1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kprobes.h>
12#include <linux/kgdb.h>
13#include <linux/smp.h>
14#include <linux/io.h>
15
16#include <asm/stackprotector.h>
17#include <asm/perf_event.h>
18#include <asm/mmu_context.h>
19#include <asm/archrandom.h>
20#include <asm/hypervisor.h>
21#include <asm/processor.h>
22#include <asm/tlbflush.h>
23#include <asm/debugreg.h>
24#include <asm/sections.h>
25#include <asm/vsyscall.h>
26#include <linux/topology.h>
27#include <linux/cpumask.h>
28#include <asm/pgtable.h>
29#include <linux/atomic.h>
30#include <asm/proto.h>
31#include <asm/setup.h>
32#include <asm/apic.h>
33#include <asm/desc.h>
34#include <asm/i387.h>
35#include <asm/fpu-internal.h>
36#include <asm/mtrr.h>
37#include <linux/numa.h>
38#include <asm/asm.h>
39#include <asm/cpu.h>
40#include <asm/mce.h>
41#include <asm/msr.h>
42#include <asm/pat.h>
43#include <asm/microcode.h>
44#include <asm/microcode_intel.h>
45
46#ifdef CONFIG_X86_LOCAL_APIC
47#include <asm/uv/uv.h>
48#endif
49
50#include "cpu.h"
51
52/* all of these masks are initialized in setup_cpu_local_masks() */
53cpumask_var_t cpu_initialized_mask;
54cpumask_var_t cpu_callout_mask;
55cpumask_var_t cpu_callin_mask;
56
57/* representing cpus for which sibling maps can be computed */
58cpumask_var_t cpu_sibling_setup_mask;
59
60/* correctly size the local cpu masks */
61void __init setup_cpu_local_masks(void)
62{
63	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
64	alloc_bootmem_cpumask_var(&cpu_callin_mask);
65	alloc_bootmem_cpumask_var(&cpu_callout_mask);
66	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
67}
68
69static void default_init(struct cpuinfo_x86 *c)
70{
71#ifdef CONFIG_X86_64
72	cpu_detect_cache_sizes(c);
73#else
74	/* Not much we can do here... */
75	/* Check if at least it has cpuid */
76	if (c->cpuid_level == -1) {
77		/* No cpuid. It must be an ancient CPU */
78		if (c->x86 == 4)
79			strcpy(c->x86_model_id, "486");
80		else if (c->x86 == 3)
81			strcpy(c->x86_model_id, "386");
82	}
83#endif
84}
85
86static const struct cpu_dev default_cpu = {
87	.c_init		= default_init,
88	.c_vendor	= "Unknown",
89	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
90};
91
92static const struct cpu_dev *this_cpu = &default_cpu;
93
94DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
95#ifdef CONFIG_X86_64
96	/*
97	 * We need valid kernel segments for data and code in long mode too
98	 * IRET will check the segment types  kkeil 2000/10/28
99	 * Also sysret mandates a special GDT layout
100	 *
101	 * TLS descriptors are currently at a different place compared to i386.
102	 * Hopefully nobody expects them at a fixed place (Wine?)
103	 */
104	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
105	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
106	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
107	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
108	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
109	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
110#else
111	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
112	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
113	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
114	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
115	/*
116	 * Segments used for calling PnP BIOS have byte granularity.
117	 * They code segments and data segments have fixed 64k limits,
118	 * the transfer segment sizes are set at run time.
119	 */
120	/* 32-bit code */
121	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
122	/* 16-bit code */
123	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
124	/* 16-bit data */
125	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
126	/* 16-bit data */
127	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
128	/* 16-bit data */
129	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
130	/*
131	 * The APM segments have byte granularity and their bases
132	 * are set at run time.  All have 64k limits.
133	 */
134	/* 32-bit code */
135	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
136	/* 16-bit code */
137	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
138	/* data */
139	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
140
141	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143	GDT_STACK_CANARY_INIT
144#endif
145} };
146EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
147
148static int __init x86_xsave_setup(char *s)
149{
150	if (strlen(s))
151		return 0;
152	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
153	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
154	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
155	setup_clear_cpu_cap(X86_FEATURE_AVX);
156	setup_clear_cpu_cap(X86_FEATURE_AVX2);
157	return 1;
158}
159__setup("noxsave", x86_xsave_setup);
160
161static int __init x86_xsaveopt_setup(char *s)
162{
163	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
164	return 1;
165}
166__setup("noxsaveopt", x86_xsaveopt_setup);
167
168static int __init x86_xsaves_setup(char *s)
169{
170	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
171	return 1;
172}
173__setup("noxsaves", x86_xsaves_setup);
174
175#ifdef CONFIG_X86_32
176static int cachesize_override = -1;
177static int disable_x86_serial_nr = 1;
178
179static int __init cachesize_setup(char *str)
180{
181	get_option(&str, &cachesize_override);
182	return 1;
183}
184__setup("cachesize=", cachesize_setup);
185
186static int __init x86_fxsr_setup(char *s)
187{
188	setup_clear_cpu_cap(X86_FEATURE_FXSR);
189	setup_clear_cpu_cap(X86_FEATURE_XMM);
190	return 1;
191}
192__setup("nofxsr", x86_fxsr_setup);
193
194static int __init x86_sep_setup(char *s)
195{
196	setup_clear_cpu_cap(X86_FEATURE_SEP);
197	return 1;
198}
199__setup("nosep", x86_sep_setup);
200
201/* Standard macro to see if a specific flag is changeable */
202static inline int flag_is_changeable_p(u32 flag)
203{
204	u32 f1, f2;
205
206	/*
207	 * Cyrix and IDT cpus allow disabling of CPUID
208	 * so the code below may return different results
209	 * when it is executed before and after enabling
210	 * the CPUID. Add "volatile" to not allow gcc to
211	 * optimize the subsequent calls to this function.
