1/* 2 * apb_timer.c: Driver for Langwell APB timers 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Jacob Pan (jacob.jun.pan@intel.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 * 12 * Note: 13 * Langwell is the south complex of Intel Moorestown MID platform. There are 14 * eight external timers in total that can be used by the operating system. 15 * The timer information, such as frequency and addresses, is provided to the 16 * OS via SFI tables. 17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via 18 * individual redirection table entries (RTE). 19 * Unlike HPET, there is no master counter, therefore one of the timers are 20 * used as clocksource. The overall allocation looks like: 21 * - timer 0 - NR_CPUs for per cpu timer 22 * - one timer for clocksource 23 * - one timer for watchdog driver. 24 * It is also worth notice that APB timer does not support true one-shot mode, 25 * free-running mode will be used here to emulate one-shot mode. 26 * APB timer can also be used as broadcast timer along with per cpu local APIC 27 * timer, but by default APB timer has higher rating than local APIC timers. 28 */ 29 30#include <linux/delay.h> 31#include <linux/dw_apb_timer.h> 32#include <linux/errno.h> 33#include <linux/init.h> 34#include <linux/slab.h> 35#include <linux/pm.h> 36#include <linux/sfi.h> 37#include <linux/interrupt.h> 38#include <linux/cpu.h> 39#include <linux/irq.h> 40 41#include <asm/fixmap.h> 42#include <asm/apb_timer.h> 43#include <asm/intel-mid.h> 44#include <asm/time.h> 45 46#define APBT_CLOCKEVENT_RATING 110 47#define APBT_CLOCKSOURCE_RATING 250 48 49#define APBT_CLOCKEVENT0_NUM (0) 50#define APBT_CLOCKSOURCE_NUM (2) 51 52static phys_addr_t apbt_address; 53static int apb_timer_block_enabled; 54static void __iomem *apbt_virt_address; 55 56/* 57 * Common DW APB timer info 58 */ 59static unsigned long apbt_freq; 60 61struct apbt_dev { 62 struct dw_apb_clock_event_device *timer; 63 unsigned int num; 64 int cpu; 65 unsigned int irq; 66 char name[10]; 67}; 68 69static struct dw_apb_clocksource *clocksource_apbt; 70 71static inline void __iomem *adev_virt_addr(struct apbt_dev *adev) 72{ 73 return apbt_virt_address + adev->num * APBTMRS_REG_SIZE; 74} 75 76static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); 77 78#ifdef CONFIG_SMP 79static unsigned int apbt_num_timers_used; 80#endif 81 82static inline void apbt_set_mapping(void) 83{ 84 struct sfi_timer_table_entry *mtmr; 85 int phy_cs_timer_id = 0; 86 87 if (apbt_virt_address) { 88 pr_debug("APBT base already mapped\n"); 89 return; 90 } 91 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); 92 if (mtmr == NULL) { 93 printk(KERN_ERR "Failed to get MTMR %d from SFI\n", 94 APBT_CLOCKEVENT0_NUM); 95 return; 96 } 97 apbt_address = (phys_addr_t)mtmr->phys_addr; 98 if (!apbt_address) { 99 printk(KERN_WARNING "No timer base from SFI, use default\n"); 100 apbt_address = APBT_DEFAULT_BASE; 101 } 102 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); 103 if (!apbt_virt_address) { 104 pr_debug("Failed mapping APBT phy address at %lu\n",\ 105 (unsigned long)apbt_address); 106 goto panic_noapbt; 107 } 108 apbt_freq = mtmr->freq_hz; 109 sfi_free_mtmr(mtmr); 110 111 /* Now figure out the physical timer id for clocksource device */ 112 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); 113 if (mtmr == NULL) 114 goto panic_noapbt; 115 116 /* Now figure out the physical timer id */ 117 pr_debug("Use timer %d for clocksource\n", 118 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE); 119 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / 120 APBTMRS_REG_SIZE; 121 122 clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING, 123 "apbt0", apbt_virt_address + phy_cs_timer_id * 124 APBTMRS_REG_SIZE, apbt_freq); 125 return; 126 127panic_noapbt: 128 panic("Failed to setup APB system timer\n"); 129 130} 131 132static inline void apbt_clear_mapping(void) 133{ 134 iounmap(apbt_virt_address); 135 apbt_virt_address = NULL; 136} 137 138static int __init apbt_clockevent_register(void) 139{ 140 struct sfi_timer_table_entry *mtmr; 141 struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev); 142 143 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); 144 if (mtmr == NULL) { 145 printk(KERN_ERR "Failed to get MTMR %d from SFI\n", 146 APBT_CLOCKEVENT0_NUM); 147 return -ENODEV; 148 } 149 150 adev->num = smp_processor_id(); 151 adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0", 152 intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ? 