1#include <linux/perf_event.h>
2#include <linux/types.h>
3
4#include <asm/perf_event.h>
5#include <asm/msr.h>
6#include <asm/insn.h>
7
8#include "perf_event.h"
9
10enum {
11	LBR_FORMAT_32		= 0x00,
12	LBR_FORMAT_LIP		= 0x01,
13	LBR_FORMAT_EIP		= 0x02,
14	LBR_FORMAT_EIP_FLAGS	= 0x03,
15	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_EIP_FLAGS2,
17};
18
19static enum {
20	LBR_EIP_FLAGS		= 1,
21	LBR_TSX			= 2,
22} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
23	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
24	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
25};
26
27/*
28 * Intel LBR_SELECT bits
29 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
30 *
31 * Hardware branch filter (not available on all CPUs)
32 */
33#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
34#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
35#define LBR_JCC_BIT		2 /* do not capture conditional branches */
36#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
37#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
38#define LBR_RETURN_BIT		5 /* do not capture near returns */
39#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
40#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
41#define LBR_FAR_BIT		8 /* do not capture far branches */
42#define LBR_CALL_STACK_BIT	9 /* enable call stack */
43
44#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
45#define LBR_USER	(1 << LBR_USER_BIT)
46#define LBR_JCC		(1 << LBR_JCC_BIT)
47#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
48#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
49#define LBR_RETURN	(1 << LBR_RETURN_BIT)
50#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
51#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
52#define LBR_FAR		(1 << LBR_FAR_BIT)
53#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
54
55#define LBR_PLM (LBR_KERNEL | LBR_USER)
56
57#define LBR_SEL_MASK	0x1ff	/* valid bits in LBR_SELECT */
58#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
59#define LBR_IGN		0	/* ignored */
60
61#define LBR_ANY		 \
62	(LBR_JCC	|\
63	 LBR_REL_CALL	|\
64	 LBR_IND_CALL	|\
65	 LBR_RETURN	|\
66	 LBR_REL_JMP	|\
67	 LBR_IND_JMP	|\
68	 LBR_FAR)
69
70#define LBR_FROM_FLAG_MISPRED  (1ULL << 63)
71#define LBR_FROM_FLAG_IN_TX    (1ULL << 62)
72#define LBR_FROM_FLAG_ABORT    (1ULL << 61)
73
74/*
75 * x86control flow change classification
76 * x86control flow changes include branches, interrupts, traps, faults
77 */
78enum {
79	X86_BR_NONE		= 0,      /* unknown */
80
81	X86_BR_USER		= 1 << 0, /* branch target is user */
82	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
83
84	X86_BR_CALL		= 1 << 2, /* call */
85	X86_BR_RET		= 1 << 3, /* return */
86	X86_BR_SYSCALL		= 1 << 4, /* syscall */
87	X86_BR_SYSRET		= 1 << 5, /* syscall return */
88	X86_BR_INT		= 1 << 6, /* sw interrupt */
89	X86_BR_IRET		= 1 << 7, /* return from interrupt */
90	X86_BR_JCC		= 1 << 8, /* conditional */
91	X86_BR_JMP		= 1 << 9, /* jump */
92	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
93	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
94	X86_BR_ABORT		= 1 << 12,/* transaction abort */
95	X86_BR_IN_TX		= 1 << 13,/* in transaction */
96	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
97	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
98	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
99};
100
101#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
102#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
103
104#define X86_BR_ANY       \
105	(X86_BR_CALL    |\
106	 X86_BR_RET     |\
107	 X86_BR_SYSCALL |\
108	 X86_BR_SYSRET  |\
109	 X86_BR_INT     |\
110	 X86_BR_IRET    |\
111	 X86_BR_JCC     |\
112	 X86_BR_JMP	 |\
113	 X86_BR_IRQ	 |\
114	 X86_BR_ABORT	 |\
115	 X86_BR_IND_CALL |\
116	 X86_BR_ZERO_CALL)
117
118#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
119
120#define X86_BR_ANY_CALL		 \
121	(X86_BR_CALL		|\
122	 X86_BR_IND_CALL	|\
123	 X86_BR_ZERO_CALL	|\
124	 X86_BR_SYSCALL		|\
125	 X86_BR_IRQ		|\
126	 X86_BR_INT)
127
128static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
129
130/*
131 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
132 * otherwise it becomes near impossible to get a reliable stack.
