1/* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 *  Copyright (C) 2009 Jaswinder Singh Rajput
11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15#include <linux/perf_event.h>
16#include <linux/kprobes.h>
17#include <linux/ftrace.h>
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
22#include <asm/stacktrace.h>
23#include <asm/cpudata.h>
24#include <asm/uaccess.h>
25#include <linux/atomic.h>
26#include <asm/nmi.h>
27#include <asm/pcr.h>
28#include <asm/cacheflush.h>
29
30#include "kernel.h"
31#include "kstack.h"
32
33/* Two classes of sparc64 chips currently exist.  All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
36 *
37 * All chips upto and including SPARC-T3 have two performance
38 * counters.  The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
40 *
41 * On these older chips both counters are controlled using a single
42 * control register.  The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits.  But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
46 *
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters.  It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped.  Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
53 *
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events.  These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
57 * unusual way to encode a NOP and therefore will not trigger in
58 * normal code.
59 *
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers.  The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented.  The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
66 */
67
68#define MAX_HWEVENTS			4
69#define MAX_PCRS			4
70#define MAX_PERIOD			((1UL << 32) - 1)
71
72#define PIC_UPPER_INDEX			0
73#define PIC_LOWER_INDEX			1
74#define PIC_NO_INDEX			-1
75
76struct cpu_hw_events {
77	/* Number of events currently scheduled onto this cpu.
78	 * This tells how many entries in the arrays below
79	 * are valid.
80	 */
81	int			n_events;
82
83	/* Number of new events added since the last hw_perf_disable().
84	 * This works because the perf event layer always adds new
85	 * events inside of a perf_{disable,enable}() sequence.
86	 */
87	int			n_added;
88
89	/* Array of events current scheduled on this cpu.  */
90	struct perf_event	*event[MAX_HWEVENTS];
91
92	/* Array of encoded longs, specifying the %pcr register
93	 * encoding and the mask of PIC counters this even can
94	 * be scheduled on.  See perf_event_encode() et al.
95	 */
96	unsigned long		events[MAX_HWEVENTS];
97
98	/* The current counter index assigned to an event.  When the
99	 * event hasn't been programmed into the cpu yet, this will
100	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
101	 * we ought to schedule the event.
102	 */
103	int			current_idx[MAX_HWEVENTS];
104
105	/* Software copy of %pcr register(s) on this cpu.  */
106	u64			pcr[MAX_HWEVENTS];
107
108	/* Enabled/disable state.  */
109	int			enabled;
110
111	unsigned int		group_flag;
112};
113static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114
115/* An event map describes the characteristics of a performance
116 * counter event.  In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
118 *
119 * The mask is unused on SPARC-T4 and later.
120 */
121struct perf_event_map {
122	u16	encoding;
123	u8	pic_mask;
124#define PIC_NONE	0x00
125#define PIC_UPPER	0x01
126#define PIC_LOWER	0x02
127};
128
129/* Encode a perf_event_map entry into a long.  */
130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131{
132	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133}
134
135static u8 perf_event_get_msk(unsigned long val)
136{
137	return val & 0xff;
138}
139
140static u64 perf_event_get_enc(unsigned long val)
141{
142	return val >> 16;
143}
144
145#define C(x) PERF_COUNT_HW_CACHE_##x
146
147#define CACHE_OP_UNSUPPORTED	0xfffe
148#define CACHE_OP_NONSENSE	0xffff
149
150typedef struct perf_event_map cache_map_t
151				[PERF_COUNT_HW_CACHE_MAX]
152				[PERF_COUNT_HW_CACHE_OP_MAX]
153				[PERF_COUNT_HW_CACHE_RESULT_MAX];
154
155struct sparc_pmu {
156	const struct perf_event_map	*(*event_map)(int);
157	const cache_map_t		*cache_map;
158	int				max_events;
159	u32				(*read_pmc)(int);
160	void				(*write_pmc)(int, u64);
161	int				upper_shift;
162	int				lower_shift;
163	int				event_mask;
164	int				user_bit;
165	int				priv_bit;
166	int				hv_bit;
167	int				irq_bit;
168	int				upper_nop;
169	int				lower_nop;
170	unsigned int			flags;
171#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
172#define SPARC_PMU_HAS_CONFLICTS		0x00000002
173	int				max_hw_events;
174	int				num_pcrs;
175	int				num_pic_regs;
176};
177
178static u32 sparc_default_read_pmc(int idx)
179{
180	u64 val;
181
182	val = pcr_ops->read_pic(0);
183	if (idx == PIC_UPPER_INDEX)
184		val >>= 32;
185
186	return val & 0xffffffff;
187}
188
189static void sparc_default_write_pmc(int idx, u64 val)
190{
191	u64 shift, mask, pic;
192
193	shift = 0;
194	if (idx == PIC_UPPER_INDEX)
195		shift = 32;
196
197	mask = ((u64) 0xffffffff) << shift;
198	val <<= shift;
199
200	pic = pcr_ops->read_pic(0);
201	pic &= ~mask;
202	pic |= val;
203	pcr_ops->write_pic(0, pic);
204}
205
206static const struct perf_event_map ultra3_perfmon_event_map[] = {
207	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211};
212
213static const struct perf_event_map *ultra3_event_map(int event_id)
214{
215	return &ultra3_perfmon_event_map[event_id];
216}
217
218static const cache_map_t ultra3_cache_map = {
219[C(L1D)] = {
220	[C(OP_READ)] = {
221		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223	},
224	[C(OP_WRITE)] = {
225		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227	},
228	[C(OP_PREFETCH)] = {
229		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231	},
232},
233[C(L1I)] = {
234	[C(OP_READ)] = {
235		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237	},
238	[ C(OP_WRITE) ] = {
239		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
241	},