212	 */
213	asm volatile ("pushfl		\n\t"
214		      "pushfl		\n\t"
215		      "popl %0		\n\t"
216		      "movl %0, %1	\n\t"
217		      "xorl %2, %0	\n\t"
218		      "pushl %0		\n\t"
219		      "popfl		\n\t"
220		      "pushfl		\n\t"
221		      "popl %0		\n\t"
222		      "popfl		\n\t"
223
224		      : "=&r" (f1), "=&r" (f2)
225		      : "ir" (flag));
226
227	return ((f1^f2) & flag) != 0;
228}
229
230/* Probe for the CPUID instruction */
231int have_cpuid_p(void)
232{
233	return flag_is_changeable_p(X86_EFLAGS_ID);
234}
235
236static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
237{
238	unsigned long lo, hi;
239
240	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
241		return;
242
243	/* Disable processor serial number: */
244
245	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246	lo |= 0x200000;
247	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
248
249	printk(KERN_NOTICE "CPU serial number disabled.\n");
250	clear_cpu_cap(c, X86_FEATURE_PN);
251
252	/* Disabling the serial number may affect the cpuid level */
253	c->cpuid_level = cpuid_eax(0);
254}
255
256static int __init x86_serial_nr_setup(char *s)
257{
258	disable_x86_serial_nr = 0;
259	return 1;
260}
261__setup("serialnumber", x86_serial_nr_setup);
262#else
263static inline int flag_is_changeable_p(u32 flag)
264{
265	return 1;
266}
267static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268{
269}
270#endif
271
272static __init int setup_disable_smep(char *arg)
273{
274	setup_clear_cpu_cap(X86_FEATURE_SMEP);
275	return 1;
276}
277__setup("nosmep", setup_disable_smep);
278
279static __always_inline void setup_smep(struct cpuinfo_x86 *c)
280{
281	if (cpu_has(c, X86_FEATURE_SMEP))
282		cr4_set_bits(X86_CR4_SMEP);
283}
284
285static __init int setup_disable_smap(char *arg)
286{
287	setup_clear_cpu_cap(X86_FEATURE_SMAP);
288	return 1;
289}
290__setup("nosmap", setup_disable_smap);
291
292static __always_inline void setup_smap(struct cpuinfo_x86 *c)
293{
294	unsigned long eflags = native_save_fl();
295
296	/* This should have been cleared long ago */
297	BUG_ON(eflags & X86_EFLAGS_AC);
298
299	if (cpu_has(c, X86_FEATURE_SMAP)) {
300#ifdef CONFIG_X86_SMAP
301		cr4_set_bits(X86_CR4_SMAP);
302#else
303		cr4_clear_bits(X86_CR4_SMAP);
304#endif
305	}
306}
307
308/*
309 * Some CPU features depend on higher CPUID levels, which may not always
310 * be available due to CPUID level capping or broken virtualization
311 * software.  Add those features to this table to auto-disable them.
312 */
313struct cpuid_dependent_feature {
314	u32 feature;
315	u32 level;
316};
317
318static const struct cpuid_dependent_feature
319cpuid_dependent_features[] = {
320	{ X86_FEATURE_MWAIT,		0x00000005 },
321	{ X86_FEATURE_DCA,		0x00000009 },
322	{ X86_FEATURE_XSAVE,		0x0000000d },
323	{ 0, 0 }
324};
325
326static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
327{
328	const struct cpuid_dependent_feature *df;
329
330	for (df = cpuid_dependent_features; df->feature; df++) {
331
332		if (!cpu_has(c, df->feature))
333			continue;
334		/*
335		 * Note: cpuid_level is set to -1 if unavailable, but
336		 * extended_extended_level is set to 0 if unavailable
337		 * and the legitimate extended levels are all negative
338		 * when signed; hence the weird messing around with
339		 * signs here...
340		 */
341		if (!((s32)df->level < 0 ?
342		     (u32)df->level > (u32)c->extended_cpuid_level :
343		     (s32)df->level > (s32)c->cpuid_level))
344			continue;
345
346		clear_cpu_cap(c, df->feature);
347		if (!warn)
348			continue;
349
350		printk(KERN_WARNING
351		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
352				x86_cap_flag(df->feature), df->level);
353	}
354}
355
356/*
357 * Naming convention should be: <Name> [(<Codename>)]
358 * This table only is used unless init_<vendor>() below doesn't set it;
359 * in particular, if CPUID levels 0x80000002..4 are supported, this
360 * isn't used
361 */
362
363/* Look up CPU names by table lookup. */
364static const char *table_lookup_model(struct cpuinfo_x86 *c)
365{
366#ifdef CONFIG_X86_32
367	const struct legacy_cpu_model_info *info;
368
369	if (c->x86_model >= 16)
370		return NULL;	/* Range check */
371
372	if (!this_cpu)
373		return NULL;
374
375	info = this_cpu->legacy_models;
376
377	while (info->family) {
378		if (info->family == c->x86)
379			return info->model_names[c->x86_model];
380		info++;
381	}
382#endif
383	return NULL;		/* Not found */
384}
385
386__u32 cpu_caps_cleared[NCAPINTS];
387__u32 cpu_caps_set[NCAPINTS];
388
389void load_percpu_segment(int cpu)
390{
391#ifdef CONFIG_X86_32
392	loadsegment(fs, __KERNEL_PERCPU);
393#else
394	loadsegment(gs, 0);
395	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
396#endif
397	load_stack_canary_segment();
398}
399
400/*
401 * Current gdt points %fs at the "master" per-cpu area: after this,
402 * it's on the real one.
