1/* visemul.c: Emulation of VIS instructions. 2 * 3 * Copyright (C) 2006 David S. Miller (davem@davemloft.net) 4 */ 5#include <linux/kernel.h> 6#include <linux/errno.h> 7#include <linux/thread_info.h> 8#include <linux/perf_event.h> 9 10#include <asm/ptrace.h> 11#include <asm/pstate.h> 12#include <asm/fpumacro.h> 13#include <asm/uaccess.h> 14#include <asm/cacheflush.h> 15 16/* OPF field of various VIS instructions. */ 17 18/* 000111011 - four 16-bit packs */ 19#define FPACK16_OPF 0x03b 20 21/* 000111010 - two 32-bit packs */ 22#define FPACK32_OPF 0x03a 23 24/* 000111101 - four 16-bit packs */ 25#define FPACKFIX_OPF 0x03d 26 27/* 001001101 - four 16-bit expands */ 28#define FEXPAND_OPF 0x04d 29 30/* 001001011 - two 32-bit merges */ 31#define FPMERGE_OPF 0x04b 32 33/* 000110001 - 8-by-16-bit partitoned product */ 34#define FMUL8x16_OPF 0x031 35 36/* 000110011 - 8-by-16-bit upper alpha partitioned product */ 37#define FMUL8x16AU_OPF 0x033 38 39/* 000110101 - 8-by-16-bit lower alpha partitioned product */ 40#define FMUL8x16AL_OPF 0x035 41 42/* 000110110 - upper 8-by-16-bit partitioned product */ 43#define FMUL8SUx16_OPF 0x036 44 45/* 000110111 - lower 8-by-16-bit partitioned product */ 46#define FMUL8ULx16_OPF 0x037 47 48/* 000111000 - upper 8-by-16-bit partitioned product */ 49#define FMULD8SUx16_OPF 0x038 50 51/* 000111001 - lower unsigned 8-by-16-bit partitioned product */ 52#define FMULD8ULx16_OPF 0x039 53 54/* 000101000 - four 16-bit compare; set rd if src1 > src2 */ 55#define FCMPGT16_OPF 0x028 56 57/* 000101100 - two 32-bit compare; set rd if src1 > src2 */ 58#define FCMPGT32_OPF 0x02c 59 60/* 000100000 - four 16-bit compare; set rd if src1 <= src2 */ 61#define FCMPLE16_OPF 0x020 62 63/* 000100100 - two 32-bit compare; set rd if src1 <= src2 */ 64#define FCMPLE32_OPF 0x024 65 66/* 000100010 - four 16-bit compare; set rd if src1 != src2 */ 67#define FCMPNE16_OPF 0x022 68 69/* 000100110 - two 32-bit compare; set rd if src1 != src2 */ 70#define FCMPNE32_OPF 0x026 71 72/* 000101010 - four 16-bit compare; set rd if src1 == src2 */ 73#define FCMPEQ16_OPF 0x02a 74 75/* 000101110 - two 32-bit compare; set rd if src1 == src2 */ 76#define FCMPEQ32_OPF 0x02e 77 78/* 000000000 - Eight 8-bit edge boundary processing */ 79#define EDGE8_OPF 0x000 80 81/* 000000001 - Eight 8-bit edge boundary processing, no CC */ 82#define EDGE8N_OPF 0x001 83 84/* 000000010 - Eight 8-bit edge boundary processing, little-endian */ 85#define EDGE8L_OPF 0x002 86 87/* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */ 88#define EDGE8LN_OPF 0x003 89 90/* 000000100 - Four 16-bit edge boundary processing */ 91#define EDGE16_OPF 0x004 92 93/* 000000101 - Four 16-bit edge boundary processing, no CC */ 94#define EDGE16N_OPF 0x005 95 96/* 000000110 - Four 16-bit edge boundary processing, little-endian */ 97#define EDGE16L_OPF 0x006 98 99/* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */ 100#define EDGE16LN_OPF 0x007 101 102/* 000001000 - Two 32-bit edge boundary processing */ 103#define EDGE32_OPF 0x008 104 105/* 000001001 - Two 32-bit edge boundary processing, no CC */ 106#define EDGE32N_OPF 0x009 107 108/* 