1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17#include <linux/linkage.h>
18#include <linux/errno.h>
19#include <linux/init.h>
20#include <linux/unistd.h>
21#include <asm/ptrace.h>
22#include <asm/thread_info.h>
23#include <asm/irqflags.h>
24#include <asm/atomic_32.h>
25#include <asm/asm-offsets.h>
26#include <hv/hypervisor.h>
27#include <arch/abi.h>
28#include <arch/interrupts.h>
29#include <arch/spr_def.h>
30
31#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
32
33#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
34
35	.macro  push_reg reg, ptr=sp, delta=-4
36	{
37	 sw     \ptr, \reg
38	 addli  \ptr, \ptr, \delta
39	}
40	.endm
41
42	.macro  pop_reg reg, ptr=sp, delta=4
43	{
44	 lw     \reg, \ptr
45	 addli  \ptr, \ptr, \delta
46	}
47	.endm
48
49	.macro  pop_reg_zero reg, zreg, ptr=sp, delta=4
50	{
51	 move   \zreg, zero
52	 lw     \reg, \ptr
53	 addi   \ptr, \ptr, \delta
54	}
55	.endm
56
57	.macro  push_extra_callee_saves reg
58	PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
59	push_reg r51, \reg
60	push_reg r50, \reg
61	push_reg r49, \reg
62	push_reg r48, \reg
63	push_reg r47, \reg
64	push_reg r46, \reg
65	push_reg r45, \reg
66	push_reg r44, \reg
67	push_reg r43, \reg
68	push_reg r42, \reg
69	push_reg r41, \reg
70	push_reg r40, \reg
71	push_reg r39, \reg
72	push_reg r38, \reg
73	push_reg r37, \reg
74	push_reg r36, \reg
75	push_reg r35, \reg
76	push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
77	.endm
78
79	.macro  panic str
80	.pushsection .rodata, "a"
811:
82	.asciz  "\str"
83	.popsection
84	{
85	 moveli r0, lo16(1b)
86	}
87	{
88	 auli   r0, r0, ha16(1b)
89	 jal    panic
90	}
91	.endm
92
93#ifdef __COLLECT_LINKER_FEEDBACK__
94	.pushsection .text.intvec_feedback,"ax"
95intvec_feedback:
96	.popsection
97#endif
98
99	/*
100	 * Default interrupt handler.
101	 *
102	 * vecnum is where we'll put this code.
103	 * c_routine is the C routine we'll call.
104	 *
105	 * The C routine is passed two arguments:
106	 * - A pointer to the pt_regs state.
107	 * - The interrupt vector number.
108	 *
109	 * The "processing" argument specifies the code for processing
110	 * the interrupt. Defaults to "handle_interrupt".
111	 */
112	.macro  int_hand vecnum, vecname, c_routine, processing=handle_interrupt
113	.org    (\vecnum << 8)
114intvec_\vecname:
115	.ifc    \vecnum, INT_SWINT_1
116	blz     TREG_SYSCALL_NR_NAME, sys_cmpxchg
117	.endif
118
119	/* Temporarily save a register so we have somewhere to work. */
120
121	mtspr   SPR_SYSTEM_SAVE_K_1, r0
122	mfspr   r0, SPR_EX_CONTEXT_K_1
123
124	/* The cmpxchg code clears sp to force us to reset it here on fault. */
125	{
126	 bz     sp, 2f
127	 andi   r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
128	}
129
130	.ifc    \vecnum, INT_DOUBLE_FAULT
131	/*
132	 * For double-faults from user-space, fall through to the normal
133	 * register save and stack setup path.  Otherwise, it's the
134	 * hypervisor giving us one last chance to dump diagnostics, and we
135	 * branch to the kernel_double_fault routine to do so.
136	 */
137	bz      r0, 1f
138	j       _kernel_double_fault
1391:
140	.else
141	/*
142	 * If we're coming from user-space, then set sp to the top of
143	 * the kernel stack.  Otherwise, assume sp is already valid.
144	 */
145	{
146	 bnz    r0, 0f
147	 move   r0, sp
148	}
149	.endif
150
151	.ifc    \c_routine, do_page_fault
152	/*
153	 * The page_fault handler may be downcalled directly by the
154	 * hypervisor even when Linux is running and has ICS set.
155	 *
156	 * In this case the contents of EX_CONTEXT_K_1 reflect the
157	 * previous fault and can't be relied on to choose whether or
158	 * not to reinitialize the stack pointer.  So we add a test
159	 * to see whether SYSTEM_SAVE_K_2 has the high bit set,
160	 * and if so we don't reinitialize sp, since we must be coming
161	 * from Linux.  (In fact the precise case is !(val & ~1),
162	 * but any Linux PC has to have the high bit set.)
163	 *
164	 * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
165	 * any path that turns into a downcall to one of our TLB handlers.
166	 */
167	mfspr   r0, SPR_SYSTEM_SAVE_K_2
168	{
169	 blz    r0, 0f    /* high bit in S_S_1_2 is for a PC to use */
170	 move   r0, sp
171	}
172	.endif
173
1742:
175	/*
176	 * SYSTEM_SAVE_K_0 holds the cpu number in the low bits, and
177	 * the current stack top in the higher bits.  So we recover
178	 * our stack top by just masking off the low bits, then
179	 * point sp at the top aligned address on the actual stack page.
180	 */
181	mfspr   r0, SPR_SYSTEM_SAVE_K_0
182	mm      r0, r0, zero, LOG2_NR_CPU_IDS, 31
183
1840:
185	/*
186	 * Align the stack mod 64 so we can properly predict what
187	 * cache lines we need to write-hint to reduce memory fetch
188	 * latency as we enter the kernel.  The layout of memory is
189	 * as follows, with cache line 0 at the lowest VA, and cache
190	 * line 4 just below the r0 value this "andi" computes.
191	 * Note that we never write to cache line 4, and we skip
192	 * cache line 1 for syscalls.
193	 *
194	 *    cache line 4: ptregs padding (two words)
195	 *    cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
196	 *    cache line 2: r30...r45
197	 *    cache line 1: r14...r29
198	 *    cache line 0: 2 x frame, r0..r13
199	 */
200#if STACK_TOP_DELTA != 64
201#error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs()
202#endif
203	andi    r0, r0, -64
204
205	/*
206	 * Push the first four registers on the stack, so that we can set
207	 * them to vector-unique values before we jump to the common code.
208	 *
209	 * Registers are pushed on the stack as a struct pt_regs,
210	 * with the sp initially just above the struct, and when we're
211	 * done, sp points to the base of the struct, minus
212	 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
213	 *
214	 * This routine saves just the first four registers, plus the
215	 * stack context so we can do proper backtracing right away,
216	 * and defers to handle_interrupt to save the rest.
217	 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
218	 */
219	addli   r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
220	wh64    r0    /* cache line 3 */
221	{
222	 sw     r0, lr
223	 addli  r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
224	}
225	{
226	 sw     r0, sp
227	 addli  sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
228	}
229	{
230	 sw     sp, r52
231	 addli  sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
232	}
233	wh64    sp    /* cache line 0 */
234	{
235	 sw     sp, r1
236	 addli  sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
237	}
238	{
239	 sw     sp, r2
240	 addli  sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
241	}
242	{
243	 sw     sp, r3
244	 addli  sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
245	}
246	mfspr   r0, SPR_EX_CONTEXT_K_0
247	.ifc \processing,handle_syscall
248	/*
249	 * Bump the saved PC by one bundle so that when we return, we won't
250	 * execute the same swint instruction again.  We need to do this while
251	 * we're in the critical section.
252	 */
253	addi    r0, r0, 8
254	.endif
255	{
256	 sw     sp, r0
257	 addli  sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
258	}
259	mfspr   r0, SPR_EX_CONTEXT_K_1
260	{
261	 sw     sp, r0
262	 addi   sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
263	/*
264	 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
265	 * so that it gets passed through unchanged to the handler routine.
266	 * Note that the .if conditional confusingly spans bundles.
