1/* 2 * linux/arch/unicore32/mm/mmu.c 3 * 4 * Code specific to PKUnity SoC and UniCore ISA 5 * 6 * Copyright (C) 2001-2010 GUAN Xue-tao 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12#include <linux/module.h> 13#include <linux/kernel.h> 14#include <linux/errno.h> 15#include <linux/init.h> 16#include <linux/mman.h> 17#include <linux/nodemask.h> 18#include <linux/memblock.h> 19#include <linux/fs.h> 20#include <linux/bootmem.h> 21#include <linux/io.h> 22 23#include <asm/cputype.h> 24#include <asm/sections.h> 25#include <asm/setup.h> 26#include <asm/sizes.h> 27#include <asm/tlb.h> 28#include <asm/memblock.h> 29 30#include <mach/map.h> 31 32#include "mm.h" 33 34/* 35 * empty_zero_page is a special page that is used for 36 * zero-initialized data and COW. 37 */ 38struct page *empty_zero_page; 39EXPORT_SYMBOL(empty_zero_page); 40 41/* 42 * The pmd table for the upper-most set of pages. 43 */ 44pmd_t *top_pmd; 45 46pgprot_t pgprot_user; 47EXPORT_SYMBOL(pgprot_user); 48 49pgprot_t pgprot_kernel; 50EXPORT_SYMBOL(pgprot_kernel); 51 52static int __init noalign_setup(char *__unused) 53{ 54 cr_alignment &= ~CR_A; 55 cr_no_alignment &= ~CR_A; 56 set_cr(cr_alignment); 57 return 1; 58} 59__setup("noalign", noalign_setup); 60 61void adjust_cr(unsigned long mask, unsigned long set) 62{ 63 unsigned long flags; 64 65 mask &= ~CR_A; 66 67 set &= mask; 68 69 local_irq_save(flags); 70 71 cr_no_alignment = (cr_no_alignment & ~mask) | set; 72 cr_alignment = (cr_alignment & ~mask) | set; 73 74 set_cr((get_cr() & ~mask) | set); 75 76 local_irq_restore(flags); 77} 78 79struct map_desc { 80 unsigned long virtual; 81 unsigned long pfn; 82 unsigned long length; 83 unsigned int type; 84}; 85 86#define PROT_PTE_DEVICE (PTE_PRESENT | PTE_YOUNG | \ 87 PTE_DIRTY | PTE_READ | PTE_WRITE) 88#define PROT_SECT_DEVICE (PMD_TYPE_SECT | PMD_PRESENT | \ 89 PMD_SECT_READ | PMD_SECT_WRITE) 90 91static struct mem_type mem_types[] = { 92 [MT_DEVICE] = { /* Strongly ordered */ 93 .prot_pte = PROT_PTE_DEVICE, 94 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, 95 .prot_sect = PROT_SECT_DEVICE, 96 }, 97 /* 98 * MT_KUSER: pte for vecpage -- cacheable, 99 * and sect for unigfx mmap -- noncacheable 100 */ 101 [MT_KUSER] = { 102 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | 103 PTE_CACHEABLE | PTE_READ | PTE_EXEC, 104 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, 105 .prot_sect = PROT_SECT_DEVICE, 106 }, 107 [MT_HIGH_VECTORS] = { 108 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | 109 PTE_CACHEABLE | PTE_READ | PTE_WRITE | 110 PTE_EXEC, 111 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, 112 }, 113 [MT_MEMORY] = { 114 .prot_pte = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | 115 PTE_WRITE | PTE_EXEC, 116 .prot_l1 = PMD_TYPE_TABLE | PMD_PRESENT, 117 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE | 118 PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC, 119 }, 120 [MT_ROM] = { 121 .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE | 122 PMD_SECT_READ, 123 }, 124}; 125 126const struct mem_type *get_mem_type(unsigned int type) 127{ 128 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 129} 130EXPORT_SYMBOL(get_mem_type); 131 132/* 133 * Adjust the PMD section entries according to the CPU in use. 134 */ 135static void __init build_mem_type_table(void) 136{ 137 pgprot_user = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE); 138 pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG | 139 PTE_DIRTY | PTE_READ | PTE_WRITE | 140 PTE_EXEC | PTE_CACHEABLE); 141} 142 143#define vectors_base() (vectors_high() ? 0xffff0000 : 0) 144 145static void __init *early_alloc(unsigned long sz) 146{ 147 void *ptr = __va(memblock_alloc(sz, sz)); 148 memset(ptr, 0, sz); 149 return ptr; 150} 151 152static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, 153 unsigned long prot) 154{ 155 if (pmd_none(*pmd)) { 156 pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t)); 157 __pmd_populate(pmd, __pa(pte) | prot); 158 } 159 BUG_ON(pmd_bad(*pmd)); 160 return pte_offset_kernel(pmd, addr); 161} 162 163static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 164 unsigned long end, unsigned long pfn, 165 const struct mem_type *type) 166{ 167 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); 168 do { 169 set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte))); 170 pfn++; 171 } while (pte++, addr += PAGE_SIZE, addr != end); 172} 173 174static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, 175 unsigned long end, unsigned long phys, 176 const struct mem_type *type) 177{ 178 pmd_t *pmd = pmd_offset((pud_t *)pgd, addr); 179 180 /* 181 * Try a section mapping - end, addr and phys must all be aligned 182 * to a section boundary. 