000001010 - Two 32-bit edge boundary processing, little-endian */ 109#define EDGE32L_OPF 0x00a 110 111/* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */ 112#define EDGE32LN_OPF 0x00b 113 114/* 000111110 - distance between 8 8-bit components */ 115#define PDIST_OPF 0x03e 116 117/* 000010000 - convert 8-bit 3-D address to blocked byte address */ 118#define ARRAY8_OPF 0x010 119 120/* 000010010 - convert 16-bit 3-D address to blocked byte address */ 121#define ARRAY16_OPF 0x012 122 123/* 000010100 - convert 32-bit 3-D address to blocked byte address */ 124#define ARRAY32_OPF 0x014 125 126/* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */ 127#define BMASK_OPF 0x019 128 129/* 001001100 - Permute bytes as specified by GSR.MASK */ 130#define BSHUFFLE_OPF 0x04c 131 132#define VIS_OPF_SHIFT 5 133#define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT) 134 135#define RS1(INSN) (((INSN) >> 14) & 0x1f) 136#define RS2(INSN) (((INSN) >> 0) & 0x1f) 137#define RD(INSN) (((INSN) >> 25) & 0x1f) 138 139static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2, 140 unsigned int rd, int from_kernel) 141{ 142 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) { 143 if (from_kernel != 0) 144 __asm__ __volatile__("flushw"); 145 else 146 flushw_user(); 147 } 148} 149 150static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs) 151{ 152 unsigned long value, fp; 153 154 if (reg < 16) 155 return (!reg ? 0 : regs->u_regs[reg]); 156 157 fp = regs->u_regs[UREG_FP]; 158 159 if (regs->tstate & TSTATE_PRIV) { 160 struct reg_window *win; 161 win = (struct reg_window *)(fp + STACK_BIAS); 162 value = win->locals[reg - 16]; 163 } else if (!test_thread_64bit_stack(fp)) { 164 struct reg_window32 __user *win32; 165 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp)); 166 get_user(value, &win32->locals[reg - 16]); 167 } else { 168 struct reg_window __user *win; 169 win = (struct reg_window __user *)(fp + STACK_BIAS); 170 get_user(value, &win->locals[reg - 16]); 171 } 172 return value; 173} 174 175static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg, 176 struct pt_regs *regs) 177{ 178 unsigned long fp = regs->u_regs[UREG_FP]; 179 180 BUG_ON(reg < 16); 181 BUG_ON(regs->tstate & TSTATE_PRIV); 182 183 if (!test_thread_64bit_stack(fp)) { 184 struct reg_window32 __user *win32; 185 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp)); 186 return (unsigned long __user *)&win32->locals[reg - 16]; 187 } else { 188 struct reg_window __user *win; 189 win = (struct reg_window __user *)(fp + STACK_BIAS); 190 return &win->locals[reg - 16]; 191 } 192} 193 194static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg, 195 struct pt_regs *regs) 196{ 197 BUG_ON(reg >= 16); 198 BUG_ON(regs->tstate & TSTATE_PRIV); 199 200 return ®s->u_regs[reg]; 201} 202 203static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd) 204{ 205 if (rd < 16) { 206 unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs); 207 208 *rd_kern = val; 209 } else { 210 unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs); 211 212 if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) 213 __put_user((u32)val, (u32 __user *)rd_user); 214 else 215 __put_user(val, rd_user); 216 } 217} 218 219static inline unsigned long fpd_regval(struct fpustate *f, 220 unsigned int insn_regnum) 221{ 222 insn_regnum = (((insn_regnum & 1) << 5) | 223 (insn_regnum & 0x1e)); 224 225 return *(unsigned long *) &f->regs[insn_regnum]; 226} 227 228static inline unsigned long *fpd_regaddr(struct fpustate *f, 229 unsigned int insn_regnum) 230{ 231 insn_regnum = (((insn_regnum & 1) << 5) | 232 (insn_regnum & 0x1e)); 233 234 return (unsigned long *) &f->regs[insn_regnum]; 235} 236 237static inline unsigned int fps_regval(struct fpustate *f, 238 unsigned int insn_regnum) 239{ 240 return f->regs[insn_regnum]; 241} 242 243static inline unsigned int *fps_regaddr(struct fpustate *f, 244 unsigned int insn_regnum) 245{ 246 return &f->regs[insn_regnum]; 247} 248 249struct edge_tab { 250 u16 left, right; 251}; 252static struct edge_tab edge8_tab[8] = { 253 { 0xff, 0x80 }, 254 { 0x7f, 0xc0 }, 255 { 0x3f, 0xe0 }, 256 { 0x1f, 0xf0 }, 257 { 0x0f, 0xf8 }, 258 { 0x07, 0xfc }, 259 { 0x03, 0xfe }, 260 { 0x01, 0xff }, 261}; 262static struct edge_tab edge8_tab_l[8] = { 263 { 0xff, 0x01 }, 264 { 0xfe, 0x03 }, 265 { 0xfc, 0x07 }, 266 { 0xf8, 0x0f }, 267 { 0xf0, 0x1f }, 268 { 0xe0, 0x3f }, 269 { 0xc0, 0x7f }, 270 { 0x80, 0xff }, 271}; 272static struct edge_tab edge16_tab[4] = { 273 { 0xf, 0x8 }, 274 { 0x7, 0xc }, 275 { 0x3, 0xe }, 276 { 0x1, 0xf }, 277}; 278static struct edge_tab edge16_tab_l[4] = { 279 { 0xf, 0x1 }, 280 { 0xe, 0x3 }, 281 { 0xc, 0x7 }, 282 { 0x8, 0xf }, 283}; 284static struct edge_tab edge32_tab[2] = { 285 { 0x3, 0x2 }, 286 { 0x1, 0x3 }, 287}; 288static struct edge_tab edge32_tab_l[2] = { 289 { 0x3, 0x1 }, 290 { 0x2, 0x3 }, 291}; 292 293static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf) 294{ 295 unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val; 296 u16 left, right; 297 298 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0); 299 orig_rs1 = rs1 = fetch_reg(RS1(insn), regs); 300 orig_rs2 = rs2 = fetch_reg(RS2(insn), regs); 301 302 if (test_thread_flag(TIF_32BIT)) { 303 rs1 = rs1 & 0xffffffff; 304 rs2 = rs2 & 0xffffffff; 305 } 306 switch (opf) { 307 default: 308 case EDGE8_OPF: 309 case EDGE8N_OPF: 310 left = edge8_tab[rs1 & 0x7].left; 311 right = edge8_tab[rs2 & 0x7].right; 312 break; 313 case EDGE8L_OPF: 314 case EDGE8LN_OPF: 315 left = edge8_tab_l[rs1 & 0x7].left; 316 right = edge8_tab_l[rs2 & 0x7].right; 317 break; 318 319 case EDGE16_OPF: 320 case EDGE16N_OPF: 321 left = edge16_tab[(rs1 >> 1) & 0x3].left; 322 right = edge16_tab[(rs2 >> 1) & 0x3].right; 323 break; 324 325 case EDGE16L_OPF: 326 case EDGE16LN_OPF: 327 left = edge16_tab_l[(rs1 >> 1) & 0x3].left; 328 right = edge16_tab_l[(rs2 >> 1) & 0x3].right; 329 break; 330 331 case EDGE32_OPF: 332 case EDGE32N_OPF: 333 left = edge32_tab[(rs1 >> 2) & 0x1].left; 334 right = edge32_tab[(rs2 >> 2) & 0x1].right; 335 break; 336 337 case EDGE32L_OPF: 338 case EDGE32LN_OPF: 339 left = edge32_tab_l[(rs1 >> 2) & 0x1].left; 340 right = edge32_tab_l[(rs2 >> 2) & 0x1].right; 341 break; 342 } 343 344 if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL)) 345 rd_val = right & left; 346 else 347 rd_val = left; 348 349 store_reg(regs, rd_val, RD(insn)); 350 351 switch (opf) { 352 case EDGE8_OPF: 353 case EDGE8L_OPF: 354 case EDGE16_OPF: 355 case EDGE16L_OPF: 356 case EDGE32_OPF: 357 case EDGE32L_OPF: { 358 unsigned long ccr, tstate; 359 360 __asm__ __volatile__("subcc %1, %2, %%g0\n\t" 361 "rd %%ccr, %0" 362 : "=r" (ccr) 363 : "r" (orig_rs1), "r" (orig_rs2) 364 : "cc"); 365 tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC); 366 regs->tstate = tstate | (ccr << 32UL); 367 } 368 } 369} 370 371static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf) 372{ 373 unsigned long rs1, rs2, rd_val; 374 unsigned int bits, bits_mask; 375 376 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0); 377 rs1 = fetch_reg(RS1(insn), regs); 378 rs2 = fetch_reg(RS2(insn), regs); 379 380 bits = (rs2 > 5 ? 5 : rs2); 381 bits_mask = (1UL << bits) - 1UL; 382 383 rd_val = ((((rs1 >> 11) & 0x3) << 0) | 384 (((rs1 >> 33) & 0x3) << 2) | 385 (((rs1 >> 55) & 0x1) << 4) | 386 (((rs1 >> 13) & 0xf) << 5) | 387 (((rs1 >> 35) & 0xf) << 9) | 388 (((rs1 >> 56) & 0xf) << 13) | 389 (((rs1 >> 17) & bits_mask) << 17) | 390 (((rs1 >> 39) & bits_mask) << (17 + bits)) | 391 (((rs1 >> 60) & 0xf) << (17 + (2*bits)))); 392 393 switch (opf) { 394 case ARRAY16_OPF: 395 rd_val <<= 1; 396 break; 397 398 case ARRAY32_OPF: 399 rd_val <<= 2; 400 } 401 402 store_reg(regs, rd_val, RD(insn)); 403} 404 405static void bmask(struct pt_regs *regs, unsigned int insn) 406{ 407 unsigned long rs1, rs2, rd_val, gsr; 408 409 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0); 410 rs1 = fetch_reg(RS1(insn), regs); 411 rs2 = fetch_reg(RS2(insn), regs); 412 rd_val = rs1 + rs2; 413 414 store_reg(regs, rd_val, RD(insn)); 415 416 gsr = current_thread_info()->gsr[0] & 0xffffffff; 417 gsr |= rd_val << 32UL; 418 current_thread_info()->gsr[0] = gsr; 419} 420 421static void bshuffle(struct pt_regs *regs, unsigned int insn) 422{ 423 struct fpustate *f = FPUSTATE; 424 unsigned long rs1, rs2, rd_val; 425 unsigned long bmask, i; 426 427 bmask = current_thread_info()->gsr[0] >> 32UL; 428 429 rs1 = fpd_regval(f, RS1(insn)); 430 rs2 = fpd_regval(f, RS2(insn)); 431 432 rd_val = 0UL; 433 for (i = 0; i < 8; i++) { 434 unsigned long which = (bmask >> (i * 4)) & 0xf; 435 unsigned long byte; 436 437 if (which < 8) 438 byte = (rs1 >> (which * 8)) & 0xff; 439 else 440 byte = (rs2 >> ((which-8)*8)) & 0xff; 441 rd_val |= (byte << (i * 8)); 442 } 443 444 *fpd_regaddr(f, RD(insn)) = rd_val; 445} 446 447static void pdist(struct pt_regs *regs, unsigned int insn) 448{ 449 struct fpustate *f = FPUSTATE; 450 unsigned long rs1, rs2, *rd, rd_val; 451 unsigned long i; 452 453 rs1 = fpd_regval(f, RS1(insn)); 454 rs2 = fpd_regval(f, RS2(insn)); 455 rd = fpd_regaddr(f, RD(insn)); 456 457 rd_val = *rd; 458 459 for (i = 0; i < 8; i++) { 460 s16 s1, s2; 461 462 s1 = (rs1 >> (56 - (i * 8))) & 0xff; 463 s2 = (rs2 >> (56 - (i * 8))) & 0xff; 464 465 /* Absolute value of difference. */ 466 s1 -= s2; 467 if (s1 < 0) 468 s1 = ~s1 + 1; 469 470 rd_val += s1; 471 } 472 473 *rd = rd_val; 474} 475 476static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf) 