133 */
134
135static void __intel_pmu_lbr_enable(bool pmi)
136{
137	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
138	u64 debugctl, lbr_select = 0, orig_debugctl;
139
140	/*
141	 * No need to reprogram LBR_SELECT in a PMI, as it
142	 * did not change.
143	 */
144	if (cpuc->lbr_sel && !pmi) {
145		lbr_select = cpuc->lbr_sel->config;
146		wrmsrl(MSR_LBR_SELECT, lbr_select);
147	}
148
149	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
150	orig_debugctl = debugctl;
151	debugctl |= DEBUGCTLMSR_LBR;
152	/*
153	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
154	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
155	 * may cause superfluous increase/decrease of LBR_TOS.
156	 */
157	if (!(lbr_select & LBR_CALL_STACK))
158		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
159	if (orig_debugctl != debugctl)
160		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
161}
162
163static void __intel_pmu_lbr_disable(void)
164{
165	u64 debugctl;
166
167	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
168	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
169	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
170}
171
172static void intel_pmu_lbr_reset_32(void)
173{
174	int i;
175
176	for (i = 0; i < x86_pmu.lbr_nr; i++)
177		wrmsrl(x86_pmu.lbr_from + i, 0);
178}
179
180static void intel_pmu_lbr_reset_64(void)
181{
182	int i;
183
184	for (i = 0; i < x86_pmu.lbr_nr; i++) {
185		wrmsrl(x86_pmu.lbr_from + i, 0);
186		wrmsrl(x86_pmu.lbr_to   + i, 0);
187	}
188}
189
190void intel_pmu_lbr_reset(void)
191{
192	if (!x86_pmu.lbr_nr)
193		return;
194
195	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
196		intel_pmu_lbr_reset_32();
197	else
198		intel_pmu_lbr_reset_64();
199}
200
201/*
202 * TOS = most recently recorded branch
203 */
204static inline u64 intel_pmu_lbr_tos(void)
205{
206	u64 tos;
207
208	rdmsrl(x86_pmu.lbr_tos, tos);
209	return tos;
210}
211
212enum {
213	LBR_NONE,
214	LBR_VALID,
215};
216
217static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
218{
219	int i;
220	unsigned lbr_idx, mask;
221	u64 tos;
222
223	if (task_ctx->lbr_callstack_users == 0 ||
224	    task_ctx->lbr_stack_state == LBR_NONE) {
225		intel_pmu_lbr_reset();
226		return;
227	}
228
229	mask = x86_pmu.lbr_nr - 1;
230	tos = intel_pmu_lbr_tos();
231	for (i = 0; i < x86_pmu.lbr_nr; i++) {
232		lbr_idx = (tos - i) & mask;
233		wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
234		wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
235	}
236	task_ctx->lbr_stack_state = LBR_NONE;
237}
238
239static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
240{
241	int i;
242	unsigned lbr_idx, mask;
243	u64 tos;
244
245	if (task_ctx->lbr_callstack_users == 0) {
246		task_ctx->lbr_stack_state = LBR_NONE;
247		return;
248	}
249
250	mask = x86_pmu.lbr_nr - 1;
251	tos = intel_pmu_lbr_tos();
252	for (i = 0; i < x86_pmu.lbr_nr; i++) {
253		lbr_idx = (tos - i) & mask;
254		rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
255		rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
256	}
257	task_ctx->lbr_stack_state = LBR_VALID;
258}
259
260void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
261{
262	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
263	struct x86_perf_task_context *task_ctx;
264
265	if (!x86_pmu.lbr_nr)
266		return;
267
268	/*
269	 * If LBR callstack feature is enabled and the stack was saved when
270	 * the task was scheduled out, restore the stack. Otherwise flush
271	 * the LBR stack.