267	 */
268	 .ifc \processing,handle_syscall
269	 movei  r0, \vecnum
270	}
271	{
272	 sw     sp, r0
273	 .else
274	 movei  r1, \vecnum
275	}
276	{
277	 sw     sp, r1
278	 .endif
279	 addli  sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
280	}
281	mfspr   r0, SPR_SYSTEM_SAVE_K_1    /* Original r0 */
282	{
283	 sw     sp, r0
284	 addi   sp, sp, -PTREGS_OFFSET_REG(0) - 4
285	}
286	{
287	 sw     sp, zero        /* write zero into "Next SP" frame pointer */
288	 addi   sp, sp, -4      /* leave SP pointing at bottom of frame */
289	}
290	.ifc \processing,handle_syscall
291	j       handle_syscall
292	.else
293	/*
294	 * Capture per-interrupt SPR context to registers.
295	 * We overload the meaning of r3 on this path such that if its bit 31
296	 * is set, we have to mask all interrupts including NMIs before
297	 * clearing the interrupt critical section bit.
298	 * See discussion below at "finish_interrupt_save".
299	 */
300	.ifc \c_routine, do_page_fault
301	mfspr   r2, SPR_SYSTEM_SAVE_K_3   /* address of page fault */
302	mfspr   r3, SPR_SYSTEM_SAVE_K_2   /* info about page fault */
303	.else
304	.ifc \vecnum, INT_DOUBLE_FAULT
305	{
306	 mfspr  r2, SPR_SYSTEM_SAVE_K_2   /* double fault info from HV */
307	 movei  r3, 0
308	}
309	.else
310	.ifc \c_routine, do_trap
311	{
312	 mfspr  r2, GPV_REASON
313	 movei  r3, 0
314	}
315	.else
316	.ifc \c_routine, handle_perf_interrupt
317	{
318	 mfspr  r2, PERF_COUNT_STS
319	 movei  r3, -1   /* not used, but set for consistency */
320	}
321	.else
322	.ifc \c_routine, handle_perf_interrupt
323	{
324	 mfspr  r2, AUX_PERF_COUNT_STS
325	 movei  r3, -1   /* not used, but set for consistency */
326	}
327	.else
328	movei   r3, 0
329	.endif
330	.endif
331	.endif
332	.endif
333	.endif
334	/* Put function pointer in r0 */
335	moveli  r0, lo16(\c_routine)
336	{
337	 auli   r0, r0, ha16(\c_routine)
338	 j       \processing
339	}
340	.endif
341	ENDPROC(intvec_\vecname)
342
343#ifdef __COLLECT_LINKER_FEEDBACK__
344	.pushsection .text.intvec_feedback,"ax"
345	.org    (\vecnum << 5)
346	FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8)
347	jrp     lr
348	.popsection
349#endif
350
351	.endm
352
353
354	/*
355	 * Save the rest of the registers that we didn't save in the actual
356	 * vector itself.  We can't use r0-r10 inclusive here.
357	 */
358	.macro  finish_interrupt_save, function
359
360	/* If it's a syscall, save a proper orig_r0, otherwise just zero. */
361	PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
362	{
363	 .ifc \function,handle_syscall
364	 sw     r52, r0
365	 .else
366	 sw     r52, zero
367	 .endif
368	 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
369	}
370
371	/*
372	 * For ordinary syscalls, we save neither caller- nor callee-
373	 * save registers, since the syscall invoker doesn't expect the
374	 * caller-saves to be saved, and the called kernel functions will
375	 * take care of saving the callee-saves for us.
376	 *
377	 * For interrupts we save just the caller-save registers.  Saving
378	 * them is required (since the "caller" can't save them).  Again,
379	 * the called kernel functions will restore the callee-save
380	 * registers for us appropriately.
381	 *
382	 * On return, we normally restore nothing special for syscalls,
383	 * and just the caller-save registers for interrupts.
384	 *
385	 * However, there are some important caveats to all this:
386	 *
387	 * - We always save a few callee-save registers to give us
388	 *   some scratchpad registers to carry across function calls.
389	 *
390	 * - fork/vfork/etc require us to save all the callee-save
391	 *   registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
392	 *
393	 * - We always save r0..r5 and r10 for syscalls, since we need
394	 *   to reload them a bit later for the actual kernel call, and
395	 *   since we might need them for -ERESTARTNOINTR, etc.
396	 *
397	 * - Before invoking a signal handler, we save the unsaved
398	 *   callee-save registers so they are visible to the
399	 *   signal handler or any ptracer.
400	 *
401	 * - If the unsaved callee-save registers are modified, we set
402	 *   a bit in pt_regs so we know to reload them from pt_regs
403	 *   and not just rely on the kernel function unwinding.
404	 *   (Done for ptrace register writes and SA_SIGINFO handler.)
405	 */
406	{
407	 sw     r52, tp
408	 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
409	}
410	wh64    r52    /* cache line 2 */
411	push_reg r33, r52
412	push_reg r32, r52
413	push_reg r31, r52
414	.ifc \function,handle_syscall
415	push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
416	push_reg TREG_SYSCALL_NR_NAME, r52, \
417	  PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
418	.else
419
420	push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
421	wh64    r52    /* cache line 1 */
422	push_reg r29, r52
423	push_reg r28, r52
424	push_reg r27, r52
425	push_reg r26, r52
426	push_reg r25, r52
427	push_reg r24, r52
428	push_reg r23, r52
429	push_reg r22, r52
430	push_reg r21, r52
431	push_reg r20, r52
432	push_reg r19, r52
433	push_reg r18, r52
434	push_reg r17, r52
435	push_reg r16, r52
436	push_reg r15, r52
437	push_reg r14, r52
438	push_reg r13, r52
439	push_reg r12, r52
440	push_reg r11, r52
441	push_reg r10, r52
442	push_reg r9, r52
443	push_reg r8, r52
444	push_reg r7, r52
445	push_reg r6, r52
446
447	.endif
448
449	push_reg r5, r52
450	sw      r52, r4
451
452	/* Load tp with our per-cpu offset. */
453#ifdef CONFIG_SMP
454	{
455	 mfspr  r20, SPR_SYSTEM_SAVE_K_0
456	 moveli r21, lo16(__per_cpu_offset)
457	}
458	{
459	 auli   r21, r21, ha16(__per_cpu_offset)
460	 mm     r20, r20, zero, 0, LOG2_NR_CPU_IDS-1
461	}
462	s2a     r20, r20, r21
463	lw      tp, r20
464#else
465	move    tp, zero
466#endif
467
468	/*
469	 * If we will be returning to the kernel, we will need to
470	 * reset the interrupt masks to the state they had before.
471	 * Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
472	 * We load flags in r32 here so we can jump to .Lrestore_regs
473	 * directly after do_page_fault_ics() if necessary.
474	 */
475	mfspr   r32, SPR_EX_CONTEXT_K_1
476	{
477	 andi   r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
478	 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
479	}
480	bzt     r32, 1f       /* zero if from user space */
481	IRQS_DISABLED(r32)    /* zero if irqs enabled */
482#if PT_FLAGS_DISABLE_IRQ != 1
483# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
484#endif
4851:
486	.ifnc \function,handle_syscall
487	/* Record the fact that we saved the caller-save registers above. */
488	ori     r32, r32, PT_FLAGS_CALLER_SAVES
489	.endif
490	sw      r21, r32
491
492#ifdef __COLLECT_LINKER_FEEDBACK__
493	/*
494	 * Notify the feedback routines that we were in the
495	 * appropriate fixed interrupt vector area.  Note that we
496	 * still have ICS set at this point, so we can't invoke any
497	 * atomic operations or we will panic.  The feedback
498	 * routines internally preserve r0..r10 and r30 up.
499	 */
500	.ifnc \function,handle_syscall
501	shli    r20, r1, 5
502	.else
503	moveli  r20, INT_SWINT_1 << 5
504	.endif
505	addli   r20, r20, lo16(intvec_feedback)
506	auli    r20, r20, ha16(intvec_feedback)
507	jalr    r20
508
509	/* And now notify the feedback routines that we are here. */
510	FEEDBACK_ENTER(\function)
511#endif
512
513	/*
514	 * we've captured enough state to the stack (including in
515	 * particular our EX_CONTEXT state) that we can now release
516	 * the interrupt critical section and replace it with our
517	 * standard "interrupts disabled" mask value.  This allows
518	 * synchronous interrupts (and profile interrupts) to punch
519	 * through from this point onwards.