477{ 478 struct fpustate *f = FPUSTATE; 479 unsigned long rs1, rs2, gsr, scale, rd_val; 480 481 gsr = current_thread_info()->gsr[0]; 482 scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f); 483 switch (opf) { 484 case FPACK16_OPF: { 485 unsigned long byte; 486 487 rs2 = fpd_regval(f, RS2(insn)); 488 rd_val = 0; 489 for (byte = 0; byte < 4; byte++) { 490 unsigned int val; 491 s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL; 492 int scaled = src << scale; 493 int from_fixed = scaled >> 7; 494 495 val = ((from_fixed < 0) ? 496 0 : 497 (from_fixed > 255) ? 498 255 : from_fixed); 499 500 rd_val |= (val << (8 * byte)); 501 } 502 *fps_regaddr(f, RD(insn)) = rd_val; 503 break; 504 } 505 506 case FPACK32_OPF: { 507 unsigned long word; 508 509 rs1 = fpd_regval(f, RS1(insn)); 510 rs2 = fpd_regval(f, RS2(insn)); 511 rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL); 512 for (word = 0; word < 2; word++) { 513 unsigned long val; 514 s32 src = (rs2 >> (word * 32UL)); 515 s64 scaled = src << scale; 516 s64 from_fixed = scaled >> 23; 517 518 val = ((from_fixed < 0) ? 519 0 : 520 (from_fixed > 255) ? 521 255 : from_fixed); 522 523 rd_val |= (val << (32 * word)); 524 } 525 *fpd_regaddr(f, RD(insn)) = rd_val; 526 break; 527 } 528 529 case FPACKFIX_OPF: { 530 unsigned long word; 531 532 rs2 = fpd_regval(f, RS2(insn)); 533 534 rd_val = 0; 535 for (word = 0; word < 2; word++) { 536 long val; 537 s32 src = (rs2 >> (word * 32UL)); 538 s64 scaled = src << scale; 539 s64 from_fixed = scaled >> 16; 540 541 val = ((from_fixed < -32768) ? 542 -32768 : 543 (from_fixed > 32767) ? 544 32767 : from_fixed); 545 546 rd_val |= ((val & 0xffff) << (word * 16)); 547 } 548 *fps_regaddr(f, RD(insn)) = rd_val; 549 break; 550 } 551 552 case FEXPAND_OPF: { 553 unsigned long byte; 554 555 rs2 = fps_regval(f, RS2(insn)); 556 557 rd_val = 0; 558 for (byte = 0; byte < 4; byte++) { 559 unsigned long val; 560 u8 src = (rs2 >> (byte * 8)) & 0xff; 561 562 val = src << 4; 563 564 rd_val |= (val << (byte * 16)); 565 } 566 *fpd_regaddr(f, RD(insn)) = rd_val; 567 break; 568 } 569 570 case FPMERGE_OPF: { 571 rs1 = fps_regval(f, RS1(insn)); 572 rs2 = fps_regval(f, RS2(insn)); 573 574 rd_val = (((rs2 & 0x000000ff) << 0) | 575 ((rs1 & 0x000000ff) << 8) | 576 ((rs2 & 0x0000ff00) << 8) | 577 ((rs1 & 0x0000ff00) << 16) | 578 ((rs2 & 0x00ff0000) << 16) | 579 ((rs1 & 0x00ff0000) << 24) | 580 ((rs2 & 0xff000000) << 24) | 581 ((rs1 & 0xff000000) << 32)); 582 *fpd_regaddr(f, RD(insn)) = rd_val; 583 break; 584 } 585 } 586} 587 588static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf) 589{ 590 struct fpustate *f = FPUSTATE; 591 unsigned long rs1, rs2, rd_val; 592 593 switch (opf) { 594 case FMUL8x16_OPF: { 595 unsigned long byte; 596 597 rs1 = fps_regval(f, RS1(insn)); 598 rs2 = fpd_regval(f, RS2(insn)); 599 600 rd_val = 0; 601 for (byte = 0; byte < 4; byte++) { 602 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff; 603 s16 src2 = (rs2 >> (byte * 16)) & 0xffff; 604 u32 prod = src1 * src2; 605 u16 scaled = ((prod & 0x00ffff00) >> 8); 606 607 /* Round up. */ 608 if (prod & 0x80) 609 scaled++; 610 