242	[ C(OP_PREFETCH) ] = {
243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
245	},
246},
247[C(LL)] = {
248	[C(OP_READ)] = {
249		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251	},
252	[C(OP_WRITE)] = {
253		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255	},
256	[C(OP_PREFETCH)] = {
257		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259	},
260},
261[C(DTLB)] = {
262	[C(OP_READ)] = {
263		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265	},
266	[ C(OP_WRITE) ] = {
267		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
269	},
270	[ C(OP_PREFETCH) ] = {
271		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
273	},
274},
275[C(ITLB)] = {
276	[C(OP_READ)] = {
277		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279	},
280	[ C(OP_WRITE) ] = {
281		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
283	},
284	[ C(OP_PREFETCH) ] = {
285		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
287	},
288},
289[C(BPU)] = {
290	[C(OP_READ)] = {
291		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293	},
294	[ C(OP_WRITE) ] = {
295		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
297	},
298	[ C(OP_PREFETCH) ] = {
299		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
301	},
302},
303[C(NODE)] = {
304	[C(OP_READ)] = {
305		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
307	},
308	[ C(OP_WRITE) ] = {
309		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
311	},
312	[ C(OP_PREFETCH) ] = {
313		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
315	},
316},
317};
318
319static const struct sparc_pmu ultra3_pmu = {
320	.event_map	= ultra3_event_map,
321	.cache_map	= &ultra3_cache_map,
322	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
323	.read_pmc	= sparc_default_read_pmc,
324	.write_pmc	= sparc_default_write_pmc,
325	.upper_shift	= 11,
326	.lower_shift	= 4,
327	.event_mask	= 0x3f,
328	.user_bit	= PCR_UTRACE,
329	.priv_bit	= PCR_STRACE,
330	.upper_nop	= 0x1c,
331	.lower_nop	= 0x14,
332	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
333			   SPARC_PMU_HAS_CONFLICTS),
334	.max_hw_events	= 2,
335	.num_pcrs	= 1,
336	.num_pic_regs	= 1,
337};
338
339/* Niagara1 is very limited.  The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems.  Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
343 */
344static const struct perf_event_map niagara1_perfmon_event_map[] = {
345	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
349};
350
351static const struct perf_event_map *niagara1_event_map(int event_id)
352{
353	return &niagara1_perfmon_event_map[event_id];
354}
355
356static const cache_map_t niagara1_cache_map = {
357[C(L1D)] = {
358	[C(OP_READ)] = {
359		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361	},
362	[C(OP_WRITE)] = {
363		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365	},
366	[C(OP_PREFETCH)] = {
367		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369	},
370},
371[C(L1I)] = {
372	[C(OP_READ)] = {
373		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375	},
376	[ C(OP_WRITE) ] = {
377		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
379	},
380	[ C(OP_PREFETCH) ] = {
381		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
383	},
384},
385[C(LL)] = {
386	[C(OP_READ)] = {
387		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389	},
390	[C(OP_WRITE)] = {
391		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393	},
394	[C(OP_PREFETCH)] = {
395		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397	},
398},
399[C(DTLB)] = {
400	[C(OP_READ)] = {
401		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403	},
404	[ C(OP_WRITE) ] = {
405		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
407	},
408	[ C(OP_PREFETCH) ] = {
409		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
411	},
412},
413[C(ITLB)] = {
414	[C(OP_READ)] = {
415		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417	},
418	[ C(OP_WRITE) ] = {
419		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
421	},
422	[ C(OP_PREFETCH) ] = {
423		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
425	},
426},
427[C(BPU)] = {
428	[C(OP_READ)] = {
429		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431	},
432	[ C(OP_WRITE) ] = {
433		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
435	},
436	[ C(OP_PREFETCH) ] = {
437		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
439	},
440},
441[C(NODE)] = {
442	[C(OP_READ)] = {
443		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
445	},
446	[ C(OP_WRITE) ] = {
447		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
449	},
450	[ C(OP_PREFETCH) ] = {
451		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
453	},
454},
455};
456
457static const struct sparc_pmu niagara1_pmu = {
458	.event_map	= niagara1_event_map,
459	.cache_map	= &niagara1_cache_map,
460	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
461	.read_pmc	= sparc_default_read_pmc,
462	.write_pmc	= sparc_default_write_pmc,
463	.upper_shift	= 0,
464	.lower_shift	= 4,
465	.event_mask	= 0x7,
466	.user_bit	= PCR_UTRACE,
467	.priv_bit	= PCR_STRACE,
468	.upper_nop	= 0x0,
469	.lower_nop	= 0x0,
470	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
471			   SPARC_PMU_HAS_CONFLICTS),
472	.max_hw_events	= 2,
473	.num_pcrs	= 1,
474	.num_pic_regs	= 1,
475};
476
477static const struct perf_event_map niagara2_perfmon_event_map[] = {
478	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
484};
485
486static const struct perf_event_map *niagara2_event_map(int event_id)
487{
488	return &niagara2_perfmon_event_map[event_id];
489}
490
491static const cache_map_t niagara2_cache_map = {
492[C(L1D)] = {
493	[C(OP_READ)] = {
494		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496	},
497	[C(OP_WRITE)] = {
498		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500	},
501	[C(OP_PREFETCH)] = {
502		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504	},
505},
506[C(L1I)] = {
507	[C(OP_READ)] = {