403 */
404void switch_to_new_gdt(int cpu)
405{
406	struct desc_ptr gdt_descr;
407
408	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
409	gdt_descr.size = GDT_SIZE - 1;
410	load_gdt(&gdt_descr);
411	/* Reload the per-cpu base */
412
413	load_percpu_segment(cpu);
414}
415
416static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
417
418static void get_model_name(struct cpuinfo_x86 *c)
419{
420	unsigned int *v;
421	char *p, *q;
422
423	if (c->extended_cpuid_level < 0x80000004)
424		return;
425
426	v = (unsigned int *)c->x86_model_id;
427	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
428	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
429	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
430	c->x86_model_id[48] = 0;
431
432	/*
433	 * Intel chips right-justify this string for some dumb reason;
434	 * undo that brain damage:
435	 */
436	p = q = &c->x86_model_id[0];
437	while (*p == ' ')
438		p++;
439	if (p != q) {
440		while (*p)
441			*q++ = *p++;
442		while (q <= &c->x86_model_id[48])
443			*q++ = '\0';	/* Zero-pad the rest */
444	}
445}
446
447void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
448{
449	unsigned int n, dummy, ebx, ecx, edx, l2size;
450
451	n = c->extended_cpuid_level;
452
453	if (n >= 0x80000005) {
454		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
455		c->x86_cache_size = (ecx>>24) + (edx>>24);
456#ifdef CONFIG_X86_64
457		/* On K8 L1 TLB is inclusive, so don't count it */
458		c->x86_tlbsize = 0;
459#endif
460	}
461
462	if (n < 0x80000006)	/* Some chips just has a large L1. */
463		return;
464
465	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
466	l2size = ecx >> 16;
467
468#ifdef CONFIG_X86_64
469	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
470#else
471	/* do processor-specific cache resizing */
472	if (this_cpu->legacy_cache_size)
473		l2size = this_cpu->legacy_cache_size(c, l2size);
474
475	/* Allow user to override all this if necessary. */
476	if (cachesize_override != -1)
477		l2size = cachesize_override;
478
479	if (l2size == 0)
480		return;		/* Again, no L2 cache is possible */
481#endif
482
483	c->x86_cache_size = l2size;
484}
485
486u16 __read_mostly tlb_lli_4k[NR_INFO];
487u16 __read_mostly tlb_lli_2m[NR_INFO];
488u16 __read_mostly tlb_lli_4m[NR_INFO];
489u16 __read_mostly tlb_lld_4k[NR_INFO];
490u16 __read_mostly tlb_lld_2m[NR_INFO];
491u16 __read_mostly tlb_lld_4m[NR_INFO];
492u16 __read_mostly tlb_lld_1g[NR_INFO];
493
494static void cpu_detect_tlb(struct cpuinfo_x86 *c)
495{
496	if (this_cpu->c_detect_tlb)
497		this_cpu->c_detect_tlb(c);
498
499	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
500		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
501		tlb_lli_4m[ENTRIES]);
502
503	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
504		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
505		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
506}
507
508void detect_ht(struct cpuinfo_x86 *c)
509{
510#ifdef CONFIG_X86_HT
511	u32 eax, ebx, ecx, edx;
512	int index_msb, core_bits;
513	static bool printed;
514
515	if (!cpu_has(c, X86_FEATURE_HT))
516		return;
517
518	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
519		goto out;
520
521	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
522		return;
523
524	cpuid(1, &eax, &ebx, &ecx, &edx);
525
526	smp_num_siblings = (ebx & 0xff0000) >> 16;
527
528	if (smp_num_siblings == 1) {
529		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
530		goto out;
531	}
532
533	if (smp_num_siblings <= 1)
534		goto out;
535
536	index_msb = get_count_order(smp_num_siblings);
537	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
538
539	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
540
541	index_msb = get_count_order(smp_num_siblings);
542
543	core_bits = get_count_order(c->x86_max_cores);
544
545	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
546				       ((1 << core_bits) - 1);
547
548out:
549	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
550		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
551		       c->phys_proc_id);
552		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
553		       c->cpu_core_id);
554		printed = 1;
555	}
556#endif
557}
558
559static void get_cpu_vendor(struct cpuinfo_x86 *c)
560{
561	char *v = c->x86_vendor_id;
562	int i;
563
564	for (i = 0; i < X86_VENDOR_NUM; i++) {
565		if (!cpu_devs[i])
566			break;
567
568		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
569		    (cpu_devs[i]->c_ident[1] &&
570		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