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL)); 611 } 612 613 *fpd_regaddr(f, RD(insn)) = rd_val; 614 break; 615 } 616 617 case FMUL8x16AU_OPF: 618 case FMUL8x16AL_OPF: { 619 unsigned long byte; 620 s16 src2; 621 622 rs1 = fps_regval(f, RS1(insn)); 623 rs2 = fps_regval(f, RS2(insn)); 624 625 rd_val = 0; 626 src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0); 627 for (byte = 0; byte < 4; byte++) { 628 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff; 629 u32 prod = src1 * src2; 630 u16 scaled = ((prod & 0x00ffff00) >> 8); 631 632 /* Round up. */ 633 if (prod & 0x80) 634 scaled++; 635 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL)); 636 } 637 638 *fpd_regaddr(f, RD(insn)) = rd_val; 639 break; 640 } 641 642 case FMUL8SUx16_OPF: 643 case FMUL8ULx16_OPF: { 644 unsigned long byte, ushift; 645 646 rs1 = fpd_regval(f, RS1(insn)); 647 rs2 = fpd_regval(f, RS2(insn)); 648 649 rd_val = 0; 650 ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0; 651 for (byte = 0; byte < 4; byte++) { 652 u16 src1; 653 s16 src2; 654 u32 prod; 655 u16 scaled; 656 657 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff); 658 src2 = ((rs2 >> (16 * byte)) & 0xffff); 659 prod = src1 * src2; 660 scaled = ((prod & 0x00ffff00) >> 8); 661 662 /* Round up. */ 663 if (prod & 0x80) 664 scaled++; 665 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL)); 666 } 667 668 *fpd_regaddr(f, RD(insn)) = rd_val; 669 break; 670 } 671 672 case FMULD8SUx16_OPF: 673 case FMULD8ULx16_OPF: { 674 unsigned long byte, ushift; 675 676 rs1 = fps_regval(f, RS1(insn)); 677 rs2 = fps_regval(f, RS2(insn)); 678 679 rd_val = 0; 680 ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0; 681 for (byte = 0; byte < 2; byte++) { 682 u16 src1; 683 s16 src2; 684 u32 prod; 685 u16 scaled; 686 687 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff); 688 src2 = ((rs2 >> (16 * byte)) & 0xffff); 689 prod = src1 * src2; 690 scaled = ((prod & 0x00ffff00) >> 8); 691 692 /* Round up. */ 693 if (prod & 0x80) 694 scaled++; 695 rd_val |= ((scaled & 0xffffUL) << 696 ((byte * 32UL) + 7UL)); 697 } 698 *fpd_regaddr(f, RD(insn)) = rd_val; 699 break; 700 } 701 } 702} 703 704static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf) 705{ 706 struct fpustate *f = FPUSTATE; 707 unsigned long rs1, rs2, rd_val, i; 708 709 rs1 = fpd_regval(f, RS1(insn)); 710 rs2 = fpd_regval(f, RS2(insn)); 711 712 rd_val = 0; 713 714 switch (opf) { 715 case FCMPGT16_OPF: 716 for (i = 0; i < 4; i++) { 717 s16 a = (rs1 >> (i * 16)) & 0xffff; 718 s16 b = (rs2 >> (i * 16)) & 0xffff; 719 720 if (a > b) 721 rd_val |= 8 >> i; 722 } 723 break; 724 725 case FCMPGT32_OPF: 726 for (i = 0; i < 2; i++) { 727 s32 a = (rs1 >> (i * 32)) & 0xffffffff; 728 s32 b = (rs2 >> (i * 32)) & 0xffffffff; 729 730 if (a > b) 731 rd_val |= 2 >> i; 732 } 733 break; 734 735 case FCMPLE16_OPF: 736 for (i = 0; i < 4; i++) { 737 s16 a = (rs1 >> (i * 16)) & 0xffff; 738 s16 b = (rs2 >> (i * 16)) & 0xffff; 739 740 if (a <= b) 741 rd_val |= 8 >> i; 742 } 743 break; 744 745 case FCMPLE32_OPF: 746 for (i = 0; i < 2; i++) { 747 s32 a = (rs1 >> (i * 32)) & 0xffffffff; 748 s32 b = (rs2 >> (i * 32)) & 