153 APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING, 154 adev_virt_addr(adev), 0, apbt_freq); 155 /* Firmware does EOI handling for us. */ 156 adev->timer->eoi = NULL; 157 158 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { 159 global_clock_event = &adev->timer->ced; 160 printk(KERN_DEBUG "%s clockevent registered as global\n", 161 global_clock_event->name); 162 } 163 164 dw_apb_clockevent_register(adev->timer); 165 166 sfi_free_mtmr(mtmr); 167 return 0; 168} 169 170#ifdef CONFIG_SMP 171 172static void apbt_setup_irq(struct apbt_dev *adev) 173{ 174 /* timer0 irq has been setup early */ 175 if (adev->irq == 0) 176 return; 177 178 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); 179 irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); 180} 181 182/* Should be called with per cpu */ 183void apbt_setup_secondary_clock(void) 184{ 185 struct apbt_dev *adev; 186 int cpu; 187 188 /* Don't register boot CPU clockevent */ 189 cpu = smp_processor_id(); 190 if (!cpu) 191 return; 192 193 adev = this_cpu_ptr(&cpu_apbt_dev); 194 if (!adev->timer) { 195 adev->timer = dw_apb_clockevent_init(cpu, adev->name, 196 APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), 197 adev->irq, apbt_freq); 198 adev->timer->eoi = NULL; 199 } else { 200 dw_apb_clockevent_resume(adev->timer); 201 } 202 203 printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n", 204 cpu, adev->name, adev->cpu); 205 206 apbt_setup_irq(adev); 207 dw_apb_clockevent_register(adev->timer); 208 209 return; 210} 211 212/* 213 * this notify handler process CPU hotplug events. in case of S0i3, nonboot 214 * cpus are disabled/enabled frequently, for performance reasons, we keep the 215 * per cpu timer irq registered so that we do need to do free_irq/request_irq. 216 * 217 * TODO: it might be more reliable to directly disable percpu clockevent device 218 * without the notifier chain. currently, cpu 0 may get interrupts from other 219 * cpu timers during the offline process due to the ordering of notification. 220 * the extra interrupt is harmless. 221 */ 222static int apbt_cpuhp_notify(struct notifier_block *n, 223 unsigned long action, void *hcpu) 224{ 225 unsigned long cpu = (unsigned long)hcpu; 226 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); 227 228 switch (action & 0xf) { 229 case CPU_DEAD: 230 dw_apb_clockevent_pause(adev->timer); 231 if (system_state == SYSTEM_RUNNING) { 232 pr_debug("skipping APBT CPU %lu offline\n", cpu); 233 } else { 234 pr_debug("APBT clockevent for cpu %lu offline\n", cpu); 235 dw_apb_clockevent_stop(adev->timer); 236 } 237 break; 238 default: 239 pr_debug("APBT notified %lu, no action\n", action); 240 } 241 return NOTIFY_OK; 242} 243 244static __init int apbt_late_init(void) 245{ 246 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT || 247 !apb_timer_block_enabled) 248 return 0; 249 /* This notifier should be called after workqueue is ready */ 250 hotcpu_notifier(apbt_cpuhp_notify, -20); 251 return 0; 252} 253fs_initcall(apbt_late_init); 254#else 255 256void apbt_setup_secondary_clock(void) {} 257 258#endif /* CONFIG_SMP */ 259 260static int apbt_clocksource_register(void) 261{ 262 u64 start, now; 263 cycle_t t1; 264 265 /* Start the counter, use timer 2 as source, timer 0/1 for event */ 266 dw_apb_clocksource_start(clocksource_apbt); 267 268 /* Verify whether apbt counter works */ 269 t1 = dw_apb_clocksource_read(clocksource_apbt); 270 rdtscll(start); 271 272 /* 273 * We don't know the TSC frequency yet, but waiting for 274 * 200000 TSC cycles is safe: 275 * 4 GHz == 50us 276 * 1 GHz == 200us 277 */ 278 do { 279 rep_nop(); 280 rdtscll(now); 281 } while ((now - start) < 200000UL); 282 283 /* APBT is the only always on clocksource, it has to work! */ 284 if (t1 == dw_apb_clocksource_read(clocksource_apbt)) 285 panic("APBT counter not counting. APBT disabled\n"); 286 287 dw_apb_clocksource_register(clocksource_apbt); 288 289 return 0; 290} 291 292/* 293 * Early setup the APBT timer, only use timer 0 for booting then switch to 294 * per CPU timer if possible. 