571
572			this_cpu = cpu_devs[i];
573			c->x86_vendor = this_cpu->c_x86_vendor;
574			return;
575		}
576	}
577
578	printk_once(KERN_ERR
579			"CPU: vendor_id '%s' unknown, using generic init.\n" \
580			"CPU: Your system may be unstable.\n", v);
581
582	c->x86_vendor = X86_VENDOR_UNKNOWN;
583	this_cpu = &default_cpu;
584}
585
586void cpu_detect(struct cpuinfo_x86 *c)
587{
588	/* Get vendor name */
589	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
590	      (unsigned int *)&c->x86_vendor_id[0],
591	      (unsigned int *)&c->x86_vendor_id[8],
592	      (unsigned int *)&c->x86_vendor_id[4]);
593
594	c->x86 = 4;
595	/* Intel-defined flags: level 0x00000001 */
596	if (c->cpuid_level >= 0x00000001) {
597		u32 junk, tfms, cap0, misc;
598
599		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
600		c->x86 = (tfms >> 8) & 0xf;
601		c->x86_model = (tfms >> 4) & 0xf;
602		c->x86_mask = tfms & 0xf;
603
604		if (c->x86 == 0xf)
605			c->x86 += (tfms >> 20) & 0xff;
606		if (c->x86 >= 0x6)
607			c->x86_model += ((tfms >> 16) & 0xf) << 4;
608
609		if (cap0 & (1<<19)) {
610			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
611			c->x86_cache_alignment = c->x86_clflush_size;
612		}
613	}
614}
615
616void get_cpu_cap(struct cpuinfo_x86 *c)
617{
618	u32 tfms, xlvl;
619	u32 ebx;
620
621	/* Intel-defined flags: level 0x00000001 */
622	if (c->cpuid_level >= 0x00000001) {
623		u32 capability, excap;
624
625		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
626		c->x86_capability[0] = capability;
627		c->x86_capability[4] = excap;
628	}
629
630	/* Additional Intel-defined flags: level 0x00000007 */
631	if (c->cpuid_level >= 0x00000007) {
632		u32 eax, ebx, ecx, edx;
633
634		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
635
636		c->x86_capability[9] = ebx;
637	}
638
639	/* Extended state features: level 0x0000000d */
640	if (c->cpuid_level >= 0x0000000d) {
641		u32 eax, ebx, ecx, edx;
642
643		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
644
645		c->x86_capability[10] = eax;
646	}
647
648	/* Additional Intel-defined flags: level 0x0000000F */
649	if (c->cpuid_level >= 0x0000000F) {
650		u32 eax, ebx, ecx, edx;
651
652		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
653		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
654		c->x86_capability[11] = edx;
655		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
656			/* will be overridden if occupancy monitoring exists */
657			c->x86_cache_max_rmid = ebx;
658
659			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
660			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
661			c->x86_capability[12] = edx;
662			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
663				c->x86_cache_max_rmid = ecx;
664				c->x86_cache_occ_scale = ebx;
665			}
666		} else {
667			c->x86_cache_max_rmid = -1;
668			c->x86_cache_occ_scale = -1;
669		}
670	}
671
672	/* AMD-defined flags: level 0x80000001 */
673	xlvl = cpuid_eax(0x80000000);
674	c->extended_cpuid_level = xlvl;
675
676	if ((xlvl & 0xffff0000) == 0x80000000) {
677		if (xlvl >= 0x80000001) {
678			c->x86_capability[1] = cpuid_edx(0x80000001);
679			c->x86_capability[6] = cpuid_ecx(0x80000001);
680		}
681	}
682
683	if (c->extended_cpuid_level >= 0x80000008) {
684		u32 eax = cpuid_eax(0x80000008);
685
686		c->x86_virt_bits = (eax >> 8) & 0xff;
687		c->x86_phys_bits = eax & 0xff;
688	}
689#ifdef CONFIG_X86_32
690	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
691		c->x86_phys_bits = 36;
692#endif
693
694	if (c->extended_cpuid_level >= 0x80000007)
695		c->x86_power = cpuid_edx(0x80000007);
696
697	init_scattered_cpuid_features(c);
698}
699
700static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
701{
702#ifdef CONFIG_X86_32
703	int i;
704
705	/*
706	 * First of all, decide if this is a 486 or higher
707	 * It's a 486 if we can modify the AC flag
708	 */
709	if (flag_is_changeable_p(X86_EFLAGS_AC))
710		c->x86 = 4;
711	else
712		c->x86 = 3;
713
714	for (i = 0; i < X86_VENDOR_NUM; i++)
715		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
716			c->x86_vendor_id[0] = 0;
717			cpu_devs[i]->c_identify(c);
718			if (c->x86_vendor_id[0]) {
719				get_cpu_vendor(c);
720				break;
721			}
722		}
723#endif
724}
725
726/*
727 * Do minimum CPU detection early.
728 * Fields really needed: vendor, cpuid_level, family, model, mask,
729 * cache alignment.
730 * The others are not touched to avoid unwanted side effects.
731 *
732 * WARNING: this function is only called on the BP.  Don't add code here
733 * that is supposed to run on all CPUs.