272	 */
273	task_ctx = ctx ? ctx->task_ctx_data : NULL;
274	if (task_ctx) {
275		if (sched_in) {
276			__intel_pmu_lbr_restore(task_ctx);
277			cpuc->lbr_context = ctx;
278		} else {
279			__intel_pmu_lbr_save(task_ctx);
280		}
281		return;
282	}
283
284	/*
285	 * When sampling the branck stack in system-wide, it may be
286	 * necessary to flush the stack on context switch. This happens
287	 * when the branch stack does not tag its entries with the pid
288	 * of the current task. Otherwise it becomes impossible to
289	 * associate a branch entry with a task. This ambiguity is more
290	 * likely to appear when the branch stack supports priv level
291	 * filtering and the user sets it to monitor only at the user
292	 * level (which could be a useful measurement in system-wide
293	 * mode). In that case, the risk is high of having a branch
294	 * stack with branch from multiple tasks.
295 	 */
296	if (sched_in) {
297		intel_pmu_lbr_reset();
298		cpuc->lbr_context = ctx;
299	}
300}
301
302static inline bool branch_user_callstack(unsigned br_sel)
303{
304	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
305}
306
307void intel_pmu_lbr_enable(struct perf_event *event)
308{
309	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
310	struct x86_perf_task_context *task_ctx;
311
312	if (!x86_pmu.lbr_nr)
313		return;
314
315	/*
316	 * Reset the LBR stack if we changed task context to
317	 * avoid data leaks.
318	 */
319	if (event->ctx->task && cpuc->lbr_context != event->ctx) {
320		intel_pmu_lbr_reset();
321		cpuc->lbr_context = event->ctx;
322	}
323	cpuc->br_sel = event->hw.branch_reg.reg;
324
325	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
326					event->ctx->task_ctx_data) {
327		task_ctx = event->ctx->task_ctx_data;
328		task_ctx->lbr_callstack_users++;
329	}
330
331	cpuc->lbr_users++;
332	perf_sched_cb_inc(event->ctx->pmu);
333}
334
335void intel_pmu_lbr_disable(struct perf_event *event)
336{
337	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
338	struct x86_perf_task_context *task_ctx;
339
340	if (!x86_pmu.lbr_nr)
341		return;
342
343	if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
344					event->ctx->task_ctx_data) {
345		task_ctx = event->ctx->task_ctx_data;
346		task_ctx->lbr_callstack_users--;
347	}
348
349	cpuc->lbr_users--;
350	WARN_ON_ONCE(cpuc->lbr_users < 0);
351	perf_sched_cb_dec(event->ctx->pmu);
352
353	if (cpuc->enabled && !cpuc->lbr_users) {
354		__intel_pmu_lbr_disable();
355		/* avoid stale pointer */
356		cpuc->lbr_context = NULL;
357	}
358}
359
360void intel_pmu_lbr_enable_all(bool pmi)
361{
362	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
363
364	if (cpuc->lbr_users)
365		__intel_pmu_lbr_enable(pmi);
366}
367
368void intel_pmu_lbr_disable_all(void)
369{
370	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
371
372	if (cpuc->lbr_users)
373		__intel_pmu_lbr_disable();
374}
375
376static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
377{
378	unsigned long mask = x86_pmu.lbr_nr - 1;
379	u64 tos = intel_pmu_lbr_tos();
380	int i;
381
382	for (i = 0; i < x86_pmu.lbr_nr; i++) {
383		unsigned long lbr_idx = (tos - i) & mask;
384		union {
385			struct {
386				u32 from;
387				u32 to;
388			};
389			u64     lbr;
390		} msr_lastbranch;
391
392		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
393
394		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
395		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
396		cpuc->lbr_entries[i].mispred	= 0;
397		cpuc->lbr_entries[i].predicted	= 0;
398		cpuc->lbr_entries[i].reserved	= 0;
399	}
400	cpuc->lbr_stack.nr = i;
401}
402
403/*
404 * Due to lack of segmentation in Linux the effective address (offset)
405 * is the same as the linear address, allowing us to merge the LIP and EIP
406 * LBR formats.