295 * returns 1 if per cpu apbt is setup 296 * returns 0 if no per cpu apbt is chosen 297 * panic if set up failed, this is the only platform timer on Moorestown. 298 */ 299void __init apbt_time_init(void) 300{ 301#ifdef CONFIG_SMP 302 int i; 303 struct sfi_timer_table_entry *p_mtmr; 304 struct apbt_dev *adev; 305#endif 306 307 if (apb_timer_block_enabled) 308 return; 309 apbt_set_mapping(); 310 if (!apbt_virt_address) 311 goto out_noapbt; 312 /* 313 * Read the frequency and check for a sane value, for ESL model 314 * we extend the possible clock range to allow time scaling. 315 */ 316 317 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { 318 pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq); 319 goto out_noapbt; 320 } 321 if (apbt_clocksource_register()) { 322 pr_debug("APBT has failed to register clocksource\n"); 323 goto out_noapbt; 324 } 325 if (!apbt_clockevent_register()) 326 apb_timer_block_enabled = 1; 327 else { 328 pr_debug("APBT has failed to register clockevent\n"); 329 goto out_noapbt; 330 } 331#ifdef CONFIG_SMP 332 /* kernel cmdline disable apb timer, so we will use lapic timers */ 333 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { 334 printk(KERN_INFO "apbt: disabled per cpu timer\n"); 335 return; 336 } 337 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); 338 if (num_possible_cpus() <= sfi_mtimer_num) 339 apbt_num_timers_used = num_possible_cpus(); 340 else 341 apbt_num_timers_used = 1; 342 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); 343 344 /* here we set up per CPU timer data structure */ 345 for (i = 0; i < apbt_num_timers_used; i++) { 346 adev = &per_cpu(cpu_apbt_dev, i); 347 adev->num = i; 348 adev->cpu = i; 349 p_mtmr = sfi_get_mtmr(i); 350 if (p_mtmr) 351 adev->irq = p_mtmr->irq; 352 else 353 printk(KERN_ERR "Failed to get timer for cpu %d\n", i); 354 snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i); 355 } 356#endif 357 358 return; 359 360out_noapbt: 361 apbt_clear_mapping(); 362 apb_timer_block_enabled = 0; 363 panic("failed to enable APB timer\n"); 364} 365 366/* called before apb_timer_enable, use early map */ 367unsigned long apbt_quick_calibrate(void) 368{ 369 int i, scale; 370 u64 old, new; 371 cycle_t t1, t2; 372 unsigned long khz = 0; 373 u32 loop, shift; 374 375 apbt_set_mapping(); 376 dw_apb_clocksource_start(clocksource_apbt); 377 378 /* check if the timer can count down, otherwise return */ 379 old = dw_apb_clocksource_read(clocksource_apbt); 380 i = 10000; 381 while (--i) { 382 if (old != dw_apb_clocksource_read(clocksource_apbt)) 383 break; 384 } 385 if (!i) 386 goto failed; 387 388 /* count 16 ms */ 389 loop = (apbt_freq / 1000) << 4; 390 391 /* restart the timer to ensure it won't get to 0 in the calibration */ 392 dw_apb_clocksource_start(clocksource_apbt); 393 394 old = dw_apb_clocksource_read(clocksource_apbt); 395 old += loop; 396 397 t1 = __native_read_tsc(); 398 399 do { 400 new = dw_apb_clocksource_read(clocksource_apbt); 401 } while (new < old); 402 403 t2 = __native_read_tsc(); 404 405 shift = 5; 406 if (unlikely(loop >> shift == 0)) { 407 printk(KERN_INFO 408 "APBT TSC calibration failed, not enough resolution\n"); 409 return 0; 410 } 411 scale = (int)div_u64((t2 - t1), loop >> shift); 412 khz = (scale * (apbt_freq / 1000)) >> shift; 413 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); 414 return khz; 415failed: 416 return 0; 417} 418