734 */
735static void __init early_identify_cpu(struct cpuinfo_x86 *c)
736{
737#ifdef CONFIG_X86_64
738	c->x86_clflush_size = 64;
739	c->x86_phys_bits = 36;
740	c->x86_virt_bits = 48;
741#else
742	c->x86_clflush_size = 32;
743	c->x86_phys_bits = 32;
744	c->x86_virt_bits = 32;
745#endif
746	c->x86_cache_alignment = c->x86_clflush_size;
747
748	memset(&c->x86_capability, 0, sizeof c->x86_capability);
749	c->extended_cpuid_level = 0;
750
751	if (!have_cpuid_p())
752		identify_cpu_without_cpuid(c);
753
754	/* cyrix could have cpuid enabled via c_identify()*/
755	if (!have_cpuid_p())
756		return;
757
758	cpu_detect(c);
759	get_cpu_vendor(c);
760	get_cpu_cap(c);
761	fpu_detect(c);
762
763	if (this_cpu->c_early_init)
764		this_cpu->c_early_init(c);
765
766	c->cpu_index = 0;
767	filter_cpuid_features(c, false);
768
769	if (this_cpu->c_bsp_init)
770		this_cpu->c_bsp_init(c);
771
772	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
773}
774
775void __init early_cpu_init(void)
776{
777	const struct cpu_dev *const *cdev;
778	int count = 0;
779
780#ifdef CONFIG_PROCESSOR_SELECT
781	printk(KERN_INFO "KERNEL supported cpus:\n");
782#endif
783
784	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
785		const struct cpu_dev *cpudev = *cdev;
786
787		if (count >= X86_VENDOR_NUM)
788			break;
789		cpu_devs[count] = cpudev;
790		count++;
791
792#ifdef CONFIG_PROCESSOR_SELECT
793		{
794			unsigned int j;
795
796			for (j = 0; j < 2; j++) {
797				if (!cpudev->c_ident[j])
798					continue;
799				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
800					cpudev->c_ident[j]);
801			}
802		}
803#endif
804	}
805	early_identify_cpu(&boot_cpu_data);
806}
807
808/*
809 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
810 * unfortunately, that's not true in practice because of early VIA
811 * chips and (more importantly) broken virtualizers that are not easy
812 * to detect. In the latter case it doesn't even *fail* reliably, so
813 * probing for it doesn't even work. Disable it completely on 32-bit
814 * unless we can find a reliable way to detect all the broken cases.
815 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
816 */
817static void detect_nopl(struct cpuinfo_x86 *c)
818{
819#ifdef CONFIG_X86_32
820	clear_cpu_cap(c, X86_FEATURE_NOPL);
821#else
822	set_cpu_cap(c, X86_FEATURE_NOPL);
823#endif
824}
825
826static void generic_identify(struct cpuinfo_x86 *c)
827{
828	c->extended_cpuid_level = 0;
829
830	if (!have_cpuid_p())
831		identify_cpu_without_cpuid(c);
832
833	/* cyrix could have cpuid enabled via c_identify()*/
834	if (!have_cpuid_p())
835		return;
836
837	cpu_detect(c);
838
839	get_cpu_vendor(c);
840
841	get_cpu_cap(c);
842
843	if (c->cpuid_level >= 0x00000001) {
844		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
845#ifdef CONFIG_X86_32
846# ifdef CONFIG_X86_HT
847		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
848# else
849		c->apicid = c->initial_apicid;
850# endif
851#endif
852		c->phys_proc_id = c->initial_apicid;
853	}
854
855	get_model_name(c); /* Default name */
856
857	detect_nopl(c);
858}
859
860static void x86_init_cache_qos(struct cpuinfo_x86 *c)
861{
862	/*
863	 * The heavy lifting of max_rmid and cache_occ_scale are handled
864	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
865	 * in case CQM bits really aren't there in this CPU.
866	 */
867	if (c != &boot_cpu_data) {
868		boot_cpu_data.x86_cache_max_rmid =
869			min(boot_cpu_data.x86_cache_max_rmid,
870			    c->x86_cache_max_rmid);
871	}
872}
873
874/*
875 * This does the hard work of actually picking apart the CPU stuff...
876 */
877static void identify_cpu(struct cpuinfo_x86 *c)
878{
879	int i;
880
881	c->loops_per_jiffy = loops_per_jiffy;
882	c->x86_cache_size = -1;
883	c->x86_vendor = X86_VENDOR_UNKNOWN;
884	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
885	c->x86_vendor_id[0] = '\0'; /* Unset */
886	c->x86_model_id[0] = '\0';  /* Unset */
887	c->x86_max_cores = 1;
888	c->x86_coreid_bits = 0;
889#ifdef CONFIG_X86_64
890	c->x86_clflush_size = 64;
891	c->x86_phys_bits = 36;
892	c->x86_virt_bits = 48;
893#else
894	c->cpuid_level = -1;	/* CPUID not detected */
895	c->x86_clflush_size = 32;
896	c->x86_phys_bits = 32;
897	c->x86_virt_bits = 32;
898#endif
899	c->x86_cache_alignment = c->x86_clflush_size;
900	memset(&c->x86_capability, 0, sizeof c->x86_capability);
901
902	generic_identify(c);
903
904	if (this_cpu->c_identify)
905		this_cpu->c_identify(c);
906
907	/* Clear/Set all flags overriden by options, after probe */
908	for (i = 0; i < NCAPINTS; i++) {
909		c->x86_capability[i] &= ~cpu_caps_cleared[i];
910		c->x86_capability[i] |= cpu_caps_set[i];
911	}
912
913#ifdef CONFIG_X86_64
914	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
915#endif
916
917	/*
918	 * Vendor-specific initialization.  In this section we
919	 * canonicalize the feature flags, meaning if there are
920	 * features a certain CPU supports which CPUID doesn't
921	 * tell us, CPUID claiming incorrect flags, or other bugs,
922	 * we handle them here.
923	 *
924	 * At the end of this section, c->x86_capability better
925	 * indicate the features this CPU genuinely supports!