520	 *
521	 * If bit 31 of r3 is set during a non-NMI interrupt, we know we
522	 * are on the path where the hypervisor has punched through our
523	 * ICS with a page fault, so we call out to do_page_fault_ics()
524	 * to figure out what to do with it.  If the fault was in
525	 * an atomic op, we unlock the atomic lock, adjust the
526	 * saved register state a little, and return "zero" in r4,
527	 * falling through into the normal page-fault interrupt code.
528	 * If the fault was in a kernel-space atomic operation, then
529	 * do_page_fault_ics() resolves it itself, returns "one" in r4,
530	 * and as a result goes directly to restoring registers and iret,
531	 * without trying to adjust the interrupt masks at all.
532	 * The do_page_fault_ics() API involves passing and returning
533	 * a five-word struct (in registers) to avoid writing the
534	 * save and restore code here.
535	 */
536	.ifc \function,handle_nmi
537	IRQ_DISABLE_ALL(r20)
538	.else
539	.ifnc \function,handle_syscall
540	bgezt   r3, 1f
541	{
542	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
543	 jal    do_page_fault_ics
544	}
545	FEEDBACK_REENTER(\function)
546	bzt     r4, 1f
547	j       .Lrestore_regs
5481:
549	.endif
550	IRQ_DISABLE(r20, r21)
551	.endif
552	mtspr   INTERRUPT_CRITICAL_SECTION, zero
553
554	/*
555	 * Prepare the first 256 stack bytes to be rapidly accessible
556	 * without having to fetch the background data.  We don't really
557	 * know how far to write-hint, but kernel stacks generally
558	 * aren't that big, and write-hinting here does take some time.
559	 */
560	addi    r52, sp, -64
561	{
562	 wh64   r52
563	 addi   r52, r52, -64
564	}
565	{
566	 wh64   r52
567	 addi   r52, r52, -64
568	}
569	{
570	 wh64   r52
571	 addi   r52, r52, -64
572	}
573	wh64    r52
574
575#ifdef CONFIG_TRACE_IRQFLAGS
576	.ifnc \function,handle_nmi
577	/*
578	 * We finally have enough state set up to notify the irq
579	 * tracing code that irqs were disabled on entry to the handler.
580	 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
581	 * For syscalls, we already have the register state saved away
582	 * on the stack, so we don't bother to do any register saves here,
583	 * and later we pop the registers back off the kernel stack.
584	 * For interrupt handlers, save r0-r3 in callee-saved registers.
585	 */
586	.ifnc \function,handle_syscall
587	{ move r30, r0; move r31, r1 }
588	{ move r32, r2; move r33, r3 }
589	.endif
590	TRACE_IRQS_OFF
591	.ifnc \function,handle_syscall
592	{ move r0, r30; move r1, r31 }
593	{ move r2, r32; move r3, r33 }
594	.endif
595	.endif
596#endif
597
598	.endm
599
600	.macro  check_single_stepping, kind, not_single_stepping
601	/*
602	 * Check for single stepping in user-level priv
603	 *   kind can be "normal", "ill", or "syscall"
604	 * At end, if fall-thru
605	 *   r29: thread_info->step_state
606	 *   r28: &pt_regs->pc
607	 *   r27: pt_regs->pc
608	 *   r26: thread_info->step_state->buffer
609	 */
610
611	/* Check for single stepping */
612	GET_THREAD_INFO(r29)
613	{
614	 /* Get pointer to field holding step state */
615	 addi   r29, r29, THREAD_INFO_STEP_STATE_OFFSET
616
617	 /* Get pointer to EX1 in register state */
618	 PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
619	}
620	{
621	 /* Get pointer to field holding PC */
622	 PTREGS_PTR(r28, PTREGS_OFFSET_PC)
623
624	 /* Load the pointer to the step state */
625	 lw     r29, r29
626	}
627	/* Load EX1 */
628	lw      r27, r27
629	{
630	 /* Points to flags */
631	 addi   r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
632
633	 /* No single stepping if there is no step state structure */
634	 bzt    r29, \not_single_stepping
635	}
636	{
637	 /* mask off ICS and any other high bits */
638	 andi   r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
639
640	 /* Load pointer to single step instruction buffer */
641	 lw     r26, r29
642	}
643	/* Check priv state */
644	bnz     r27, \not_single_stepping
645
646	/* Get flags */
647	lw      r22, r23
648	{
649	 /* Branch if single-step mode not enabled */
650	 bbnst  r22, \not_single_stepping
651
652	 /* Clear enabled flag */
653	 andi   r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
654	}
655	.ifc \kind,normal
656	{
657	 /* Load PC */
658	 lw     r27, r28
659
660	 /* Point to the entry containing the original PC */
661	 addi   r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
662	}
663	{
664	 /* Disable single stepping flag */
665	 sw     r23, r22
666	}
667	{
668	 /* Get the original pc */
669	 lw     r24, r24
670
671	 /* See if the PC is at the start of the single step buffer */
672	 seq    r25, r26, r27
673	}
674	/*
675	 * NOTE: it is really expected that the PC be in the single step buffer
676	 *       at this point
677	 */
678	bzt     r25, \not_single_stepping
679
680	/* Restore the original PC */
681	sw      r28, r24
682	.else
683	.ifc \kind,syscall
684	{
685	 /* Load PC */
686	 lw     r27, r28
687
688	 /* Point to the entry containing the next PC */
689	 addi   r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
690	}
691	{
692	 /* Increment the stopped PC by the bundle size */
693	 addi   r26, r26, 8
694
695	 /* Disable single stepping flag */
696	 sw     r23, r22
697	}
698	{
699	 /* Get the next pc */
700	 lw     r24, r24
701
702	 /*
703	  * See if the PC is one bundle past the start of the
704	  * single step buffer
705	  */
706	 seq    r25, r26, r27
707	}
708	{
709	 /*
710	  * NOTE: it is really expected that the PC be in the
711	  * single step buffer at this point
712	  */
713	 bzt    r25, \not_single_stepping
714	}
715	/* Set to the next PC */
716	sw      r28, r24
717	.else
718	{
719	 /* Point to 3rd bundle in buffer */
720	 addi   r25, r26, 16
721
722	 /* Load PC */
723	 lw      r27, r28
724	}
725	{
726	 /* Disable single stepping flag */
727	 sw      r23, r22
728
729	 /* See if the PC is in the single step buffer */
730	 slte_u  r24, r26, r27
731	}
732	{
733	 slte_u r25, r27, r25
734
735	 /*
736	  * NOTE: it is really expected that the PC be in the
737	  * single step buffer at this point
738	  */
739	 bzt    r24, \not_single_stepping
740	}
741	bzt     r25, \not_single_stepping
742	.endif
743	.endif
744	.endm
745
746	/*
747	 * Redispatch a downcall.
748	 */
749	.macro  dc_dispatch vecnum, vecname
750	.org    (\vecnum << 8)
751intvec_\vecname:
752	j       _hv_downcall_dispatch
753	ENDPROC(intvec_\vecname)
754	.endm
755
756	/*
757	 * Common code for most interrupts.  The C function we're eventually
758	 * going to is in r0, and the faultnum is in r1; the original
759	 * values for those registers are on the stack.
760	 */
761	.pushsection .text.handle_interrupt,"ax"
762handle_interrupt:
763	finish_interrupt_save handle_interrupt
764
765	/*
766	 * Check for if we are single stepping in user level. If so, then
767	 * we need to restore the PC.
768	 */
769
770	check_single_stepping normal, .Ldispatch_interrupt
771.Ldispatch_interrupt:
772
773	/* Jump to the C routine; it should enable irqs as soon as possible. */
774	{
775	 jalr   r0
776	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
777	}
778	FEEDBACK_REENTER(handle_interrupt)
779	{
780	 movei  r30, 0   /* not an NMI */
781	 j      interrupt_return
782	}
783	STD_ENDPROC(handle_interrupt)
784
785/*
786 * This routine takes a boolean in r30 indicating if this is an NMI.
787 * If so, we also expect a boolean in r31 indicating whether to
788 * re-enable the oprofile interrupts.