183 */ 184 if (((addr | end | phys) & ~SECTION_MASK) == 0) { 185 pmd_t *p = pmd; 186 187 do { 188 set_pmd(pmd, __pmd(phys | type->prot_sect)); 189 phys += SECTION_SIZE; 190 } while (pmd++, addr += SECTION_SIZE, addr != end); 191 192 flush_pmd_entry(p); 193 } else { 194 /* 195 * No need to loop; pte's aren't interested in the 196 * individual L1 entries. 197 */ 198 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); 199 } 200} 201 202/* 203 * Create the page directory entries and any necessary 204 * page tables for the mapping specified by `md'. We 205 * are able to cope here with varying sizes and address 206 * offsets, and we take full advantage of sections. 207 */ 208static void __init create_mapping(struct map_desc *md) 209{ 210 unsigned long phys, addr, length, end; 211 const struct mem_type *type; 212 pgd_t *pgd; 213 214 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 215 printk(KERN_WARNING "BUG: not creating mapping for " 216 "0x%08llx at 0x%08lx in user region\n", 217 __pfn_to_phys((u64)md->pfn), md->virtual); 218 return; 219 } 220 221 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 222 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { 223 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " 224 "overlaps vmalloc space\n", 225 __pfn_to_phys((u64)md->pfn), md->virtual); 226 } 227 228 type = &mem_types[md->type]; 229 230 addr = md->virtual & PAGE_MASK; 231 phys = (unsigned long)__pfn_to_phys(md->pfn); 232 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 233 234 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 235 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " 236 "be mapped using pages, ignoring.\n", 237 __pfn_to_phys(md->pfn), addr); 238 return; 239 } 240 241 pgd = pgd_offset_k(addr); 242 end = addr + length; 243 do { 244 unsigned long next = pgd_addr_end(addr, end); 245 246 alloc_init_section(pgd, addr, next, phys, type); 247 248 phys += next - addr; 249 addr = next; 250 } while (pgd++, addr != end); 251} 252 253static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M); 254 255/* 256 * vmalloc=size forces the vmalloc area to be exactly 'size' 257 * bytes. This can be used to increase (or decrease) the vmalloc 258 * area - the default is 128m. 259 */ 260static int __init early_vmalloc(char *arg) 261{ 262 unsigned long vmalloc_reserve = memparse(arg, NULL); 263 264 if (vmalloc_reserve < SZ_16M) { 265 vmalloc_reserve = SZ_16M; 266 printk(KERN_WARNING 267 "vmalloc area too small, limiting to %luMB\n", 268 vmalloc_reserve >> 20); 269 } 270 271 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 272 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 273 printk(KERN_WARNING 274 "vmalloc area is too big, limiting to %luMB\n", 275 vmalloc_reserve >> 20); 276 } 277 278 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 279 return 0; 280} 281early_param("vmalloc", early_vmalloc); 282 283static phys_addr_t lowmem_limit __initdata = SZ_1G; 284 285static void __init sanity_check_meminfo(void) 286{ 287 int i, j; 288 289 lowmem_limit = __pa(vmalloc_min - 1) + 1; 290 memblock_set_current_limit(lowmem_limit); 291 292 for (i = 0, j = 0; i < meminfo.nr_banks; i++) { 293 struct membank *bank = &meminfo.bank[j]; 294 *bank = meminfo.bank[i]; 295 j++; 296 } 297 meminfo.nr_banks = j; 298} 299 300static inline void prepare_page_table(void) 301{ 302 unsigned long addr; 303 phys_addr_t end; 304 305 /* 306 * Clear out all the mappings below the kernel image. 307 */ 308 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) 309 pmd_clear(pmd_off_k(addr)); 310 311 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 312 pmd_clear(pmd_off_k(addr)); 313 314 /* 315 * Find the end of the first block of lowmem. 316 */ 317 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 318 if (end >= lowmem_limit) 319 end = lowmem_limit; 320 321 /* 322 * Clear out all the kernel space mappings, except for the first 323 * memory bank, up to the end of the vmalloc region. 324 */ 325 for (addr = __phys_to_virt(end); 326 addr < VMALLOC_END; addr += PGDIR_SIZE) 327 pmd_clear(pmd_off_k(addr)); 328} 329 330/* 331 * Reserve the special regions of memory 332 */ 333void __init uc32_mm_memblock_reserve(void) 334{ 335 /* 336 * Reserve the page tables. These are already in use, 337 * and can only be in node 0. 338 */ 339 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t)); 340} 341 342/* 343 * Set up device the mappings. Since we clear out the page tables for all 344 * mappings above VMALLOC_END, we will remove any debug device mappings. 