926	 */
927	if (this_cpu->c_init)
928		this_cpu->c_init(c);
929
930	/* Disable the PN if appropriate */
931	squash_the_stupid_serial_number(c);
932
933	/* Set up SMEP/SMAP */
934	setup_smep(c);
935	setup_smap(c);
936
937	/*
938	 * The vendor-specific functions might have changed features.
939	 * Now we do "generic changes."
940	 */
941
942	/* Filter out anything that depends on CPUID levels we don't have */
943	filter_cpuid_features(c, true);
944
945	/* If the model name is still unset, do table lookup. */
946	if (!c->x86_model_id[0]) {
947		const char *p;
948		p = table_lookup_model(c);
949		if (p)
950			strcpy(c->x86_model_id, p);
951		else
952			/* Last resort... */
953			sprintf(c->x86_model_id, "%02x/%02x",
954				c->x86, c->x86_model);
955	}
956
957#ifdef CONFIG_X86_64
958	detect_ht(c);
959#endif
960
961	init_hypervisor(c);
962	x86_init_rdrand(c);
963	x86_init_cache_qos(c);
964
965	/*
966	 * Clear/Set all flags overriden by options, need do it
967	 * before following smp all cpus cap AND.
968	 */
969	for (i = 0; i < NCAPINTS; i++) {
970		c->x86_capability[i] &= ~cpu_caps_cleared[i];
971		c->x86_capability[i] |= cpu_caps_set[i];
972	}
973
974	/*
975	 * On SMP, boot_cpu_data holds the common feature set between
976	 * all CPUs; so make sure that we indicate which features are
977	 * common between the CPUs.  The first time this routine gets
978	 * executed, c == &boot_cpu_data.
979	 */
980	if (c != &boot_cpu_data) {
981		/* AND the already accumulated flags with these */
982		for (i = 0; i < NCAPINTS; i++)
983			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
984
985		/* OR, i.e. replicate the bug flags */
986		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
987			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
988	}
989
990	/* Init Machine Check Exception if available. */
991	mcheck_cpu_init(c);
992
993	select_idle_routine(c);
994
995#ifdef CONFIG_NUMA
996	numa_add_cpu(smp_processor_id());
997#endif
998}
999
1000/*
1001 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1002 * on 32-bit kernels:
1003 */
1004#ifdef CONFIG_X86_32
1005void enable_sep_cpu(void)
1006{
1007	struct tss_struct *tss;
1008	int cpu;
1009
1010	cpu = get_cpu();
1011	tss = &per_cpu(cpu_tss, cpu);
1012
1013	if (!boot_cpu_has(X86_FEATURE_SEP))
1014		goto out;
1015
1016	/*
1017	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1018	 * see the big comment in struct x86_hw_tss's definition.
1019	 */
1020
1021	tss->x86_tss.ss1 = __KERNEL_CS;
1022	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1023
1024	wrmsr(MSR_IA32_SYSENTER_ESP,
1025	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1026	      0);
1027
1028	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)ia32_sysenter_target, 0);
1029
1030out:
1031	put_cpu();
1032}
1033#endif
1034
1035void __init identify_boot_cpu(void)
1036{
1037	identify_cpu(&boot_cpu_data);
1038	init_amd_e400_c1e_mask();
1039#ifdef CONFIG_X86_32
1040	sysenter_setup();
1041	enable_sep_cpu();
1042#endif
1043	cpu_detect_tlb(&boot_cpu_data);
1044}
1045
1046void identify_secondary_cpu(struct cpuinfo_x86 *c)
1047{
1048	BUG_ON(c == &boot_cpu_data);
1049	identify_cpu(c);
1050#ifdef CONFIG_X86_32
1051	enable_sep_cpu();
1052#endif
1053	mtrr_ap_init();
1054}
1055
1056struct msr_range {
1057	unsigned	min;
1058	unsigned	max;
1059};
1060
1061static const struct msr_range msr_range_array[] = {
1062	{ 0x00000000, 0x00000418},
1063	{ 0xc0000000, 0xc000040b},
1064	{ 0xc0010000, 0xc0010142},
1065	{ 0xc0011000, 0xc001103b},
1066};
1067
1068static void __print_cpu_msr(void)
1069{
1070	unsigned index_min, index_max;
1071	unsigned index;
1072	u64 val;
1073	int i;
1074
1075	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1076		index_min = msr_range_array[i].min;
1077		index_max = msr_range_array[i].max;
1078
1079		for (index = index_min; index < index_max; index++) {
1080			if (rdmsrl_safe(index, &val))
1081				continue;
1082			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1083		}
1084	}
1085}
1086
1087static int show_msr;
1088
1089static __init int setup_show_msr(char *arg)
1090{
1091	int num;
1092
1093	get_option(&arg, &num);
1094
1095	if (num > 0)
1096		show_msr = num;
1097	return 1;
1098}
1099__setup("show_msr=", setup_show_msr);
1100
1101static __init int setup_noclflush(char *arg)
1102{
1103	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1104	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1105	return 1;
1106}
1107__setup("noclflush", setup_noclflush);
1108
1109void print_cpu_info(struct cpuinfo_x86 *c)
1110{
1111	const char *vendor = NULL;
1112
1113	if (c->x86_vendor < X86_VENDOR_NUM) {
1114		vendor = this_cpu->c_vendor;
1115	} else {
1116		if (c->cpuid_level >= 0)
1117			vendor = c->x86_vendor_id;
1118	}
1119
1120	if (vendor && !strstr(c->x86_model_id, vendor))
1121		printk(KERN_CONT "%s ", vendor);
1122
1123	if (c->x86_model_id[0])
1124		printk(KERN_CONT "%s", strim(c->x86_model_id));
1125	else
1126		printk(KERN_CONT "%d86", c->x86);
1127
1128	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1129
1130	if (c->x86_mask || c->cpuid_level >= 0)
1131		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1132	else
1133		printk(KERN_CONT ")\n");
1134
1135	print_cpu_msr(c);
1136}
1137
1138void print_cpu_msr(struct cpuinfo_x86 *c)
1139{
1140	if (c->cpu_index < show_msr)
1141		__print_cpu_msr();
1142}
1143
1144static __init int setup_disablecpuid(char *arg)
1145{
1146	int bit;
1147
1148	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1149		setup_clear_cpu_cap(bit);
1150	else
1151		return 0;
1152
1153	return 1;
1154}
1155__setup("clearcpuid=", setup_disablecpuid);
1156
1157DEFINE_PER_CPU(unsigned long, kernel_stack) =
1158	(unsigned long)&init_thread_union + THREAD_SIZE;
1159EXPORT_PER_CPU_SYMBOL(kernel_stack);
1160
1161#ifdef CONFIG_X86_64
1162struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1163struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1164				    (unsigned long) debug_idt_table };
1165
1166DEFINE_PER_CPU_FIRST(union irq_stack_union,
1167		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1168
1169/*
1170 * The following percpu variables are hot.  Align current_task to
1171 * cacheline size such that they fall in the same cacheline.