508		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510	},
511	[ C(OP_WRITE) ] = {
512		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
514	},
515	[ C(OP_PREFETCH) ] = {
516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
518	},
519},
520[C(LL)] = {
521	[C(OP_READ)] = {
522		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524	},
525	[C(OP_WRITE)] = {
526		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528	},
529	[C(OP_PREFETCH)] = {
530		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532	},
533},
534[C(DTLB)] = {
535	[C(OP_READ)] = {
536		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538	},
539	[ C(OP_WRITE) ] = {
540		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
542	},
543	[ C(OP_PREFETCH) ] = {
544		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
546	},
547},
548[C(ITLB)] = {
549	[C(OP_READ)] = {
550		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552	},
553	[ C(OP_WRITE) ] = {
554		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
556	},
557	[ C(OP_PREFETCH) ] = {
558		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
560	},
561},
562[C(BPU)] = {
563	[C(OP_READ)] = {
564		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566	},
567	[ C(OP_WRITE) ] = {
568		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
570	},
571	[ C(OP_PREFETCH) ] = {
572		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
574	},
575},
576[C(NODE)] = {
577	[C(OP_READ)] = {
578		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
580	},
581	[ C(OP_WRITE) ] = {
582		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
584	},
585	[ C(OP_PREFETCH) ] = {
586		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
588	},
589},
590};
591
592static const struct sparc_pmu niagara2_pmu = {
593	.event_map	= niagara2_event_map,
594	.cache_map	= &niagara2_cache_map,
595	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
596	.read_pmc	= sparc_default_read_pmc,
597	.write_pmc	= sparc_default_write_pmc,
598	.upper_shift	= 19,
599	.lower_shift	= 6,
600	.event_mask	= 0xfff,
601	.user_bit	= PCR_UTRACE,
602	.priv_bit	= PCR_STRACE,
603	.hv_bit		= PCR_N2_HTRACE,
604	.irq_bit	= 0x30,
605	.upper_nop	= 0x220,
606	.lower_nop	= 0x220,
607	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
608			   SPARC_PMU_HAS_CONFLICTS),
609	.max_hw_events	= 2,
610	.num_pcrs	= 1,
611	.num_pic_regs	= 1,
612};
613
614static const struct perf_event_map niagara4_perfmon_event_map[] = {
615	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621};
622
623static const struct perf_event_map *niagara4_event_map(int event_id)
624{
625	return &niagara4_perfmon_event_map[event_id];
626}
627
628static const cache_map_t niagara4_cache_map = {
629[C(L1D)] = {
630	[C(OP_READ)] = {
631		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633	},
634	[C(OP_WRITE)] = {
635		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637	},
638	[C(OP_PREFETCH)] = {
639		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641	},
642},
643[C(L1I)] = {
644	[C(OP_READ)] = {
645		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647	},
648	[ C(OP_WRITE) ] = {
649		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
651	},
652	[ C(OP_PREFETCH) ] = {
653		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
655	},
656},
657[C(LL)] = {
658	[C(OP_READ)] = {
659		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661	},
662	[C(OP_WRITE)] = {
663		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665	},
666	[C(OP_PREFETCH)] = {
667		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669	},
670},
671[C(DTLB)] = {
672	[C(OP_READ)] = {
673		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675	},
676	[ C(OP_WRITE) ] = {
677		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
679	},
680	[ C(OP_PREFETCH) ] = {
681		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
683	},
684},
685[C(ITLB)] = {
686	[C(OP_READ)] = {
687		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689	},
690	[ C(OP_WRITE) ] = {
691		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
693	},
694	[ C(OP_PREFETCH) ] = {
695		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
697	},
698},
699[C(BPU)] = {
700	[C(OP_READ)] = {
701		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703	},
704	[ C(OP_WRITE) ] = {
705		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
707	},
708	[ C(OP_PREFETCH) ] = {
709		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
711	},
712},
713[C(NODE)] = {
714	[C(OP_READ)] = {
715		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
717	},
718	[ C(OP_WRITE) ] = {
719		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
721	},
722	[ C(OP_PREFETCH) ] = {
723		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
725	},
726},
727};
728
729static u32 sparc_vt_read_pmc(int idx)
730{
731	u64 val = pcr_ops->read_pic(idx);
732
733	return val & 0xffffffff;
734}
735
736static void sparc_vt_write_pmc(int idx, u64 val)
737{
738	u64 pcr;
739
740	pcr = pcr_ops->read_pcr(idx);
741	/* ensure ov and ntc are reset */
742	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
743
744	pcr_ops->write_pic(idx, val & 0xffffffff);
745
746	pcr_ops->write_pcr(idx, pcr);
747}
748
749static const struct sparc_pmu niagara4_pmu = {
750	.event_map	= niagara4_event_map,
751	.cache_map	= &niagara4_cache_map,
752	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
753	.read_pmc	= sparc_vt_read_pmc,
754	.write_pmc	= sparc_vt_write_pmc,
755	.upper_shift	= 5,
756	.lower_shift	= 5,
757	.event_mask	= 0x7ff,
758	.user_bit	= PCR_N4_UTRACE,
759	.priv_bit	= PCR_N4_STRACE,
760
761	/* We explicitly don't support hypervisor tracing.  The T4
762	 * generates the overflow event for precise events via a trap
763	 * which will not be generated (ie. it's completely lost) if
764	 * we happen to be in the hypervisor when the event triggers.
765	 * Essentially, the overflow event reporting is completely
766	 * unusable when you have hypervisor mode tracing enabled.