789 *
790 * Note that .Lresume_userspace is jumped to directly in several
791 * places, and we need to make sure r30 is set correctly in those
792 * callers as well.
793 */
794STD_ENTRY(interrupt_return)
795	/* If we're resuming to kernel space, don't check thread flags. */
796	{
797	 bnz    r30, .Lrestore_all  /* NMIs don't special-case user-space */
798	 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
799	}
800	lw      r29, r29
801	andi    r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
802	bzt     r29, .Lresume_userspace
803
804#ifdef CONFIG_PREEMPT
805	/* Returning to kernel space. Check if we need preemption. */
806	GET_THREAD_INFO(r29)
807	addli   r28, r29, THREAD_INFO_FLAGS_OFFSET
808	{
809	 lw     r28, r28
810	 addli  r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET
811	}
812	{
813	 andi   r28, r28, _TIF_NEED_RESCHED
814	 lw     r29, r29
815	}
816	bzt     r28, 1f
817	bnz     r29, 1f
818	/* Disable interrupts explicitly for preemption. */
819	IRQ_DISABLE(r20,r21)
820	TRACE_IRQS_OFF
821	jal     preempt_schedule_irq
822	FEEDBACK_REENTER(interrupt_return)
8231:
824#endif
825
826	/* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
827	{
828	 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
829	 moveli r27, lo16(_cpu_idle_nap)
830	}
831	{
832	 lw     r28, r29
833	 auli   r27, r27, ha16(_cpu_idle_nap)
834	}
835	{
836	 seq    r27, r27, r28
837	}
838	{
839	 bbns   r27, .Lrestore_all
840	 addi   r28, r28, 8
841	}
842	sw      r29, r28
843	j       .Lrestore_all
844
845.Lresume_userspace:
846	FEEDBACK_REENTER(interrupt_return)
847
848	/*
849	 * Use r33 to hold whether we have already loaded the callee-saves
850	 * into ptregs.  We don't want to do it twice in this loop, since
851	 * then we'd clobber whatever changes are made by ptrace, etc.
852	 * Get base of stack in r32.
853	 */
854	{
855	 GET_THREAD_INFO(r32)
856	 movei  r33, 0
857	}
858
859.Lretry_work_pending:
860	/*
861	 * Disable interrupts so as to make sure we don't
862	 * miss an interrupt that sets any of the thread flags (like
863	 * need_resched or sigpending) between sampling and the iret.
864	 * Routines like schedule() or do_signal() may re-enable
865	 * interrupts before returning.
866	 */
867	IRQ_DISABLE(r20, r21)
868	TRACE_IRQS_OFF  /* Note: clobbers registers r0-r29 */
869
870
871	/* Check to see if there is any work to do before returning to user. */
872	{
873	 addi   r29, r32, THREAD_INFO_FLAGS_OFFSET
874	 moveli r1, lo16(_TIF_ALLWORK_MASK)
875	}
876	{
877	 lw     r29, r29
878	 auli   r1, r1, ha16(_TIF_ALLWORK_MASK)
879	}
880	and     r1, r29, r1
881	bzt     r1, .Lrestore_all
882
883	/*
884	 * Make sure we have all the registers saved for signal
885	 * handling, notify-resume, or single-step.  Call out to C
886	 * code to figure out exactly what we need to do for each flag bit,
887	 * then if necessary, reload the flags and recheck.
888	 */
889	{
890	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
891	 bnz    r33, 1f
892	}
893	push_extra_callee_saves r0
894	movei   r33, 1
8951:	jal     do_work_pending
896	bnz     r0, .Lretry_work_pending
897
898	/*
899	 * In the NMI case we
900	 * omit the call to single_process_check_nohz, which normally checks
901	 * to see if we should start or stop the scheduler tick, because
902	 * we can't call arbitrary Linux code from an NMI context.
903	 * We always call the homecache TLB deferral code to re-trigger
904	 * the deferral mechanism.
905	 *
906	 * The other chunk of responsibility this code has is to reset the
907	 * interrupt masks appropriately to reset irqs and NMIs.  We have
908	 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
909	 * lockdep-type stuff, but we can't set ICS until afterwards, since
910	 * ICS can only be used in very tight chunks of code to avoid
911	 * tripping over various assertions that it is off.
912	 *
913	 * (There is what looks like a window of vulnerability here since
914	 * we might take a profile interrupt between the two SPR writes
915	 * that set the mask, but since we write the low SPR word first,
916	 * and our interrupt entry code checks the low SPR word, any
917	 * profile interrupt will actually disable interrupts in both SPRs
918	 * before returning, which is OK.)
919	 */
920.Lrestore_all:
921	PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
922	{
923	 lw     r0, r0
924	 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
925	}
926	{
927	 andi   r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
928	 lw     r32, r32
929	}
930	bnz    r0, 1f
931	j       2f
932#if PT_FLAGS_DISABLE_IRQ != 1
933# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
934#endif
9351:	bbnst   r32, 2f
936	IRQ_DISABLE(r20,r21)
937	TRACE_IRQS_OFF
938	movei   r0, 1
939	mtspr   INTERRUPT_CRITICAL_SECTION, r0
940	bzt     r30, .Lrestore_regs
941	j       3f
9422:	TRACE_IRQS_ON
943	movei   r0, 1
944	mtspr   INTERRUPT_CRITICAL_SECTION, r0
945	IRQ_ENABLE(r20, r21)
946	bzt     r30, .Lrestore_regs
9473:
948
949	/* We are relying on INT_PERF_COUNT at 33, and AUX_PERF_COUNT at 48 */
950	{
951	 moveli r0, lo16(1 << (INT_PERF_COUNT - 32))
952	 bz     r31, .Lrestore_regs
953	}
954	auli    r0, r0, ha16(1 << (INT_AUX_PERF_COUNT - 32))
955	mtspr   SPR_INTERRUPT_MASK_RESET_K_1, r0
956
957	/*
958	 * We now commit to returning from this interrupt, since we will be
959	 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
960	 * frame.  No calls should be made to any other code after this point.
961	 * This code should only be entered with ICS set.
962	 * r32 must still be set to ptregs.flags.
963	 * We launch loads to each cache line separately first, so we can
964	 * get some parallelism out of the memory subsystem.
965	 * We start zeroing caller-saved registers throughout, since
966	 * that will save some cycles if this turns out to be a syscall.
967	 */
968.Lrestore_regs:
969	FEEDBACK_REENTER(interrupt_return)   /* called from elsewhere */
970
971	/*
972	 * Rotate so we have one high bit and one low bit to test.
973	 * - low bit says whether to restore all the callee-saved registers,
974	 *   or just r30-r33, and r52 up.
975	 * - high bit (i.e. sign bit) says whether to restore all the
976	 *   caller-saved registers, or just r0.
977	 */
978#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
979# error Rotate trick does not work :-)
980#endif
981	{
982	 rli    r20, r32, 30
983	 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
984	}
985
986	/*
987	 * Load cache lines 0, 2, and 3 in that order, then use
988	 * the last loaded value, which makes it likely that the other
989	 * cache lines have also loaded, at which point we should be
990	 * able to safely read all the remaining words on those cache
991	 * lines without waiting for the memory subsystem.
992	 */
993	pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
994	pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
995	pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
996	pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
997	{
998	 mtspr  SPR_EX_CONTEXT_K_0, r21
999	 move   r5, zero
1000	}
1001	{
1002	 mtspr  SPR_EX_CONTEXT_K_1, lr
1003	 andi   lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
1004	}
1005
1006	/* Restore callee-saveds that we actually use. */
1007	pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
1008	pop_reg_zero r31, r7
1009	pop_reg_zero r32, r8
1010	pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
1011
1012	/*
1013	 * If we modified other callee-saveds, restore them now.
1014	 * This is rare, but could be via ptrace or signal handler.
1015	 */
1016	{
1017	 move   r10, zero
1018	 bbs    r20, .Lrestore_callees
1019	}
1020.Lcontinue_restore_regs:
1021
1022	/* Check if we're returning from a syscall. */
1023	{
1024	 move   r11, zero
1025	 blzt   r20, 1f  /* no, so go restore callee-save registers */
1026	}
1027
1028	/*
1029	 * Check if we're returning to userspace.