1172 */
1173DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1174	&init_task;
1175EXPORT_PER_CPU_SYMBOL(current_task);
1176
1177DEFINE_PER_CPU(char *, irq_stack_ptr) =
1178	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1179
1180DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1181
1182DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1183EXPORT_PER_CPU_SYMBOL(__preempt_count);
1184
1185DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1186
1187/*
1188 * Special IST stacks which the CPU switches to when it calls
1189 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1190 * limit), all of them are 4K, except the debug stack which
1191 * is 8K.
1192 */
1193static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1194	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1195	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1196};
1197
1198static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1199	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1200
1201/* May not be marked __init: used by software suspend */
1202void syscall_init(void)
1203{
1204	/*
1205	 * LSTAR and STAR live in a bit strange symbiosis.
1206	 * They both write to the same internal register. STAR allows to
1207	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1208	 */
1209	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1210	wrmsrl(MSR_LSTAR, system_call);
1211
1212#ifdef CONFIG_IA32_EMULATION
1213	wrmsrl(MSR_CSTAR, ia32_cstar_target);
1214	/*
1215	 * This only works on Intel CPUs.
1216	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1217	 * This does not cause SYSENTER to jump to the wrong location, because
1218	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1219	 */
1220	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1221	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1222	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
1223#else
1224	wrmsrl(MSR_CSTAR, ignore_sysret);
1225	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1226	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1227	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1228#endif
1229
1230	/* Flags to clear on syscall */
1231	wrmsrl(MSR_SYSCALL_MASK,
1232	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1233	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1234}
1235
1236/*
1237 * Copies of the original ist values from the tss are only accessed during
1238 * debugging, no special alignment required.
1239 */
1240DEFINE_PER_CPU(struct orig_ist, orig_ist);
1241
1242static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1243DEFINE_PER_CPU(int, debug_stack_usage);
1244
1245int is_debug_stack(unsigned long addr)
1246{
1247	return __this_cpu_read(debug_stack_usage) ||
1248		(addr <= __this_cpu_read(debug_stack_addr) &&
1249		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1250}
1251NOKPROBE_SYMBOL(is_debug_stack);
1252
1253DEFINE_PER_CPU(u32, debug_idt_ctr);
1254
1255void debug_stack_set_zero(void)
1256{
1257	this_cpu_inc(debug_idt_ctr);
1258	load_current_idt();
1259}
1260NOKPROBE_SYMBOL(debug_stack_set_zero);
1261
1262void debug_stack_reset(void)
1263{
1264	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1265		return;
1266	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1267		load_current_idt();
1268}
1269NOKPROBE_SYMBOL(debug_stack_reset);
1270
1271#else	/* CONFIG_X86_64 */
1272
1273DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1274EXPORT_PER_CPU_SYMBOL(current_task);
1275DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1276EXPORT_PER_CPU_SYMBOL(__preempt_count);
1277DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1278
1279/*
1280 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1281 * the top of the kernel stack.  Use an extra percpu variable to track the
1282 * top of the kernel stack directly.
1283 */
1284DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1285	(unsigned long)&init_thread_union + THREAD_SIZE;
1286EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1287
1288#ifdef CONFIG_CC_STACKPROTECTOR
1289DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1290#endif
1291
1292#endif	/* CONFIG_X86_64 */
1293
1294/*
1295 * Clear all 6 debug registers:
1296 */
1297static void clear_all_debug_regs(void)
1298{
1299	int i;
1300
1301	for (i = 0; i < 8; i++) {
1302		/* Ignore db4, db5 */
1303		if ((i == 4) || (i == 5))
1304			continue;
1305
1306		set_debugreg(0, i);
1307	}
1308}
1309
1310#ifdef CONFIG_KGDB
1311/*
1312 * Restore debug regs if using kgdbwait and you have a kernel debugger
1313 * connection established.