767	 */
768	.hv_bit		= 0,
769
770	.irq_bit	= PCR_N4_TOE,
771	.upper_nop	= 0,
772	.lower_nop	= 0,
773	.flags		= 0,
774	.max_hw_events	= 4,
775	.num_pcrs	= 4,
776	.num_pic_regs	= 4,
777};
778
779static const struct sparc_pmu sparc_m7_pmu = {
780	.event_map	= niagara4_event_map,
781	.cache_map	= &niagara4_cache_map,
782	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
783	.read_pmc	= sparc_vt_read_pmc,
784	.write_pmc	= sparc_vt_write_pmc,
785	.upper_shift	= 5,
786	.lower_shift	= 5,
787	.event_mask	= 0x7ff,
788	.user_bit	= PCR_N4_UTRACE,
789	.priv_bit	= PCR_N4_STRACE,
790
791	/* We explicitly don't support hypervisor tracing. */
792	.hv_bit		= 0,
793
794	.irq_bit	= PCR_N4_TOE,
795	.upper_nop	= 0,
796	.lower_nop	= 0,
797	.flags		= 0,
798	.max_hw_events	= 4,
799	.num_pcrs	= 4,
800	.num_pic_regs	= 4,
801};
802static const struct sparc_pmu *sparc_pmu __read_mostly;
803
804static u64 event_encoding(u64 event_id, int idx)
805{
806	if (idx == PIC_UPPER_INDEX)
807		event_id <<= sparc_pmu->upper_shift;
808	else
809		event_id <<= sparc_pmu->lower_shift;
810	return event_id;
811}
812
813static u64 mask_for_index(int idx)
814{
815	return event_encoding(sparc_pmu->event_mask, idx);
816}
817
818static u64 nop_for_index(int idx)
819{
820	return event_encoding(idx == PIC_UPPER_INDEX ?
821			      sparc_pmu->upper_nop :
822			      sparc_pmu->lower_nop, idx);
823}
824
825static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
826{
827	u64 enc, val, mask = mask_for_index(idx);
828	int pcr_index = 0;
829
830	if (sparc_pmu->num_pcrs > 1)
831		pcr_index = idx;
832
833	enc = perf_event_get_enc(cpuc->events[idx]);
834
835	val = cpuc->pcr[pcr_index];
836	val &= ~mask;
837	val |= event_encoding(enc, idx);
838	cpuc->pcr[pcr_index] = val;
839
840	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
841}
842
843static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
844{
845	u64 mask = mask_for_index(idx);
846	u64 nop = nop_for_index(idx);
847	int pcr_index = 0;
848	u64 val;
849
850	if (sparc_pmu->num_pcrs > 1)
851		pcr_index = idx;
852
853	val = cpuc->pcr[pcr_index];
854	val &= ~mask;
855	val |= nop;
856	cpuc->pcr[pcr_index] = val;
857
858	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
859}
860
861static u64 sparc_perf_event_update(struct perf_event *event,
862				   struct hw_perf_event *hwc, int idx)
863{
864	int shift = 64 - 32;
865	u64 prev_raw_count, new_raw_count;
866	s64 delta;
867
868again:
869	prev_raw_count = local64_read(&hwc->prev_count);
870	new_raw_count = sparc_pmu->read_pmc(idx);
871
872	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
873			     new_raw_count) != prev_raw_count)
874		goto again;
875
876	delta = (new_raw_count << shift) - (prev_raw_count << shift);
877	delta >>= shift;
878
879	local64_add(delta, &event->count);
880	local64_sub(delta, &hwc->period_left);
881
882	return new_raw_count;
883}
884
885static int sparc_perf_event_set_period(struct perf_event *event,
886				       struct hw_perf_event *hwc, int idx)
887{
888	s64 left = local64_read(&hwc->period_left);
889	s64 period = hwc->sample_period;
890	int ret = 0;
891
892	if (unlikely(left <= -period)) {
893		left = period;
894		local64_set(&hwc->period_left, left);
895		hwc->last_period = period;
896		ret = 1;
897	}
898
899	if (unlikely(left <= 0)) {
900		left += period;
901		local64_set(&hwc->period_left, left);
902		hwc->last_period = period;
903		ret = 1;
904	}
905	if (left > MAX_PERIOD)
906		left = MAX_PERIOD;
907
908	local64_set(&hwc->prev_count, (u64)-left);
909
910	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
911
912	perf_event_update_userpage(event);
913
914	return ret;
915}
916
917static void read_in_all_counters(struct cpu_hw_events *cpuc)
918{
919	int i;
920
921	for (i = 0; i < cpuc->n_events; i++) {
922		struct perf_event *cp = cpuc->event[i];
923
924		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
925		    cpuc->current_idx[i] != cp->hw.idx) {
926			sparc_perf_event_update(cp, &cp->hw,
927						cpuc->current_idx[i]);
928			cpuc->current_idx[i] = PIC_NO_INDEX;
929		}
930	}
931}
932
933/* On this PMU all PICs are programmed using a single PCR.  Calculate
934 * the combined control register value.
935 *
936 * For such chips we require that all of the events have the same
937 * configuration, so just fetch the settings from the first entry.
938 */
939static void calculate_single_pcr(struct cpu_hw_events *cpuc)
940{
941	int i;
942
943	if (!cpuc->n_added)
944		goto out;
945
946	/* Assign to counters all unassigned events.  */
947	for (i = 0; i < cpuc->n_events; i++) {
948		struct perf_event *cp = cpuc->event[i];
949		struct hw_perf_event *hwc = &cp->hw;
950		int idx = hwc->idx;
951		u64 enc;
952
953		if (cpuc->current_idx[i] != PIC_NO_INDEX)
954			continue;
955
956		sparc_perf_event_set_period(cp, hwc, idx);
957		cpuc->current_idx[i] = idx;
958
959		enc = perf_event_get_enc(cpuc->events[i]);
960		cpuc->pcr[0] &= ~mask_for_index(idx);
961		if (hwc->state & PERF_HES_STOPPED)
962			cpuc->pcr[0] |= nop_for_index(idx);
963		else
964			cpuc->pcr[0] |= event_encoding(enc, idx);
965	}
966out:
967	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
968}
969
970static void sparc_pmu_start(struct perf_event *event, int flags);
971
972/* On this PMU each PIC has it's own PCR control register.  */
973static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
974{
975	int i;
976
977	if (!cpuc->n_added)
978		goto out;
979
980	for (i = 0; i < cpuc->n_events; i++) {
981		struct perf_event *cp = cpuc->event[i];
982		struct hw_perf_event *hwc = &cp->hw;
983		int idx = hwc->idx;
984
985		if (cpuc->current_idx[i] != PIC_NO_INDEX)
986			continue;
987
988		cpuc->current_idx[i] = idx;
989
990		sparc_pmu_start(cp, PERF_EF_RELOAD);
991	}
992out:
993	for (i = 0; i < cpuc->n_events; i++) {
994		struct perf_event *cp = cpuc->event[i];
995		int idx = cp->hw.idx;
996
997		cpuc->pcr[idx] |= cp->hw.config_base;
998	}
999}
1000
1001/* If performance event entries have been added, move existing events
1002 * around (if necessary) and then assign new entries to counters.
