740void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
741{
742	regs->ip = ip;
743}
744
745int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
746{
747	int err;
748#ifdef CONFIG_DEBUG_RODATA
749	char opc[BREAK_INSTR_SIZE];
750#endif /* CONFIG_DEBUG_RODATA */
751
752	bpt->type = BP_BREAKPOINT;
753	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
754				BREAK_INSTR_SIZE);
755	if (err)
756		return err;
757	err = probe_kernel_write((char *)bpt->bpt_addr,
758				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
759#ifdef CONFIG_DEBUG_RODATA
760	if (!err)
761		return err;
762	/*
763	 * It is safe to call text_poke() because normal kernel execution
764	 * is stopped on all cores, so long as the text_mutex is not locked.
765	 */
766	if (mutex_is_locked(&text_mutex))
767		return -EBUSY;
768	text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
769		  BREAK_INSTR_SIZE);
770	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
771	if (err)
772		return err;
773	if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
774		return -EINVAL;
775	bpt->type = BP_POKE_BREAKPOINT;
776#endif /* CONFIG_DEBUG_RODATA */
777	return err;
778}
779
780int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
781{
782#ifdef CONFIG_DEBUG_RODATA
783	int err;
784	char opc[BREAK_INSTR_SIZE];
785
786	if (bpt->type != BP_POKE_BREAKPOINT)
787		goto knl_write;
788	/*
789	 * It is safe to call text_poke() because normal kernel execution
790	 * is stopped on all cores, so long as the text_mutex is not locked.
791	 */
792	if (mutex_is_locked(&text_mutex))
793		goto knl_write;
794	text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
795	err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
796	if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
797		goto knl_write;
798	return err;
799knl_write:
800#endif /* CONFIG_DEBUG_RODATA */
801	return probe_kernel_write((char *)bpt->bpt_addr,
802				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
803}
804
805struct kgdb_arch arch_kgdb_ops = {
806	/* Breakpoint instruction: */
807	.gdb_bpt_instr		= { 0xcc },
808	.flags			= KGDB_HW_BREAKPOINT,
809	.set_hw_breakpoint	= kgdb_set_hw_break,
810	.remove_hw_breakpoint	= kgdb_remove_hw_break,
811	.disable_hw_break	= kgdb_disable_hw_debug,
812	.remove_all_hw_break	= kgdb_remove_all_hw_break,
813	.correct_hw_break	= kgdb_correct_hw_break,
814};
815