407 */
408static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
409{
410	unsigned long mask = x86_pmu.lbr_nr - 1;
411	int lbr_format = x86_pmu.intel_cap.lbr_format;
412	u64 tos = intel_pmu_lbr_tos();
413	int i;
414	int out = 0;
415
416	for (i = 0; i < x86_pmu.lbr_nr; i++) {
417		unsigned long lbr_idx = (tos - i) & mask;
418		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
419		int skip = 0;
420		int lbr_flags = lbr_desc[lbr_format];
421
422		rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
423		rdmsrl(x86_pmu.lbr_to   + lbr_idx, to);
424
425		if (lbr_flags & LBR_EIP_FLAGS) {
426			mis = !!(from & LBR_FROM_FLAG_MISPRED);
427			pred = !mis;
428			skip = 1;
429		}
430		if (lbr_flags & LBR_TSX) {
431			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
432			abort = !!(from & LBR_FROM_FLAG_ABORT);
433			skip = 3;
434		}
435		from = (u64)((((s64)from) << skip) >> skip);
436
437		/*
438		 * Some CPUs report duplicated abort records,
439		 * with the second entry not having an abort bit set.
440		 * Skip them here. This loop runs backwards,
441		 * so we need to undo the previous record.
442		 * If the abort just happened outside the window
443		 * the extra entry cannot be removed.
444		 */
445		if (abort && x86_pmu.lbr_double_abort && out > 0)
446			out--;
447
448		cpuc->lbr_entries[out].from	 = from;
449		cpuc->lbr_entries[out].to	 = to;
450		cpuc->lbr_entries[out].mispred	 = mis;
451		cpuc->lbr_entries[out].predicted = pred;
452		cpuc->lbr_entries[out].in_tx	 = in_tx;
453		cpuc->lbr_entries[out].abort	 = abort;
454		cpuc->lbr_entries[out].reserved	 = 0;
455		out++;
456	}
457	cpuc->lbr_stack.nr = out;
458}
459
460void intel_pmu_lbr_read(void)
461{
462	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
463
464	if (!cpuc->lbr_users)
465		return;
466
467	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
468		intel_pmu_lbr_read_32(cpuc);
469	else
470		intel_pmu_lbr_read_64(cpuc);
471
472	intel_pmu_lbr_filter(cpuc);
473}
474
475/*
476 * SW filter is used:
477 * - in case there is no HW filter
478 * - in case the HW filter has errata or limitations
479 */
480static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
481{
482	u64 br_type = event->attr.branch_sample_type;
483	int mask = 0;
484
485	if (br_type & PERF_SAMPLE_BRANCH_USER)
486		mask |= X86_BR_USER;
487
488	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
489		mask |= X86_BR_KERNEL;
490
491	/* we ignore BRANCH_HV here */
492
493	if (br_type & PERF_SAMPLE_BRANCH_ANY)
494		mask |= X86_BR_ANY;
495
496	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
497		mask |= X86_BR_ANY_CALL;
498
499	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
500		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
501
502	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
503		mask |= X86_BR_IND_CALL;
504
505	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
506		mask |= X86_BR_ABORT;
507
508	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
509		mask |= X86_BR_IN_TX;
510
511	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
512		mask |= X86_BR_NO_TX;
513
514	if (br_type & PERF_SAMPLE_BRANCH_COND)
515		mask |= X86_BR_JCC;
516
517	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
518		if (!x86_pmu_has_lbr_callstack())
519			return -EOPNOTSUPP;
520		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
521			return -EINVAL;
522		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
523			X86_BR_CALL_STACK;
524	}
525
526	/*
527	 * stash actual user request into reg, it may
528	 * be used by fixup code for some CPU