1003 */
1004static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1005{
1006	if (cpuc->n_added)
1007		read_in_all_counters(cpuc);
1008
1009	if (sparc_pmu->num_pcrs == 1) {
1010		calculate_single_pcr(cpuc);
1011	} else {
1012		calculate_multiple_pcrs(cpuc);
1013	}
1014}
1015
1016static void sparc_pmu_enable(struct pmu *pmu)
1017{
1018	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1019	int i;
1020
1021	if (cpuc->enabled)
1022		return;
1023
1024	cpuc->enabled = 1;
1025	barrier();
1026
1027	if (cpuc->n_events)
1028		update_pcrs_for_enable(cpuc);
1029
1030	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1031		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1032}
1033
1034static void sparc_pmu_disable(struct pmu *pmu)
1035{
1036	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037	int i;
1038
1039	if (!cpuc->enabled)
1040		return;
1041
1042	cpuc->enabled = 0;
1043	cpuc->n_added = 0;
1044
1045	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1046		u64 val = cpuc->pcr[i];
1047
1048		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1049			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1050		cpuc->pcr[i] = val;
1051		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1052	}
1053}
1054
1055static int active_event_index(struct cpu_hw_events *cpuc,
1056			      struct perf_event *event)
1057{
1058	int i;
1059
1060	for (i = 0; i < cpuc->n_events; i++) {
1061		if (cpuc->event[i] == event)
1062			break;
1063	}
1064	BUG_ON(i == cpuc->n_events);
1065	return cpuc->current_idx[i];
1066}
1067
1068static void sparc_pmu_start(struct perf_event *event, int flags)
1069{
1070	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1071	int idx = active_event_index(cpuc, event);
1072
1073	if (flags & PERF_EF_RELOAD) {
1074		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1075		sparc_perf_event_set_period(event, &event->hw, idx);
1076	}
1077
1078	event->hw.state = 0;
1079
1080	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1081}
1082
1083static void sparc_pmu_stop(struct perf_event *event, int flags)
1084{
1085	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1086	int idx = active_event_index(cpuc, event);
1087
1088	if (!(event->hw.state & PERF_HES_STOPPED)) {
1089		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1090		event->hw.state |= PERF_HES_STOPPED;
1091	}
1092
1093	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1094		sparc_perf_event_update(event, &event->hw, idx);
1095		event->hw.state |= PERF_HES_UPTODATE;
1096	}
1097}
1098
1099static void sparc_pmu_del(struct perf_event *event, int _flags)
1100{
1101	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1102	unsigned long flags;
1103	int i;
1104
1105	local_irq_save(flags);
1106
1107	for (i = 0; i < cpuc->n_events; i++) {
1108		if (event == cpuc->event[i]) {
1109			/* Absorb the final count and turn off the
1110			 * event.
1111			 */
1112			sparc_pmu_stop(event, PERF_EF_UPDATE);
1113
1114			/* Shift remaining entries down into
1115			 * the existing slot.
1116			 */
1117			while (++i < cpuc->n_events) {
1118				cpuc->event[i - 1] = cpuc->event[i];
1119				cpuc->events[i - 1] = cpuc->events[i];
1120				cpuc->current_idx[i - 1] =
1121					cpuc->current_idx[i];
1122			}
1123
1124			perf_event_update_userpage(event);
1125
1126			cpuc->n_events--;
1127			break;
1128		}
1129	}
1130
1131	local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137	int idx = active_event_index(cpuc, event);
1138	struct hw_perf_event *hwc = &event->hw;
1139
1140	sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1149	int i;
1150
1151	stop_nmi_watchdog(NULL);
1152	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156static void perf_event_grab_pmc(void)
1157{
1158	if (atomic_inc_not_zero(&active_events))
1159		return;
1160
1161	mutex_lock(&pmc_grab_mutex);
1162	if (atomic_read(&active_events) == 0) {
1163		if (atomic_read(&nmi_active) > 0) {
1164			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165			BUG_ON(atomic_read(&nmi_active) != 0);
1166		}
1167		atomic_inc(&active_events);
1168	}
1169	mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172static void perf_event_release_pmc(void)
1173{
1174	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175		if (atomic_read(&nmi_active) == 0)
1176			on_each_cpu(start_nmi_watchdog, NULL, 1);
1177		mutex_unlock(&pmc_grab_mutex);
1178	}
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183	unsigned int cache_type, cache_op, cache_result;
1184	const struct perf_event_map *pmap;
1185
1186	if (!sparc_pmu->cache_map)
1187		return ERR_PTR(-ENOENT);
1188
1189	cache_type = (config >>  0) & 0xff;
1190	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191		return ERR_PTR(-EINVAL);
1192
1193	cache_op = (config >>  8) & 0xff;
1194	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195		return ERR_PTR(-EINVAL);
1196
1197	cache_result = (config >> 16) & 0xff;
1198	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199		return ERR_PTR(-EINVAL);
1200
1201	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204		return ERR_PTR(-ENOENT);
1205
1206	if (pmap->encoding == CACHE_OP_NONSENSE)
1207		return ERR_PTR(-EINVAL);
1208
1209	return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214	perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time.  This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success.  These are pending indexes.  When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228				   unsigned long *events, int n_ev)
1229{
1230	u8 msk0 = 0, msk1 = 0;
1231	int idx0 = 0;
1232
1233	/* This case is possible when we are invoked from
1234	 * hw_perf_group_sched_in().