0xffffffff; 749 750 if (a <= b) 751 rd_val |= 2 >> i; 752 } 753 break; 754 755 case FCMPNE16_OPF: 756 for (i = 0; i < 4; i++) { 757 s16 a = (rs1 >> (i * 16)) & 0xffff; 758 s16 b = (rs2 >> (i * 16)) & 0xffff; 759 760 if (a != b) 761 rd_val |= 8 >> i; 762 } 763 break; 764 765 case FCMPNE32_OPF: 766 for (i = 0; i < 2; i++) { 767 s32 a = (rs1 >> (i * 32)) & 0xffffffff; 768 s32 b = (rs2 >> (i * 32)) & 0xffffffff; 769 770 if (a != b) 771 rd_val |= 2 >> i; 772 } 773 break; 774 775 case FCMPEQ16_OPF: 776 for (i = 0; i < 4; i++) { 777 s16 a = (rs1 >> (i * 16)) & 0xffff; 778 s16 b = (rs2 >> (i * 16)) & 0xffff; 779 780 if (a == b) 781 rd_val |= 8 >> i; 782 } 783 break; 784 785 case FCMPEQ32_OPF: 786 for (i = 0; i < 2; i++) { 787 s32 a = (rs1 >> (i * 32)) & 0xffffffff; 788 s32 b = (rs2 >> (i * 32)) & 0xffffffff; 789 790 if (a == b) 791 rd_val |= 2 >> i; 792 } 793 break; 794 } 795 796 maybe_flush_windows(0, 0, RD(insn), 0); 797 store_reg(regs, rd_val, RD(insn)); 798} 799 800/* Emulate the VIS instructions which are not implemented in 801 * hardware on Niagara. 802 */ 803int vis_emul(struct pt_regs *regs, unsigned int insn) 804{ 805 unsigned long pc = regs->tpc; 806 unsigned int opf; 807 808 BUG_ON(regs->tstate & TSTATE_PRIV); 809 810 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); 811 812 if (test_thread_flag(TIF_32BIT)) 813 pc = (u32)pc; 814 815 if (get_user(insn, (u32 __user *) pc)) 816 return -EFAULT; 817 818 save_and_clear_fpu(); 819 820 opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT; 821 switch (opf) { 822 default: 823 return -EINVAL; 824 825 /* Pixel Formatting Instructions. */ 826 case FPACK16_OPF: 827 case FPACK32_OPF: 828 case FPACKFIX_OPF: 829 case FEXPAND_OPF: 830 case FPMERGE_OPF: 831 pformat(regs, insn, opf); 832 break; 833 834 /* Partitioned Multiply Instructions */ 835 case FMUL8x16_OPF: 836 case FMUL8x16AU_OPF: 837 case FMUL8x16AL_OPF: 838 case FMUL8SUx16_OPF: 839 case FMUL8ULx16_OPF: 840 case FMULD8SUx16_OPF: 841 case FMULD8ULx16_OPF: 842 pmul(regs, insn, opf); 843 break; 844 845 /* Pixel Compare Instructions */ 846 case FCMPGT16_OPF: 847 case FCMPGT32_OPF: 848 case FCMPLE16_OPF: 849 case FCMPLE32_OPF: 850 case FCMPNE16_OPF: 851 case FCMPNE32_OPF: 852 case FCMPEQ16_OPF: 853 case FCMPEQ32_OPF: 854 pcmp(regs, insn, opf); 855 break; 856 857 /* Edge Handling Instructions */ 858 case EDGE8_OPF: 859 case EDGE8N_OPF: 860 case EDGE8L_OPF: 861 case EDGE8LN_OPF: 862 case EDGE16_OPF: 863 case EDGE16N_OPF: 864 case EDGE16L_OPF: 865 case EDGE16LN_OPF: 866 case EDGE32_OPF: 867 case EDGE32N_OPF: 868 case EDGE32L_OPF: 869 case EDGE32LN_OPF: 870 edge(regs, insn, opf); 871 break; 872 873 /* Pixel Component Distance */ 874 case PDIST_OPF: 875 pdist(regs, insn); 876 break; 877 878 /* Three-Dimensional Array Addressing Instructions */ 879 case ARRAY8_OPF: 880 case ARRAY16_OPF: 881 case ARRAY32_OPF: 882 array(regs, insn, opf); 883 break; 884 885 /* Byte Mask and Shuffle Instructions */ 886 case BMASK_OPF: 887 bmask(regs, insn); 888 break; 889 890 case BSHUFFLE_OPF: 891 bshuffle(regs, insn); 892 break; 893 } 894 895 regs->tpc = regs->tnpc; 896 regs->tnpc += 4; 897 return 0; 898} 899