529	 */
530	event->hw.branch_reg.reg = mask;
531	return 0;
532}
533
534/*
535 * setup the HW LBR filter
536 * Used only when available, may not be enough to disambiguate
537 * all branches, may need the help of the SW filter
538 */
539static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
540{
541	struct hw_perf_event_extra *reg;
542	u64 br_type = event->attr.branch_sample_type;
543	u64 mask = 0, v;
544	int i;
545
546	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
547		if (!(br_type & (1ULL << i)))
548			continue;
549
550		v = x86_pmu.lbr_sel_map[i];
551		if (v == LBR_NOT_SUPP)
552			return -EOPNOTSUPP;
553
554		if (v != LBR_IGN)
555			mask |= v;
556	}
557	reg = &event->hw.branch_reg;
558	reg->idx = EXTRA_REG_LBR;
559
560	/*
561	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
562	 * in suppress mode. So LBR_SELECT should be set to
563	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
564	 */
565	reg->config = mask ^ x86_pmu.lbr_sel_mask;
566
567	return 0;
568}
569
570int intel_pmu_setup_lbr_filter(struct perf_event *event)
571{
572	int ret = 0;
573
574	/*
575	 * no LBR on this PMU
576	 */
577	if (!x86_pmu.lbr_nr)
578		return -EOPNOTSUPP;
579
580	/*
581	 * setup SW LBR filter
582	 */
583	ret = intel_pmu_setup_sw_lbr_filter(event);
584	if (ret)
585		return ret;
586
587	/*
588	 * setup HW LBR filter, if any
589	 */
590	if (x86_pmu.lbr_sel_map)
591		ret = intel_pmu_setup_hw_lbr_filter(event);
592
593	return ret;
594}
595
596/*
597 * return the type of control flow change at address "from"
598 * intruction is not necessarily a branch (in case of interrupt).
599 *
600 * The branch type returned also includes the priv level of the
601 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
602 *
603 * If a branch type is unknown OR the instruction cannot be
604 * decoded (e.g., text page not present), then X86_BR_NONE is
605 * returned.
606 */
607static int branch_type(unsigned long from, unsigned long to, int abort)
608{
609	struct insn insn;
610	void *addr;
611	int bytes_read, bytes_left;
612	int ret = X86_BR_NONE;
613	int ext, to_plm, from_plm;
614	u8 buf[MAX_INSN_SIZE];
615	int is64 = 0;
616
617	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
618	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
619
620	/*
621	 * maybe zero if lbr did not fill up after a reset by the time
622	 * we get a PMU interrupt
623	 */
624	if (from == 0 || to == 0)
625		return X86_BR_NONE;
626
627	if (abort)
628		return X86_BR_ABORT | to_plm;
629
630	if (from_plm == X86_BR_USER) {
631		/*
632		 * can happen if measuring at the user level only
633		 * and we interrupt in a kernel thread, e.g., idle.
634		 */
635		if (!current->mm)
636			return X86_BR_NONE;
637
638		/* may fail if text not present */
639		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
640						MAX_INSN_SIZE);
641		bytes_read = MAX_INSN_SIZE - bytes_left;
642		if (!bytes_read)
643			return X86_BR_NONE;
644
645		addr = buf;
646	} else {
647		/*
648		 * The LBR logs any address in the IP, even if the IP just
649		 * faulted. This means userspace can control the from address.
650		 * Ensure we don't blindy read any address by validating it is
651		 * a known text address.
652		 */
653		if (kernel_text_address(from)) {
654			addr = (void *)from;
655			/*
656			 * Assume we can get the maximum possible size
657			 * when grabbing kernel data.  This is not
658			 * _strictly_ true since we could possibly be
659			 * executing up next to a memory hole, but
660			 * it is very unlikely to be a problem.