1235	 */
1236	if (!n_ev)
1237		return 0;
1238
1239	if (n_ev > sparc_pmu->max_hw_events)
1240		return -1;
1241
1242	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243		int i;
1244
1245		for (i = 0; i < n_ev; i++)
1246			evts[i]->hw.idx = i;
1247		return 0;
1248	}
1249
1250	msk0 = perf_event_get_msk(events[0]);
1251	if (n_ev == 1) {
1252		if (msk0 & PIC_LOWER)
1253			idx0 = 1;
1254		goto success;
1255	}
1256	BUG_ON(n_ev != 2);
1257	msk1 = perf_event_get_msk(events[1]);
1258
1259	/* If both events can go on any counter, OK.  */
1260	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261	    msk1 == (PIC_UPPER | PIC_LOWER))
1262		goto success;
1263
1264	/* If one event is limited to a specific counter,
1265	 * and the other can go on both, OK.
1266	 */
1267	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1269		if (msk0 & PIC_LOWER)
1270			idx0 = 1;
1271		goto success;
1272	}
1273
1274	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1276		if (msk1 & PIC_UPPER)
1277			idx0 = 1;
1278		goto success;
1279	}
1280
1281	/* If the events are fixed to different counters, OK.  */
1282	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	/* Otherwise, there is a conflict.  */
1290	return -1;
1291
1292success:
1293	evts[0]->hw.idx = idx0;
1294	if (n_ev == 2)
1295		evts[1]->hw.idx = idx0 ^ 1;
1296	return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301	int eu = 0, ek = 0, eh = 0;
1302	struct perf_event *event;
1303	int i, n, first;
1304
1305	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306		return 0;
1307
1308	n = n_prev + n_new;
1309	if (n <= 1)
1310		return 0;
1311
1312	first = 1;
1313	for (i = 0; i < n; i++) {
1314		event = evts[i];
1315		if (first) {
1316			eu = event->attr.exclude_user;
1317			ek = event->attr.exclude_kernel;
1318			eh = event->attr.exclude_hv;
1319			first = 0;
1320		} else if (event->attr.exclude_user != eu ||
1321			   event->attr.exclude_kernel != ek ||
1322			   event->attr.exclude_hv != eh) {
1323			return -EAGAIN;
1324		}
1325	}
1326
1327	return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331			  struct perf_event *evts[], unsigned long *events,
1332			  int *current_idx)
1333{
1334	struct perf_event *event;
1335	int n = 0;
1336
1337	if (!is_software_event(group)) {
1338		if (n >= max_count)
1339			return -1;
1340		evts[n] = group;
1341		events[n] = group->hw.event_base;
1342		current_idx[n++] = PIC_NO_INDEX;
1343	}
1344	list_for_each_entry(event, &group->sibling_list, group_entry) {
1345		if (!is_software_event(event) &&
1346		    event->state != PERF_EVENT_STATE_OFF) {
1347			if (n >= max_count)
1348				return -1;
1349			evts[n] = event;
1350			events[n] = event->hw.event_base;
1351			current_idx[n++] = PIC_NO_INDEX;
1352		}
1353	}
1354	return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1360	int n0, ret = -EAGAIN;
1361	unsigned long flags;
1362
1363	local_irq_save(flags);
1364
1365	n0 = cpuc->n_events;
1366	if (n0 >= sparc_pmu->max_hw_events)
1367		goto out;
1368
1369	cpuc->event[n0] = event;
1370	cpuc->events[n0] = event->hw.event_base;
1371	cpuc->current_idx[n0] = PIC_NO_INDEX;
1372
1373	event->hw.state = PERF_HES_UPTODATE;
1374	if (!(ef_flags & PERF_EF_START))
1375		event->hw.state |= PERF_HES_STOPPED;
1376
1377	/*
1378	 * If group events scheduling transaction was started,
1379	 * skip the schedulability test here, it will be performed
1380	 * at commit time(->commit_txn) as a whole
1381	 */
1382	if (cpuc->group_flag & PERF_EVENT_TXN)
1383		goto nocheck;
1384
1385	if (check_excludes(cpuc->event, n0, 1))
1386		goto out;
1387	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1388		goto out;
1389
1390nocheck:
1391	cpuc->n_events++;
1392	cpuc->n_added++;
1393
1394	ret = 0;
1395out:
1396	local_irq_restore(flags);
1397	return ret;
1398}
1399
1400static int sparc_pmu_event_init(struct perf_event *event)
1401{
1402	struct perf_event_attr *attr = &event->attr;
1403	struct perf_event *evts[MAX_HWEVENTS];
1404	struct hw_perf_event *hwc = &event->hw;
1405	unsigned long events[MAX_HWEVENTS];
1406	int current_idx_dmy[MAX_HWEVENTS];
1407	const struct perf_event_map *pmap;
1408	int n;
1409
1410	if (atomic_read(&nmi_active) < 0)
1411		return -ENODEV;
1412
1413	/* does not support taken branch sampling */
1414	if (has_branch_stack(event))
1415		return -EOPNOTSUPP;
1416
1417	switch (attr->type) {
1418	case PERF_TYPE_HARDWARE:
1419		if (attr->config >= sparc_pmu->max_events)
1420			return -EINVAL;
1421		pmap = sparc_pmu->event_map(attr->config);
1422		break;
1423
1424	case PERF_TYPE_HW_CACHE:
1425		pmap = sparc_map_cache_event(attr->config);
1426		if (IS_ERR(pmap))
1427			return PTR_ERR(pmap);
1428		break;
1429
1430	case PERF_TYPE_RAW:
1431		pmap = NULL;
1432		break;
1433
1434	default:
1435		return -ENOENT;
1436
1437	}
1438
1439	if (pmap) {
1440		hwc->event_base = perf_event_encode(pmap);
1441	} else {
1442		/*
1443		 * User gives us "(encoding << 16) | pic_mask" for
1444		 * PERF_TYPE_RAW events.