345 * This means you have to be careful how you debug this function, or any 346 * called function. This means you can't use any function or debugging 347 * method which may touch any device, otherwise the kernel _will_ crash. 348 */ 349static void __init devicemaps_init(void) 350{ 351 struct map_desc map; 352 unsigned long addr; 353 void *vectors; 354 355 /* 356 * Allocate the vector page early. 357 */ 358 vectors = early_alloc(PAGE_SIZE); 359 360 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 361 pmd_clear(pmd_off_k(addr)); 362 363 /* 364 * Create a mapping for the machine vectors at the high-vectors 365 * location (0xffff0000). If we aren't using high-vectors, also 366 * create a mapping at the low-vectors virtual address. 367 */ 368 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 369 map.virtual = VECTORS_BASE; 370 map.length = PAGE_SIZE; 371 map.type = MT_HIGH_VECTORS; 372 create_mapping(&map); 373 374 /* 375 * Create a mapping for the kuser page at the special 376 * location (0xbfff0000) to the same vectors location. 377 */ 378 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 379 map.virtual = KUSER_VECPAGE_BASE; 380 map.length = PAGE_SIZE; 381 map.type = MT_KUSER; 382 create_mapping(&map); 383 384 /* 385 * Finally flush the caches and tlb to ensure that we're in a 386 * consistent state wrt the writebuffer. This also ensures that 387 * any write-allocated cache lines in the vector page are written 388 * back. After this point, we can start to touch devices again. 389 */ 390 local_flush_tlb_all(); 391 flush_cache_all(); 392} 393 394static void __init map_lowmem(void) 395{ 396 struct memblock_region *reg; 397 398 /* Map all the lowmem memory banks. */ 399 for_each_memblock(memory, reg) { 400 phys_addr_t start = reg->base; 401 phys_addr_t end = start + reg->size; 402 struct map_desc map; 403 404 if (end > lowmem_limit) 405 end = lowmem_limit; 406 if (start >= end) 407 break; 408 409 map.pfn = __phys_to_pfn(start); 410 map.virtual = __phys_to_virt(start); 411 map.length = end - start; 412 map.type = MT_MEMORY; 413 414 create_mapping(&map); 415 } 416} 417 418/* 419 * paging_init() sets up the page tables, initialises the zone memory 420 * maps, and sets up the zero page, bad page and bad page tables. 421 */ 422void __init paging_init(void) 423{ 424 void *zero_page; 425 426 build_mem_type_table(); 427 sanity_check_meminfo(); 428 prepare_page_table(); 429 map_lowmem(); 430 devicemaps_init(); 431 432 top_pmd = pmd_off_k(0xffff0000); 433 434 /* allocate the zero page. */ 435 zero_page = early_alloc(PAGE_SIZE); 436 437 bootmem_init(); 438 439 empty_zero_page = virt_to_page(zero_page); 440 __flush_dcache_page(NULL, empty_zero_page); 441} 442 443/* 444 * In order to soft-boot, we need to insert a 1:1 mapping in place of 445 * the user-mode pages. This will then ensure that we have predictable 446 * results when turning the mmu off 447 */ 448void setup_mm_for_reboot(void) 449{ 450 unsigned long base_pmdval; 451 pgd_t *pgd; 452 int i; 453 454 /* 455 * We need to access to user-mode page tables here. For kernel threads 456 * we don't have any user-mode mappings so we use the context that we 457 * "borrowed". 458 */ 459 pgd = current->active_mm->pgd; 460 461 base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT; 462 463 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { 464 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; 465 pmd_t *pmd; 466 467 pmd = pmd_off(pgd, i << PGDIR_SHIFT); 468 set_pmd(pmd, __pmd(pmdval)); 469 flush_pmd_entry(pmd); 470 } 471 472 local_flush_tlb_all(); 473} 474 475/* 476 * Take care of architecture specific things when placing a new PTE into 477 * a page table, or changing an existing PTE. Basically, there are two 478 * things that we need to take care of: 479 * 480 * 1. If PG_dcache_clean is not set for the page, we need to ensure 481 * that any cache entries for the kernels virtual memory 482 * range are written back to the page. 483 * 2. If we have multiple shared mappings of the same space in 484 * an object, we need to deal with the cache aliasing issues. 485 * 486 * Note that the pte lock will be held. 487 */ 488void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, 489 pte_t *ptep) 490{ 491 unsigned long pfn = pte_pfn(*ptep); 492 struct address_space *mapping; 493 struct page *page; 494 495 if (!pfn_valid(pfn)) 496 return; 497 498 /* 499 * The zero page is never written to, so never has any dirty 500 * cache lines, and therefore never needs to be flushed. 501 */ 502 page = pfn_to_page(pfn); 503 if (page == ZERO_PAGE(0)) 504 return; 505 506 mapping = page_mapping(page); 507 if (!test_and_set_bit(PG_dcache_clean, &page->flags)) 508 __flush_dcache_page(mapping, page); 509 if (mapping) 510 if (vma->vm_flags & VM_EXEC) 511 __flush_icache_all(); 512} 513