1030	 * Note that if we're not, we don't worry about zeroing everything.
1031	 */
1032	{
1033	 addli  sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
1034	 bnz    lr, .Lkernel_return
1035	}
1036
1037	/*
1038	 * On return from syscall, we've restored r0 from pt_regs, but we
1039	 * clear the remainder of the caller-saved registers.  We could
1040	 * restore the syscall arguments, but there's not much point,
1041	 * and it ensures user programs aren't trying to use the
1042	 * caller-saves if we clear them, as well as avoiding leaking
1043	 * kernel pointers into userspace.
1044	 */
1045	pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1046	pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1047	{
1048	 lw     sp, sp
1049	 move   r14, zero
1050	 move   r15, zero
1051	}
1052	{ move r16, zero; move r17, zero }
1053	{ move r18, zero; move r19, zero }
1054	{ move r20, zero; move r21, zero }
1055	{ move r22, zero; move r23, zero }
1056	{ move r24, zero; move r25, zero }
1057	{ move r26, zero; move r27, zero }
1058
1059	/* Set r1 to errno if we are returning an error, otherwise zero. */
1060	{
1061	 moveli r29, 4096
1062	 sub    r1, zero, r0
1063	}
1064	slt_u   r29, r1, r29
1065	{
1066	 mnz    r1, r29, r1
1067	 move   r29, zero
1068	}
1069	iret
1070
1071	/*
1072	 * Not a syscall, so restore caller-saved registers.
1073	 * First kick off a load for cache line 1, which we're touching
1074	 * for the first time here.
1075	 */
1076	.align 64
10771:	pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1078	pop_reg r1
1079	pop_reg r2
1080	pop_reg r3
1081	pop_reg r4
1082	pop_reg r5
1083	pop_reg r6
1084	pop_reg r7
1085	pop_reg r8
1086	pop_reg r9
1087	pop_reg r10
1088	pop_reg r11
1089	pop_reg r12
1090	pop_reg r13
1091	pop_reg r14
1092	pop_reg r15
1093	pop_reg r16
1094	pop_reg r17
1095	pop_reg r18
1096	pop_reg r19
1097	pop_reg r20
1098	pop_reg r21
1099	pop_reg r22
1100	pop_reg r23
1101	pop_reg r24
1102	pop_reg r25
1103	pop_reg r26
1104	pop_reg r27
1105	pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1106	/* r29 already restored above */
1107	bnz     lr, .Lkernel_return
1108	pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1109	pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1110	lw      sp, sp
1111	iret
1112
1113	/*
1114	 * We can't restore tp when in kernel mode, since a thread might
1115	 * have migrated from another cpu and brought a stale tp value.
1116	 */
1117.Lkernel_return:
1118	pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1119	lw      sp, sp
1120	iret
1121
1122	/* Restore callee-saved registers from r34 to r51. */
1123.Lrestore_callees:
1124	addli  sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1125	pop_reg r34
1126	pop_reg r35
1127	pop_reg r36
1128	pop_reg r37
1129	pop_reg r38
1130	pop_reg r39
1131	pop_reg r40
1132	pop_reg r41
1133	pop_reg r42
1134	pop_reg r43
1135	pop_reg r44
1136	pop_reg r45
1137	pop_reg r46
1138	pop_reg r47
1139	pop_reg r48
1140	pop_reg r49
1141	pop_reg r50
1142	pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1143	j .Lcontinue_restore_regs
1144	STD_ENDPROC(interrupt_return)
1145
1146	/*
1147	 * Some interrupts don't check for single stepping
1148	 */
1149	.pushsection .text.handle_interrupt_no_single_step,"ax"
1150handle_interrupt_no_single_step:
1151	finish_interrupt_save handle_interrupt_no_single_step
1152	{
1153	 jalr   r0
1154	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1155	}
1156	FEEDBACK_REENTER(handle_interrupt_no_single_step)
1157	{
1158	 movei  r30, 0   /* not an NMI */
1159	 j      interrupt_return
1160	}
1161	STD_ENDPROC(handle_interrupt_no_single_step)
1162
1163	/*
1164	 * "NMI" interrupts mask ALL interrupts before calling the
1165	 * handler, and don't check thread flags, etc., on the way
1166	 * back out.  In general, the only things we do here for NMIs
1167	 * are the register save/restore, fixing the PC if we were
1168	 * doing single step, and the dataplane kernel-TLB management.
1169	 * We don't (for example) deal with start/stop of the sched tick.
1170	 */
1171	.pushsection .text.handle_nmi,"ax"
1172handle_nmi:
1173	finish_interrupt_save handle_nmi
1174	check_single_stepping normal, .Ldispatch_nmi
1175.Ldispatch_nmi:
1176	{
1177	 jalr   r0
1178	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1179	}
1180	FEEDBACK_REENTER(handle_nmi)
1181	{
1182	 movei  r30, 1
1183	 seq    r31, r0, zero
1184	}
1185	j       interrupt_return
1186	STD_ENDPROC(handle_nmi)
1187
1188	/*
1189	 * Parallel code for syscalls to handle_interrupt.
1190	 */
1191	.pushsection .text.handle_syscall,"ax"
1192handle_syscall:
1193	finish_interrupt_save handle_syscall
1194
1195	/*
1196	 * Check for if we are single stepping in user level. If so, then
1197	 * we need to restore the PC.
1198	 */
1199	check_single_stepping syscall, .Ldispatch_syscall
1200.Ldispatch_syscall:
1201
1202	/* Enable irqs. */
1203	TRACE_IRQS_ON
1204	IRQ_ENABLE(r20, r21)
1205
1206	/* Bump the counter for syscalls made on this tile. */
1207	moveli  r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1208	auli    r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1209	add     r20, r20, tp
1210	lw      r21, r20
1211	addi    r21, r21, 1
1212	{
1213	 sw     r20, r21
1214	 GET_THREAD_INFO(r31)
1215	}
1216
1217	/* Trace syscalls, if requested. */
1218	addi	r31, r31, THREAD_INFO_FLAGS_OFFSET
1219	lw	r30, r31
1220	andi    r30, r30, _TIF_SYSCALL_TRACE
1221	bzt	r30, .Lrestore_syscall_regs
1222	{
1223	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1224	 jal    do_syscall_trace_enter
1225	}
1226	FEEDBACK_REENTER(handle_syscall)
1227
1228	/*
1229	 * We always reload our registers from the stack at this
1230	 * point.  They might be valid, if we didn't build with
1231	 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1232	 * doing syscall tracing, but there are enough cases now that it
1233	 * seems simplest just to do the reload unconditionally.
1234	 */
1235.Lrestore_syscall_regs:
1236	PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1237	pop_reg r0, r11
1238	pop_reg r1, r11
1239	pop_reg r2, r11
1240	pop_reg r3, r11
1241	pop_reg r4, r11
1242	pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1243	pop_reg TREG_SYSCALL_NR_NAME, r11
1244
1245	/* Ensure that the syscall number is within the legal range. */
1246	moveli  r21, __NR_syscalls
1247	{
1248	 slt_u  r21, TREG_SYSCALL_NR_NAME, r21
1249	 moveli r20, lo16(sys_call_table)
1250	}
1251	{
1252	 bbns   r21, .Linvalid_syscall
1253	 auli   r20, r20, ha16(sys_call_table)
1254	}
1255	s2a     r20, TREG_SYSCALL_NR_NAME, r20
1256	lw      r20, r20
1257
1258	/* Jump to syscall handler. */
1259	jalr    r20
1260.Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
1261
1262	/*
1263	 * Write our r0 onto the stack so it gets restored instead
1264	 * of whatever the user had there before.