1445		 */
1446		hwc->event_base = attr->config;
1447	}
1448
1449	/* We save the enable bits in the config_base.  */
1450	hwc->config_base = sparc_pmu->irq_bit;
1451	if (!attr->exclude_user)
1452		hwc->config_base |= sparc_pmu->user_bit;
1453	if (!attr->exclude_kernel)
1454		hwc->config_base |= sparc_pmu->priv_bit;
1455	if (!attr->exclude_hv)
1456		hwc->config_base |= sparc_pmu->hv_bit;
1457
1458	n = 0;
1459	if (event->group_leader != event) {
1460		n = collect_events(event->group_leader,
1461				   sparc_pmu->max_hw_events - 1,
1462				   evts, events, current_idx_dmy);
1463		if (n < 0)
1464			return -EINVAL;
1465	}
1466	events[n] = hwc->event_base;
1467	evts[n] = event;
1468
1469	if (check_excludes(evts, n, 1))
1470		return -EINVAL;
1471
1472	if (sparc_check_constraints(evts, events, n + 1))
1473		return -EINVAL;
1474
1475	hwc->idx = PIC_NO_INDEX;
1476
1477	/* Try to do all error checking before this point, as unwinding
1478	 * state after grabbing the PMC is difficult.
1479	 */
1480	perf_event_grab_pmc();
1481	event->destroy = hw_perf_event_destroy;
1482
1483	if (!hwc->sample_period) {
1484		hwc->sample_period = MAX_PERIOD;
1485		hwc->last_period = hwc->sample_period;
1486		local64_set(&hwc->period_left, hwc->sample_period);
1487	}
1488
1489	return 0;
1490}
1491
1492/*
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1496 */
1497static void sparc_pmu_start_txn(struct pmu *pmu)
1498{
1499	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1500
1501	perf_pmu_disable(pmu);
1502	cpuhw->group_flag |= PERF_EVENT_TXN;
1503}
1504
1505/*
1506 * Stop group events scheduling transaction
1507 * Clear the flag and pmu::enable() will perform the
1508 * schedulability test.
1509 */
1510static void sparc_pmu_cancel_txn(struct pmu *pmu)
1511{
1512	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1513
1514	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1515	perf_pmu_enable(pmu);
1516}
1517
1518/*
1519 * Commit group events scheduling transaction
1520 * Perform the group schedulability test as a whole
1521 * Return 0 if success
1522 */
1523static int sparc_pmu_commit_txn(struct pmu *pmu)
1524{
1525	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1526	int n;
1527
1528	if (!sparc_pmu)
1529		return -EINVAL;
1530
1531	cpuc = this_cpu_ptr(&cpu_hw_events);
1532	n = cpuc->n_events;
1533	if (check_excludes(cpuc->event, 0, n))
1534		return -EINVAL;
1535	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1536		return -EAGAIN;
1537
1538	cpuc->group_flag &= ~PERF_EVENT_TXN;
1539	perf_pmu_enable(pmu);
1540	return 0;
1541}
1542
1543static struct pmu pmu = {
1544	.pmu_enable	= sparc_pmu_enable,
1545	.pmu_disable	= sparc_pmu_disable,
1546	.event_init	= sparc_pmu_event_init,
1547	.add		= sparc_pmu_add,
1548	.del		= sparc_pmu_del,
1549	.start		= sparc_pmu_start,
1550	.stop		= sparc_pmu_stop,
1551	.read		= sparc_pmu_read,
1552	.start_txn	= sparc_pmu_start_txn,
1553	.cancel_txn	= sparc_pmu_cancel_txn,
1554	.commit_txn	= sparc_pmu_commit_txn,
1555};
1556
1557void perf_event_print_debug(void)
1558{
1559	unsigned long flags;
1560	int cpu, i;
1561
1562	if (!sparc_pmu)
1563		return;
1564
1565	local_irq_save(flags);
1566
1567	cpu = smp_processor_id();
1568
1569	pr_info("\n");
1570	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1571		pr_info("CPU#%d: PCR%d[%016llx]\n",
1572			cpu, i, pcr_ops->read_pcr(i));
1573	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1574		pr_info("CPU#%d: PIC%d[%016llx]\n",
1575			cpu, i, pcr_ops->read_pic(i));
1576
1577	local_irq_restore(flags);
1578}
1579
1580static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1581					    unsigned long cmd, void *__args)
1582{
1583	struct die_args *args = __args;
1584	struct perf_sample_data data;
1585	struct cpu_hw_events *cpuc;
1586	struct pt_regs *regs;
1587	int i;
1588
1589	if (!atomic_read(&active_events))
1590		return NOTIFY_DONE;
1591
1592	switch (cmd) {
1593	case DIE_NMI:
1594		break;
1595
1596	default:
1597		return NOTIFY_DONE;
1598	}
1599
1600	regs = args->regs;
1601
1602	cpuc = this_cpu_ptr(&cpu_hw_events);
1603
1604	/* If the PMU has the TOE IRQ enable bits, we need to do a
1605	 * dummy write to the %pcr to clear the overflow bits and thus
1606	 * the interrupt.
1607	 *
1608	 * Do this before we peek at the counters to determine
1609	 * overflow so we don't lose any events.