661			 */
662			bytes_read = MAX_INSN_SIZE;
663		} else {
664			return X86_BR_NONE;
665		}
666	}
667
668	/*
669	 * decoder needs to know the ABI especially
670	 * on 64-bit systems running 32-bit apps
671	 */
672#ifdef CONFIG_X86_64
673	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
674#endif
675	insn_init(&insn, addr, bytes_read, is64);
676	insn_get_opcode(&insn);
677	if (!insn.opcode.got)
678		return X86_BR_ABORT;
679
680	switch (insn.opcode.bytes[0]) {
681	case 0xf:
682		switch (insn.opcode.bytes[1]) {
683		case 0x05: /* syscall */
684		case 0x34: /* sysenter */
685			ret = X86_BR_SYSCALL;
686			break;
687		case 0x07: /* sysret */
688		case 0x35: /* sysexit */
689			ret = X86_BR_SYSRET;
690			break;
691		case 0x80 ... 0x8f: /* conditional */
692			ret = X86_BR_JCC;
693			break;
694		default:
695			ret = X86_BR_NONE;
696		}
697		break;
698	case 0x70 ... 0x7f: /* conditional */
699		ret = X86_BR_JCC;
700		break;
701	case 0xc2: /* near ret */
702	case 0xc3: /* near ret */
703	case 0xca: /* far ret */
704	case 0xcb: /* far ret */
705		ret = X86_BR_RET;
706		break;
707	case 0xcf: /* iret */
708		ret = X86_BR_IRET;
709		break;
710	case 0xcc ... 0xce: /* int */
711		ret = X86_BR_INT;
712		break;
713	case 0xe8: /* call near rel */
714		insn_get_immediate(&insn);
715		if (insn.immediate1.value == 0) {
716			/* zero length call */
717			ret = X86_BR_ZERO_CALL;
718			break;
719		}
720	case 0x9a: /* call far absolute */
721		ret = X86_BR_CALL;
722		break;
723	case 0xe0 ... 0xe3: /* loop jmp */
724		ret = X86_BR_JCC;
725		break;
726	case 0xe9 ... 0xeb: /* jmp */
727		ret = X86_BR_JMP;
728		break;
729	case 0xff: /* call near absolute, call far absolute ind */
730		insn_get_modrm(&insn);
731		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
732		switch (ext) {
733		case 2: /* near ind call */
734		case 3: /* far ind call */
735			ret = X86_BR_IND_CALL;
736			break;
737		case 4:
738		case 5:
739			ret = X86_BR_JMP;
740			break;
741		}
742		break;
743	default:
744		ret = X86_BR_NONE;
745	}
746	/*
747	 * interrupts, traps, faults (and thus ring transition) may
748	 * occur on any instructions. Thus, to classify them correctly,
749	 * we need to first look at the from and to priv levels. If they
750	 * are different and to is in the kernel, then it indicates
751	 * a ring transition. If the from instruction is not a ring
752	 * transition instr (syscall, systenter, int), then it means
753	 * it was a irq, trap or fault.
754	 *
755	 * we have no way of detecting kernel to kernel faults.
756	 */
757	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
758	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
759		ret = X86_BR_IRQ;
760
761	/*
762	 * branch priv level determined by target as
763	 * is done by HW when LBR_SELECT is implemented
764	 */
765	if (ret != X86_BR_NONE)
766		ret |= to_plm;
767
768	return ret;
769}
770
771/*
772 * implement actual branch filter based on user demand.