1265	 */
1266	PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1267	sw      r29, r0
1268
1269.Lsyscall_sigreturn_skip:
1270	FEEDBACK_REENTER(handle_syscall)
1271
1272	/* Do syscall trace again, if requested. */
1273	lw	r30, r31
1274	andi    r30, r30, _TIF_SYSCALL_TRACE
1275	bzt     r30, 1f
1276	{
1277	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1278	 jal    do_syscall_trace_exit
1279	}
1280	FEEDBACK_REENTER(handle_syscall)
12811:	{
1282	 movei  r30, 0               /* not an NMI */
1283	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1284	}
1285
1286.Linvalid_syscall:
1287	/* Report an invalid syscall back to the user program */
1288	{
1289	 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1290	 movei  r28, -ENOSYS
1291	}
1292	sw      r29, r28
1293	{
1294	 movei  r30, 0               /* not an NMI */
1295	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1296	}
1297	STD_ENDPROC(handle_syscall)
1298
1299	/* Return the address for oprofile to suppress in backtraces. */
1300STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1301	lnk     r0
1302	{
1303	 addli  r0, r0, .Lhandle_syscall_link - .
1304	 jrp    lr
1305	}
1306	STD_ENDPROC(handle_syscall_link_address)
1307
1308STD_ENTRY(ret_from_fork)
1309	jal     sim_notify_fork
1310	jal     schedule_tail
1311	FEEDBACK_REENTER(ret_from_fork)
1312	{
1313	 movei  r30, 0               /* not an NMI */
1314	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1315	}
1316	STD_ENDPROC(ret_from_fork)
1317
1318STD_ENTRY(ret_from_kernel_thread)
1319	jal     sim_notify_fork
1320	jal     schedule_tail
1321	FEEDBACK_REENTER(ret_from_fork)
1322	{
1323	 move   r0, r31
1324	 jalr   r30
1325	}
1326	FEEDBACK_REENTER(ret_from_kernel_thread)
1327	{
1328	 movei  r30, 0               /* not an NMI */
1329	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1330	}
1331	STD_ENDPROC(ret_from_kernel_thread)
1332
1333	/*
1334	 * Code for ill interrupt.
1335	 */
1336	.pushsection .text.handle_ill,"ax"
1337handle_ill:
1338	finish_interrupt_save handle_ill
1339
1340	/*
1341	 * Check for if we are single stepping in user level. If so, then
1342	 * we need to restore the PC.
1343	 */
1344	check_single_stepping ill, .Ldispatch_normal_ill
1345
1346	{
1347	 /* See if the PC is the 1st bundle in the buffer */
1348	 seq    r25, r27, r26
1349
1350	 /* Point to the 2nd bundle in the buffer */
1351	 addi   r26, r26, 8
1352	}
1353	{
1354	 /* Point to the original pc */
1355	 addi   r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1356
1357	 /* Branch if the PC is the 1st bundle in the buffer */
1358	 bnz    r25, 3f
1359	}
1360	{
1361	 /* See if the PC is the 2nd bundle of the buffer */
1362	 seq    r25, r27, r26
1363
1364	 /* Set PC to next instruction */
1365	 addi   r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1366	}
1367	{
1368	 /* Point to flags */
1369	 addi   r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1370
1371	 /* Branch if PC is in the second bundle */
1372	 bz     r25, 2f
1373	}
1374	/* Load flags */
1375	lw      r25, r25
1376	{
1377	 /*
1378	  * Get the offset for the register to restore
1379	  * Note: the lower bound is 2, so we have implicit scaling by 4.
1380	  *  No multiplication of the register number by the size of a register
1381	  *  is needed.
1382	  */
1383	 mm     r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1384		SINGLESTEP_STATE_TARGET_UB
1385
1386	 /* Mask Rewrite_LR */
1387	 andi   r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1388	}
1389	{
1390	 addi   r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1391
1392	 /* Don't rewrite temp register */
1393	 bz     r25, 3f
1394	}
1395	{
1396	 /* Get the temp value */
1397	 lw     r29, r29
1398
1399	 /* Point to where the register is stored */
1400	 add    r27, r27, sp
1401	}
1402
1403	/* Add in the C ABI save area size to the register offset */
1404	addi    r27, r27, C_ABI_SAVE_AREA_SIZE
1405
1406	/* Restore the user's register with the temp value */
1407	sw      r27, r29
1408	j       3f
1409
14102:
1411	/* Must be in the third bundle */
1412	addi    r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1413
14143:
1415	/* set PC and continue */
1416	lw      r26, r24
1417	{
1418	 sw     r28, r26
1419	 GET_THREAD_INFO(r0)
1420	}
1421
1422	/*
1423	 * Clear TIF_SINGLESTEP to prevent recursion if we execute an ill.
1424	 * The normal non-arch flow redundantly clears TIF_SINGLESTEP, but we
1425	 * need to clear it here and can't really impose on all other arches.
1426	 * So what's another write between friends?
1427	 */
1428
1429	addi    r1, r0, THREAD_INFO_FLAGS_OFFSET
1430	{
1431	 lw     r2, r1
1432	 addi   r0, r0, THREAD_INFO_TASK_OFFSET  /* currently a no-op */
1433	}
1434	andi    r2, r2, ~_TIF_SINGLESTEP
1435	sw      r1, r2
1436
1437	/* Issue a sigtrap */
1438	{
1439	 lw     r0, r0          /* indirect thru thread_info to get task_info*/
1440	 addi   r1, sp, C_ABI_SAVE_AREA_SIZE  /* put ptregs pointer into r1 */
1441	}
1442
1443	jal     send_sigtrap    /* issue a SIGTRAP */
1444	FEEDBACK_REENTER(handle_ill)
1445	{
1446	 movei  r30, 0               /* not an NMI */
1447	 j      .Lresume_userspace   /* jump into middle of interrupt_return */
1448	}
1449
1450.Ldispatch_normal_ill:
1451	{
1452	 jalr   r0
1453	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1454	}
1455	FEEDBACK_REENTER(handle_ill)
1456	{
1457	 movei  r30, 0   /* not an NMI */
1458	 j      interrupt_return
1459	}
1460	STD_ENDPROC(handle_ill)
1461
1462/* Various stub interrupt handlers and syscall handlers */
1463
1464STD_ENTRY_LOCAL(_kernel_double_fault)
1465	mfspr   r1, SPR_EX_CONTEXT_K_0
1466	move    r2, lr
1467	move    r3, sp
1468	move    r4, r52
1469	addi    sp, sp, -C_ABI_SAVE_AREA_SIZE
1470	j       kernel_double_fault
1471	STD_ENDPROC(_kernel_double_fault)
1472
1473STD_ENTRY_LOCAL(bad_intr)
1474	mfspr   r2, SPR_EX_CONTEXT_K_0
1475	panic   "Unhandled interrupt %#x: PC %#lx"
1476	STD_ENDPROC(bad_intr)
1477
1478/*
1479 * Special-case sigreturn to not write r0 to the stack on return.
1480 * This is technically more efficient, but it also avoids difficulties
1481 * in the 64-bit OS when handling 32-bit compat code, since we must not
1482 * sign-extend r0 for the sigreturn return-value case.
1483 */
1484#define PTREGS_SYSCALL_SIGRETURN(x, reg)                \
1485	STD_ENTRY(_##x);                                \
1486	addli   lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
1487	{                                               \
1488	 PTREGS_PTR(reg, PTREGS_OFFSET_BASE);           \
1489	 j      x                                       \
1490	};                                              \
1491	STD_ENDPROC(_##x)
1492
1493PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
1494
1495/* Save additional callee-saves to pt_regs and jump to standard function. */
1496STD_ENTRY(_sys_clone)
1497	push_extra_callee_saves r4
1498	j       sys_clone
1499	STD_ENDPROC(_sys_clone)
1500
1501/*
1502 * This entrypoint is taken for the cmpxchg and atomic_update fast
1503 * swints.  We may wish to generalize it to other fast swints at some
1504 * point, but for now there are just two very similar ones, which
1505 * makes it faster.
1506 *
1507 * The fast swint code is designed to have a small footprint.  It does
1508 * not save or restore any GPRs, counting on the caller-save registers
1509 * to be available to it on entry.  It does not modify any callee-save
1510 * registers (including "lr").  It does not check what PL it is being
1511 * called at, so you'd better not call it other than at PL0.
1512 * The <atomic.h> wrapper assumes it only clobbers r20-r29, so if
1513 * it ever is necessary to use more registers, be aware.
1514 *
1515 * It does not use the stack, but since it might be re-interrupted by
1516 * a page fault which would assume the stack was valid, it does
1517 * save/restore the stack pointer and zero it out to make sure it gets reset.