1610	 */
1611	if (sparc_pmu->irq_bit &&
1612	    sparc_pmu->num_pcrs == 1)
1613		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1614
1615	for (i = 0; i < cpuc->n_events; i++) {
1616		struct perf_event *event = cpuc->event[i];
1617		int idx = cpuc->current_idx[i];
1618		struct hw_perf_event *hwc;
1619		u64 val;
1620
1621		if (sparc_pmu->irq_bit &&
1622		    sparc_pmu->num_pcrs > 1)
1623			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1624
1625		hwc = &event->hw;
1626		val = sparc_perf_event_update(event, hwc, idx);
1627		if (val & (1ULL << 31))
1628			continue;
1629
1630		perf_sample_data_init(&data, 0, hwc->last_period);
1631		if (!sparc_perf_event_set_period(event, hwc, idx))
1632			continue;
1633
1634		if (perf_event_overflow(event, &data, regs))
1635			sparc_pmu_stop(event, 0);
1636	}
1637
1638	return NOTIFY_STOP;
1639}
1640
1641static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1642	.notifier_call		= perf_event_nmi_handler,
1643};
1644
1645static bool __init supported_pmu(void)
1646{
1647	if (!strcmp(sparc_pmu_type, "ultra3") ||
1648	    !strcmp(sparc_pmu_type, "ultra3+") ||
1649	    !strcmp(sparc_pmu_type, "ultra3i") ||
1650	    !strcmp(sparc_pmu_type, "ultra4+")) {
1651		sparc_pmu = &ultra3_pmu;
1652		return true;
1653	}
1654	if (!strcmp(sparc_pmu_type, "niagara")) {
1655		sparc_pmu = &niagara1_pmu;
1656		return true;
1657	}
1658	if (!strcmp(sparc_pmu_type, "niagara2") ||
1659	    !strcmp(sparc_pmu_type, "niagara3")) {
1660		sparc_pmu = &niagara2_pmu;
1661		return true;
1662	}
1663	if (!strcmp(sparc_pmu_type, "niagara4") ||
1664	    !strcmp(sparc_pmu_type, "niagara5")) {
1665		sparc_pmu = &niagara4_pmu;
1666		return true;
1667	}
1668	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1669		sparc_pmu = &sparc_m7_pmu;
1670		return true;
1671	}
1672	return false;
1673}
1674
1675static int __init init_hw_perf_events(void)
1676{
1677	int err;
1678
1679	pr_info("Performance events: ");
1680
1681	err = pcr_arch_init();
1682	if (err || !supported_pmu()) {
1683		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1684		return 0;
1685	}
1686
1687	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1688
1689	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1690	register_die_notifier(&perf_event_nmi_notifier);
1691
1692	return 0;
1693}
1694pure_initcall(init_hw_perf_events);
1695
1696void perf_callchain_kernel(struct perf_callchain_entry *entry,
1697			   struct pt_regs *regs)
1698{
1699	unsigned long ksp, fp;
1700#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1701	int graph = 0;
1702#endif
1703
1704	stack_trace_flush();
1705
1706	perf_callchain_store(entry, regs->tpc);
1707
1708	ksp = regs->u_regs[UREG_I6];
1709	fp = ksp + STACK_BIAS;
1710	do {
1711		struct sparc_stackf *sf;
1712		struct pt_regs *regs;
1713		unsigned long pc;
1714
1715		if (!kstack_valid(current_thread_info(), fp))
1716			break;
1717
1718		sf = (struct sparc_stackf *) fp;
1719		regs = (struct pt_regs *) (sf + 1);
1720
1721		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1722			if (user_mode(regs))
1723				break;
1724			pc = regs->tpc;
1725			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1726		} else {
1727			pc = sf->callers_pc;
1728			fp = (unsigned long)sf->fp + STACK_BIAS;
1729		}
1730		perf_callchain_store(entry, pc);
1731#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1732		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1733			int index = current->curr_ret_stack;
1734			if (current->ret_stack && index >= graph) {
1735				pc = current->ret_stack[index - graph].ret;
1736				perf_callchain_store(entry, pc);
1737				graph++;
1738			}
1739		}
1740#endif
1741	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1742}
1743
1744static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1745				   struct pt_regs *regs)
1746{
1747	unsigned long ufp;
1748
1749	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1750	do {
1751		struct sparc_stackf __user *usf;
1752		struct sparc_stackf sf;
1753		unsigned long pc;
1754
1755		usf = (struct sparc_stackf __user *)ufp;
1756		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1757			break;
1758
1759		pc = sf.callers_pc;
1760		ufp = (unsigned long)sf.fp + STACK_BIAS;
1761		perf_callchain_store(entry, pc);
1762	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1763}
1764
1765static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1766				   struct pt_regs *regs)
1767{
1768	unsigned long ufp;
1769
1770	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1771	do {
1772		unsigned long pc;
1773
1774		if (thread32_stack_is_64bit(ufp)) {
1775			struct sparc_stackf __user *usf;
1776			struct sparc_stackf sf;
1777
1778			ufp += STACK_BIAS;
1779			usf = (struct sparc_stackf __user *)ufp;
1780			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1781				break;
1782			pc = sf.callers_pc & 0xffffffff;
1783			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1784		} else {
1785			struct sparc_stackf32 __user *usf;
1786			struct sparc_stackf32 sf;
1787			usf = (struct sparc_stackf32 __user *)ufp;
1788			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789				break;
1790			pc = sf.callers_pc;
1791			ufp = (unsigned long)sf.fp;
1792		}
1793		perf_callchain_store(entry, pc);
1794	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1795}
1796
1797void
1798perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1799{
1800	perf_callchain_store(entry, regs->tpc);
1801
1802	if (!current->mm)
1803		return;
1804
1805	flushw_user();
1806	if (test_thread_flag(TIF_32BIT))
1807		perf_callchain_user_32(entry, regs);
1808	else
1809		perf_callchain_user_64(entry, regs);
1810}
1811