773 * Hardware may not exactly satisfy that request, thus
774 * we need to inspect opcodes. Mismatched branches are
775 * discarded. Therefore, the number of branches returned
776 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
777 */
778static void
779intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
780{
781	u64 from, to;
782	int br_sel = cpuc->br_sel;
783	int i, j, type;
784	bool compress = false;
785
786	/* if sampling all branches, then nothing to filter */
787	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
788		return;
789
790	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
791
792		from = cpuc->lbr_entries[i].from;
793		to = cpuc->lbr_entries[i].to;
794
795		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
796		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
797			if (cpuc->lbr_entries[i].in_tx)
798				type |= X86_BR_IN_TX;
799			else
800				type |= X86_BR_NO_TX;
801		}
802
803		/* if type does not correspond, then discard */
804		if (type == X86_BR_NONE || (br_sel & type) != type) {
805			cpuc->lbr_entries[i].from = 0;
806			compress = true;
807		}
808	}
809
810	if (!compress)
811		return;
812
813	/* remove all entries with from=0 */
814	for (i = 0; i < cpuc->lbr_stack.nr; ) {
815		if (!cpuc->lbr_entries[i].from) {
816			j = i;
817			while (++j < cpuc->lbr_stack.nr)
818				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
819			cpuc->lbr_stack.nr--;
820			if (!cpuc->lbr_entries[i].from)
821				continue;
822		}
823		i++;
824	}
825}
826
827/*
828 * Map interface branch filters onto LBR filters
829 */
830static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
831	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
832	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
833	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
834	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
835	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
836						| LBR_IND_JMP | LBR_FAR,
837	/*
838	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
839	 */
840	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
841	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
842	/*
843	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
844	 */
845	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
846	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
847};
848
849static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
850	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
851	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
852	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
853	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
854	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
855	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
856						| LBR_FAR,
857	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
858	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
859};
860
861static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
862	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
863	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
864	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
865	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
866	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
867	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
868						| LBR_FAR,
869	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
870	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
871	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
872						| LBR_RETURN | LBR_CALL_STACK,
873};
874
875/* core */
876void __init intel_pmu_lbr_init_core(void)
877{
878	x86_pmu.lbr_nr     = 4;
879	x86_pmu.lbr_tos    = MSR_LBR_TOS;
880	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
881	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
882
883	/*
884	 * SW branch filter usage:
885	 * - compensate for lack of HW filter
886	 */
887	pr_cont("4-deep LBR, ");
888}
889
890/* nehalem/westmere */
891void __init intel_pmu_lbr_init_nhm(void)
892{
893	x86_pmu.lbr_nr     = 16;
894	x86_pmu.lbr_tos    = MSR_LBR_TOS;
895	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
896	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
897
898	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
899	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
900
901	/*
902	 * SW branch filter usage:
903	 * - workaround LBR_SEL errata (see above)
904	 * - support syscall, sysret capture.
905	 *   That requires LBR_FAR but that means far
906	 *   jmp need to be filtered out
907	 */
908	pr_cont("16-deep LBR, ");
909}
910
911/* sandy bridge */
912void __init intel_pmu_lbr_init_snb(void)
913{
914	x86_pmu.lbr_nr	 = 16;
915	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
916	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
917	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
918
919	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
920	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
921
922	/*
923	 * SW branch filter usage:
924	 * - support syscall, sysret capture.
925	 *   That requires LBR_FAR but that means far
926	 *   jmp need to be filtered out
927	 */
928	pr_cont("16-deep LBR, ");
929}
930
931/* haswell */
932void intel_pmu_lbr_init_hsw(void)
933{
934	x86_pmu.lbr_nr	 = 16;
935	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
936	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
937	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
938
939	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
940	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
941
942	pr_cont("16-deep LBR, ");
943}
944
945/* atom */
946void __init intel_pmu_lbr_init_atom(void)
947{
948	/*
949	 * only models starting at stepping 10 seems
950	 * to have an operational LBR which can freeze
951	 * on PMU interrupt
952	 */
953	if (boot_cpu_data.x86_model == 28
954	    && boot_cpu_data.x86_mask < 10) {
955		pr_cont("LBR disabled due to erratum");
956		return;
957	}
958
959	x86_pmu.lbr_nr	   = 8;
960	x86_pmu.lbr_tos    = MSR_LBR_TOS;
961	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
962	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
963
964	/*
965	 * SW branch filter usage:
966	 * - compensate for lack of HW filter
967	 */
968	pr_cont("8-deep LBR, ");
969}
970