1518 * Since we always keep interrupts disabled, the hypervisor won't
1519 * clobber our EX_CONTEXT_K_x registers, so we don't save/restore them
1520 * (other than to advance the PC on return).
1521 *
1522 * We have to manually validate the user vs kernel address range
1523 * (since at PL1 we can read/write both), and for performance reasons
1524 * we don't allow cmpxchg on the fc000000 memory region, since we only
1525 * validate that the user address is below PAGE_OFFSET.
1526 *
1527 * We place it in the __HEAD section to ensure it is relatively
1528 * near to the intvec_SWINT_1 code (reachable by a conditional branch).
1529 *
1530 * Our use of ATOMIC_LOCK_REG here must match do_page_fault_ics().
1531 *
1532 * As we do in lib/atomic_asm_32.S, we bypass a store if the value we
1533 * would store is the same as the value we just loaded.
1534 */
1535	__HEAD
1536	.align 64
1537	/* Align much later jump on the start of a cache line. */
1538	nop
1539#if PAGE_SIZE >= 0x10000
1540	nop
1541#endif
1542ENTRY(sys_cmpxchg)
1543
1544	/*
1545	 * Save "sp" and set it zero for any possible page fault.
1546	 *
1547	 * HACK: We want to both zero sp and check r0's alignment,
1548	 * so we do both at once. If "sp" becomes nonzero we
1549	 * know r0 is unaligned and branch to the error handler that
1550	 * restores sp, so this is OK.
1551	 *
1552	 * ICS is disabled right now so having a garbage but nonzero
1553	 * sp is OK, since we won't execute any faulting instructions
1554	 * when it is nonzero.
1555	 */
1556	{
1557	 move   r27, sp
1558	 andi	sp, r0, 3
1559	}
1560
1561	/*
1562	 * Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1563	 * address is less than PAGE_OFFSET, since that won't trap at PL1.
1564	 * We only use bits less than PAGE_SHIFT to avoid having to worry
1565	 * about aliasing among multiple mappings of the same physical page,
1566	 * and we ignore the low 3 bits so we have one lock that covers
1567	 * both a cmpxchg64() and a cmpxchg() on either its low or high word.
1568	 * NOTE: this must match __atomic_hashed_lock() in lib/atomic_32.c.
1569	 */
1570
1571#if (PAGE_OFFSET & 0xffff) != 0
1572# error Code here assumes PAGE_OFFSET can be loaded with just hi16()
1573#endif
1574
1575	{
1576	 /* Check for unaligned input. */
1577	 bnz    sp, .Lcmpxchg_badaddr
1578	 auli   r23, zero, hi16(PAGE_OFFSET)  /* hugepage-aligned */
1579	}
1580	{
1581	 /*
1582	  * Slide bits into position for 'mm'. We want to ignore
1583	  * the low 3 bits of r0, and consider only the next
1584	  * ATOMIC_HASH_SHIFT bits.
1585	  * Because of C pointer arithmetic, we want to compute this:
1586	  *
1587	  * ((char*)atomic_locks +
1588	  *  (((r0 >> 3) & ((1 << ATOMIC_HASH_SHIFT) - 1)) << 2))
1589	  *
1590	  * Instead of two shifts we just ">> 1", and use 'mm'
1591	  * to ignore the low and high bits we don't want.
1592	  */
1593	 shri	r25, r0, 1
1594
1595	 slt_u  r23, r0, r23
1596
1597	 /*
1598	  * Ensure that the TLB is loaded before we take out the lock.
1599	  * This will start fetching the value all the way into our L1
1600	  * as well (and if it gets modified before we grab the lock,
1601	  * it will be invalidated from our cache before we reload it).
1602	  */
1603	 lw	r26, r0
1604	}
1605	{
1606	 auli	r21, zero, ha16(atomic_locks)
1607
1608	 bbns   r23, .Lcmpxchg_badaddr
1609	}
1610#if PAGE_SIZE < 0x10000
1611	/* atomic_locks is page-aligned so for big pages we don't need this. */
1612	addli   r21, r21, lo16(atomic_locks)
1613#endif
1614	{
1615	 /*
1616	  * Insert the hash bits into the page-aligned pointer.
1617	  * ATOMIC_HASH_SHIFT is so big that we don't actually hash
1618	  * the unmasked address bits, as that may cause unnecessary
1619	  * collisions.
1620	  */
1621	 mm	ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1622
1623	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1624	}
1625	{
1626	 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1627	 bbs    r23, .Lcmpxchg64
1628	 andi   r23, r0, 7       /* Precompute alignment for cmpxchg64. */
1629	}
1630	{
1631	 /*
1632	  * We very carefully align the code that actually runs with
1633	  * the lock held (twelve bundles) so that we know it is all in
1634	  * the icache when we start.  This instruction (the jump) is
1635	  * at the start of the first cache line, address zero mod 64;
1636	  * we jump to the very end of the second cache line to get that
1637	  * line loaded in the icache, then fall through to issue the tns
1638	  * in the third cache line, at which point it's all cached.
1639	  * Note that is for performance, not correctness.
1640	  */
1641	 j      .Lcmpxchg32_tns
1642	}
1643
1644/* Symbol for do_page_fault_ics() to use to compare against the PC. */
1645.global __sys_cmpxchg_grab_lock
1646__sys_cmpxchg_grab_lock:
1647
1648	/*
1649	 * Perform the actual cmpxchg or atomic_update.
1650	 */
1651.Ldo_cmpxchg32:
1652	{
1653	 lw     r21, r0
1654	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1655	 move	r24, r2
1656	}
1657	{
1658	 seq    r22, r21, r1     /* See if cmpxchg matches. */
1659	 and	r25, r21, r1     /* If atomic_update, compute (*mem & mask) */
1660	}
1661	{
1662	 or	r22, r22, r23    /* Skip compare branch for atomic_update. */
1663	 add	r25, r25, r2     /* Compute (*mem & mask) + addend. */
1664	}
1665	{
1666	 mvnz	r24, r23, r25    /* Use atomic_update value if appropriate. */
1667	 bbns   r22, .Lcmpxchg32_nostore
1668	}
1669	seq     r22, r24, r21    /* Are we storing the value we loaded? */
1670	bbs     r22, .Lcmpxchg32_nostore
1671	sw      r0, r24
1672
1673	/* The following instruction is the start of the second cache line. */
1674	/* Do slow mtspr here so the following "mf" waits less. */
1675	{
1676	 move   sp, r27
1677	 mtspr  SPR_EX_CONTEXT_K_0, r28
1678	}
1679	mf
1680
1681	{
1682	 move   r0, r21
1683	 sw     ATOMIC_LOCK_REG_NAME, zero
1684	}
1685	iret
1686
1687	/* Duplicated code here in the case where we don't overlap "mf" */
1688.Lcmpxchg32_nostore:
1689	{
1690	 move   r0, r21
1691	 sw     ATOMIC_LOCK_REG_NAME, zero
1692	}
1693	{
1694	 move   sp, r27
1695	 mtspr  SPR_EX_CONTEXT_K_0, r28
1696	}
1697	iret
1698
1699	/*
1700	 * The locking code is the same for 32-bit cmpxchg/atomic_update,
1701	 * and for 64-bit cmpxchg.  We provide it as a macro and put
1702	 * it into both versions.  We can't share the code literally
1703	 * since it depends on having the right branch-back address.
1704	 */
1705	.macro  cmpxchg_lock, bitwidth
1706
1707	/* Lock; if we succeed, jump back up to the read-modify-write. */
1708#ifdef CONFIG_SMP
1709	tns     r21, ATOMIC_LOCK_REG_NAME
1710#else
1711	/*
1712	 * Non-SMP preserves all the lock infrastructure, to keep the
1713	 * code simpler for the interesting (SMP) case.  However, we do
1714	 * one small optimization here and in atomic_asm.S, which is
1715	 * to fake out acquiring the actual lock in the atomic_lock table.