1314 */
1315static void dbg_restore_debug_regs(void)
1316{
1317	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1318		arch_kgdb_ops.correct_hw_break();
1319}
1320#else /* ! CONFIG_KGDB */
1321#define dbg_restore_debug_regs()
1322#endif /* ! CONFIG_KGDB */
1323
1324static void wait_for_master_cpu(int cpu)
1325{
1326#ifdef CONFIG_SMP
1327	/*
1328	 * wait for ACK from master CPU before continuing
1329	 * with AP initialization
1330	 */
1331	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1332	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1333		cpu_relax();
1334#endif
1335}
1336
1337/*
1338 * cpu_init() initializes state that is per-CPU. Some data is already
1339 * initialized (naturally) in the bootstrap process, such as the GDT
1340 * and IDT. We reload them nevertheless, this function acts as a
1341 * 'CPU state barrier', nothing should get across.
1342 * A lot of state is already set up in PDA init for 64 bit
1343 */
1344#ifdef CONFIG_X86_64
1345
1346void cpu_init(void)
1347{
1348	struct orig_ist *oist;
1349	struct task_struct *me;
1350	struct tss_struct *t;
1351	unsigned long v;
1352	int cpu = stack_smp_processor_id();
1353	int i;
1354
1355	wait_for_master_cpu(cpu);
1356
1357	/*
1358	 * Initialize the CR4 shadow before doing anything that could
1359	 * try to read it.
1360	 */
1361	cr4_init_shadow();
1362
1363	/*
1364	 * Load microcode on this cpu if a valid microcode is available.
1365	 * This is early microcode loading procedure.
1366	 */
1367	load_ucode_ap();
1368
1369	t = &per_cpu(cpu_tss, cpu);
1370	oist = &per_cpu(orig_ist, cpu);
1371
1372#ifdef CONFIG_NUMA
1373	if (this_cpu_read(numa_node) == 0 &&
1374	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1375		set_numa_node(early_cpu_to_node(cpu));
1376#endif
1377
1378	me = current;
1379
1380	pr_debug("Initializing CPU#%d\n", cpu);
1381
1382	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1383
1384	/*
1385	 * Initialize the per-CPU GDT with the boot GDT,
1386	 * and set up the GDT descriptor:
1387	 */
1388
1389	switch_to_new_gdt(cpu);
1390	loadsegment(fs, 0);
1391
1392	load_current_idt();
1393
1394	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1395	syscall_init();
1396
1397	wrmsrl(MSR_FS_BASE, 0);
1398	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1399	barrier();
1400
1401	x86_configure_nx();
1402	x2apic_setup();
1403
1404	/*
1405	 * set up and load the per-CPU TSS
1406	 */
1407	if (!oist->ist[0]) {
1408		char *estacks = per_cpu(exception_stacks, cpu);
1409
1410		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1411			estacks += exception_stack_sizes[v];
1412			oist->ist[v] = t->x86_tss.ist[v] =
1413					(unsigned long)estacks;
1414			if (v == DEBUG_STACK-1)
1415				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1416		}
1417	}
1418
1419	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1420
1421	/*
1422	 * <= is required because the CPU will access up to
1423	 * 8 bits beyond the end of the IO permission bitmap.
1424	 */
1425	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1426		t->io_bitmap[i] = ~0UL;
1427
1428	atomic_inc(&init_mm.mm_count);
1429	me->active_mm = &init_mm;
1430	BUG_ON(me->mm);
1431	enter_lazy_tlb(&init_mm, me);
1432
1433	load_sp0(t, &current->thread);
1434	set_tss_desc(cpu, t);
1435	load_TR_desc();
1436	load_mm_ldt(&init_mm);
1437
1438	clear_all_debug_regs();
1439	dbg_restore_debug_regs();
1440
1441	fpu_init();
1442
1443	if (is_uv_system())
1444		uv_cpu_init();
1445}
1446
1447#else
1448
1449void cpu_init(void)
1450{
1451	int cpu = smp_processor_id();
1452	struct task_struct *curr = current;
1453	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1454	struct thread_struct *thread = &curr->thread;
1455
1456	wait_for_master_cpu(cpu);
1457
1458	/*
1459	 * Initialize the CR4 shadow before doing anything that could
1460	 * try to read it.
1461	 */
1462	cr4_init_shadow();
1463
1464	show_ucode_info_early();
1465
1466	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1467
1468	if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1469		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1470
1471	load_current_idt();
1472	switch_to_new_gdt(cpu);
1473
1474	/*
1475	 * Set up and load the per-CPU TSS and LDT
1476	 */
1477	atomic_inc(&init_mm.mm_count);
1478	curr->active_mm = &init_mm;
1479	BUG_ON(curr->mm);
1480	enter_lazy_tlb(&init_mm, curr);
1481
1482	load_sp0(t, thread);
1483	set_tss_desc(cpu, t);
1484	load_TR_desc();
1485	load_mm_ldt(&init_mm);
1486
1487	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1488
1489#ifdef CONFIG_DOUBLEFAULT
1490	/* Set up doublefault TSS pointer in the GDT */
1491	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1492#endif
1493
1494	clear_all_debug_regs();
1495	dbg_restore_debug_regs();
1496
1497	fpu_init();
1498}
1499#endif
1500
1501#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1502void warn_pre_alternatives(void)
1503{
1504	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1505}
1506EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1507#endif
1508
1509inline bool __static_cpu_has_safe(u16 bit)
1510{
1511	return boot_cpu_has(bit);
1512}
1513EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1514