1716	 */
1717	movei	r21, 0
1718#endif
1719
1720	/* Issue the slow SPR here while the tns result is in flight. */
1721	mfspr   r28, SPR_EX_CONTEXT_K_0
1722
1723	{
1724	 addi   r28, r28, 8    /* return to the instruction after the swint1 */
1725	 bzt    r21, .Ldo_cmpxchg\bitwidth
1726	}
1727	/*
1728	 * The preceding instruction is the last thing that must be
1729	 * hot in the icache before we do the "tns" above.
1730	 */
1731
1732#ifdef CONFIG_SMP
1733	/*
1734	 * We failed to acquire the tns lock on our first try.  Now use
1735	 * bounded exponential backoff to retry, like __atomic_spinlock().
1736	 */
1737	{
1738	 moveli r23, 2048       /* maximum backoff time in cycles */
1739	 moveli r25, 32         /* starting backoff time in cycles */
1740	}
17411:	mfspr   r26, CYCLE_LOW  /* get start point for this backoff */
17422:	mfspr   r22, CYCLE_LOW  /* test to see if we've backed off enough */
1743	sub     r22, r22, r26
1744	slt     r22, r22, r25
1745	bbst    r22, 2b
1746	{
1747	 shli   r25, r25, 1     /* double the backoff; retry the tns */
1748	 tns    r21, ATOMIC_LOCK_REG_NAME
1749	}
1750	slt     r26, r23, r25   /* is the proposed backoff too big? */
1751	{
1752	 mvnz   r25, r26, r23
1753	 bzt    r21, .Ldo_cmpxchg\bitwidth
1754	}
1755	j       1b
1756#endif /* CONFIG_SMP */
1757	.endm
1758
1759.Lcmpxchg32_tns:
1760	/*
1761	 * This is the last instruction on the second cache line.
1762	 * The nop here loads the second line, then we fall through
1763	 * to the tns to load the third line before we take the lock.
1764	 */
1765	nop
1766	cmpxchg_lock 32
1767
1768	/*
1769	 * This code is invoked from sys_cmpxchg after most of the
1770	 * preconditions have been checked.  We still need to check
1771	 * that r0 is 8-byte aligned, since if it's not we won't
1772	 * actually be atomic.  However, ATOMIC_LOCK_REG has the atomic
1773	 * lock pointer and r27/r28 have the saved SP/PC.
1774	 * r23 is holding "r0 & 7" so we can test for alignment.
1775	 * The compare value is in r2/r3; the new value is in r4/r5.
1776	 * On return, we must put the old value in r0/r1.
1777	 */
1778	.align 64
1779.Lcmpxchg64:
1780	{
1781	 bzt     r23, .Lcmpxchg64_tns
1782	}
1783	j       .Lcmpxchg_badaddr
1784
1785.Ldo_cmpxchg64:
1786	{
1787	 lw     r21, r0
1788	 addi   r25, r0, 4
1789	}
1790	{
1791	 lw     r1, r25
1792	}
1793	seq     r26, r21, r2
1794	{
1795	 bz     r26, .Lcmpxchg64_mismatch
1796	 seq    r26, r1, r3
1797	}
1798	{
1799	 bz     r26, .Lcmpxchg64_mismatch
1800	}
1801	sw      r0, r4
1802	sw      r25, r5
1803
1804	/*
1805	 * The 32-bit path provides optimized "match" and "mismatch"
1806	 * iret paths, but we don't have enough bundles in this cache line
1807	 * to do that, so we just make even the "mismatch" path do an "mf".
1808	 */
1809.Lcmpxchg64_mismatch:
1810	{
1811	 move   sp, r27
1812	 mtspr  SPR_EX_CONTEXT_K_0, r28
1813	}
1814	mf
1815	{
1816	 move   r0, r21
1817	 sw     ATOMIC_LOCK_REG_NAME, zero
1818	}
1819	iret
1820
1821.Lcmpxchg64_tns:
1822	cmpxchg_lock 64
1823
1824
1825	/*
1826	 * Reset sp and revector to sys_cmpxchg_badaddr(), which will
1827	 * just raise the appropriate signal and exit.  Doing it this
1828	 * way means we don't have to duplicate the code in intvec.S's
1829	 * int_hand macro that locates the top of the stack.
1830	 */
1831.Lcmpxchg_badaddr:
1832	{
1833	 moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1834	 move   sp, r27
1835	}
1836	j       intvec_SWINT_1
1837	ENDPROC(sys_cmpxchg)
1838	ENTRY(__sys_cmpxchg_end)
1839
1840
1841/* The single-step support may need to read all the registers. */
1842int_unalign:
1843	push_extra_callee_saves r0
1844	j       do_trap
1845
1846/* Include .intrpt array of interrupt vectors */
1847	.section ".intrpt", "ax"
1848
1849#ifndef CONFIG_USE_PMC
1850#define handle_perf_interrupt bad_intr
1851#endif
1852
1853#ifndef CONFIG_HARDWALL
1854#define do_hardwall_trap bad_intr
1855#endif
1856
1857	int_hand     INT_ITLB_MISS, ITLB_MISS, \
1858		     do_page_fault, handle_interrupt_no_single_step
1859	int_hand     INT_MEM_ERROR, MEM_ERROR, bad_intr
1860	int_hand     INT_ILL, ILL, do_trap, handle_ill
1861	int_hand     INT_GPV, GPV, do_trap
1862	int_hand     INT_SN_ACCESS, SN_ACCESS, do_trap
1863	int_hand     INT_IDN_ACCESS, IDN_ACCESS, do_trap
1864	int_hand     INT_UDN_ACCESS, UDN_ACCESS, do_trap
1865	int_hand     INT_IDN_REFILL, IDN_REFILL, bad_intr
1866	int_hand     INT_UDN_REFILL, UDN_REFILL, bad_intr
1867	int_hand     INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1868	int_hand     INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1869	int_hand     INT_SWINT_3, SWINT_3, do_trap
1870	int_hand     INT_SWINT_2, SWINT_2, do_trap
1871	int_hand     INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1872	int_hand     INT_SWINT_0, SWINT_0, do_trap
1873	int_hand     INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1874	int_hand     INT_DTLB_MISS, DTLB_MISS, do_page_fault
1875	int_hand     INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1876	int_hand     INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1877	int_hand     INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1878	int_hand     INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1879	int_hand     INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1880	int_hand     INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1881	int_hand     INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1882	int_hand     INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1883	int_hand     INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1884	int_hand     INT_IDN_TIMER, IDN_TIMER, bad_intr
1885	int_hand     INT_UDN_TIMER, UDN_TIMER, bad_intr
1886	int_hand     INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1887	int_hand     INT_IDN_CA, IDN_CA, bad_intr
1888	int_hand     INT_UDN_CA, UDN_CA, bad_intr
1889	int_hand     INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1890	int_hand     INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1891	int_hand     INT_PERF_COUNT, PERF_COUNT, \
1892		     handle_perf_interrupt, handle_nmi
1893	int_hand     INT_INTCTRL_3, INTCTRL_3, bad_intr
1894#if CONFIG_KERNEL_PL == 2
1895	dc_dispatch  INT_INTCTRL_2, INTCTRL_2
1896	int_hand     INT_INTCTRL_1, INTCTRL_1, bad_intr
1897#else
1898	int_hand     INT_INTCTRL_2, INTCTRL_2, bad_intr
1899	dc_dispatch  INT_INTCTRL_1, INTCTRL_1
1900#endif
1901	int_hand     INT_INTCTRL_0, INTCTRL_0, bad_intr
1902	int_hand     INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1903		     hv_message_intr
1904	int_hand     INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
1905		     tile_dev_intr
1906	int_hand     INT_I_ASID, I_ASID, bad_intr
1907	int_hand     INT_D_ASID, D_ASID, bad_intr
1908	int_hand     INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
1909		     do_page_fault
1910	int_hand     INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
1911		     do_page_fault
1912	int_hand     INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
1913		     do_page_fault
1914	int_hand     INT_SN_CPL, SN_CPL, bad_intr
1915	int_hand     INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
1916	int_hand     INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
1917		     handle_perf_interrupt, handle_nmi
1918
1919	/* Synthetic interrupt delivered only by the simulator */
1920	int_hand     INT_BREAKPOINT, BREAKPOINT, do_breakpoint
1921