1#ifndef _SPARC64_HYPERVISOR_H
2#define _SPARC64_HYPERVISOR_H
3
4/* Sun4v hypervisor interfaces and defines.
5 *
6 * Hypervisor calls are made via traps to software traps number 0x80
7 * and above.  Registers %o0 to %o5 serve as argument, status, and
8 * return value registers.
9 *
10 * There are two kinds of these traps.  First there are the normal
11 * "fast traps" which use software trap 0x80 and encode the function
12 * to invoke by number in register %o5.  Argument and return value
13 * handling is as follows:
14 *
15 * -----------------------------------------------
16 * |  %o5  | function number |     undefined     |
17 * |  %o0  |   argument 0    |   return status   |
18 * |  %o1  |   argument 1    |   return value 1  |
19 * |  %o2  |   argument 2    |   return value 2  |
20 * |  %o3  |   argument 3    |   return value 3  |
21 * |  %o4  |   argument 4    |   return value 4  |
22 * -----------------------------------------------
23 *
24 * The second type are "hyper-fast traps" which encode the function
25 * number in the software trap number itself.  So these use trap
26 * numbers > 0x80.  The register usage for hyper-fast traps is as
27 * follows:
28 *
29 * -----------------------------------------------
30 * |  %o0  |   argument 0    |   return status   |
31 * |  %o1  |   argument 1    |   return value 1  |
32 * |  %o2  |   argument 2    |   return value 2  |
33 * |  %o3  |   argument 3    |   return value 3  |
34 * |  %o4  |   argument 4    |   return value 4  |
35 * -----------------------------------------------
36 *
37 * Registers providing explicit arguments to the hypervisor calls
38 * are volatile across the call.  Upon return their values are
39 * undefined unless explicitly specified as containing a particular
40 * return value by the specific call.  The return status is always
41 * returned in register %o0, zero indicates a successful execution of
42 * the hypervisor call and other values indicate an error status as
43 * defined below.  So, for example, if a hyper-fast trap takes
44 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
45 * the call and %o3, %o4, and %o5 would be preserved.
46 *
47 * If the hypervisor trap is invalid, or the fast trap function number
48 * is invalid, HV_EBADTRAP will be returned in %o0.  Also, all 64-bits
49 * of the argument and return values are significant.
50 */
51
52/* Trap numbers.  */
53#define HV_FAST_TRAP		0x80
54#define HV_MMU_MAP_ADDR_TRAP	0x83
55#define HV_MMU_UNMAP_ADDR_TRAP	0x84
56#define HV_TTRACE_ADDENTRY_TRAP	0x85
57#define HV_CORE_TRAP		0xff
58
59/* Error codes.  */
60#define HV_EOK				0  /* Successful return            */
61#define HV_ENOCPU			1  /* Invalid CPU id               */
62#define HV_ENORADDR			2  /* Invalid real address         */
63#define HV_ENOINTR			3  /* Invalid interrupt id         */
64#define HV_EBADPGSZ			4  /* Invalid pagesize encoding    */
65#define HV_EBADTSB			5  /* Invalid TSB description      */
66#define HV_EINVAL			6  /* Invalid argument             */
67#define HV_EBADTRAP			7  /* Invalid function number      */
68#define HV_EBADALIGN			8  /* Invalid address alignment    */
69#define HV_EWOULDBLOCK			9  /* Cannot complete w/o blocking */
70#define HV_ENOACCESS			10 /* No access to resource        */
71#define HV_EIO				11 /* I/O error                    */
72#define HV_ECPUERROR			12 /* CPU in error state           */
73#define HV_ENOTSUPPORTED		13 /* Function not supported       */
74#define HV_ENOMAP			14 /* No mapping found             */
75#define HV_ETOOMANY			15 /* Too many items specified     */
76#define HV_ECHANNEL			16 /* Invalid LDC channel          */
77#define HV_EBUSY			17 /* Resource busy                */
78
79/* mach_exit()
80 * TRAP:	HV_FAST_TRAP
81 * FUNCTION:	HV_FAST_MACH_EXIT
82 * ARG0:	exit code
83 * ERRORS:	This service does not return.
84 *
85 * Stop all CPUs in the virtual domain and place them into the stopped
86 * state.  The 64-bit exit code may be passed to a service entity as
87 * the domain's exit status.  On systems without a service entity, the
88 * domain will undergo a reset, and the boot firmware will be
89 * reloaded.
90 *
91 * This function will never return to the guest that invokes it.
92 *
93 * Note: By convention an exit code of zero denotes a successful exit by
94 *       the guest code.  A non-zero exit code denotes a guest specific
95 *       error indication.
96 *
97 */
98#define HV_FAST_MACH_EXIT		0x00
99
100#ifndef __ASSEMBLY__
101void sun4v_mach_exit(unsigned long exit_code);
102#endif
103
104/* Domain services.  */
105
106/* mach_desc()
107 * TRAP:	HV_FAST_TRAP
108 * FUNCTION:	HV_FAST_MACH_DESC
109 * ARG0:	buffer
110 * ARG1:	length
111 * RET0:	status
112 * RET1:	length
113 * ERRORS:	HV_EBADALIGN	Buffer is badly aligned
114 *		HV_ENORADDR	Buffer is to an illegal real address.
115 *		HV_EINVAL	Buffer length is too small for complete
116 *				machine description.
117 *
118 * Copy the most current machine description into the buffer indicated
119 * by the real address in ARG0.  The buffer provided must be 16 byte
120 * aligned.  Upon success or HV_EINVAL, this service returns the
121 * actual size of the machine description in the RET1 return value.
122 *
123 * Note: A method of determining the appropriate buffer size for the
124 *       machine description is to first call this service with a buffer
125 *       length of 0 bytes.
126 */
127#define HV_FAST_MACH_DESC		0x01
128
129#ifndef __ASSEMBLY__
130unsigned long sun4v_mach_desc(unsigned long buffer_pa,
131			      unsigned long buf_len,
132			      unsigned long *real_buf_len);
133#endif
134
135/* mach_sir()
136 * TRAP:	HV_FAST_TRAP
137 * FUNCTION:	HV_FAST_MACH_SIR
138 * ERRORS:	This service does not return.
139 *
140 * Perform a software initiated reset of the virtual machine domain.
141 * All CPUs are captured as soon as possible, all hardware devices are
142 * returned to the entry default state, and the domain is restarted at
143 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
144 * of the CPUs.  The single CPU restarted is selected as determined by
145 * platform specific policy.  Memory is preserved across this
146 * operation.
147 */
148#define HV_FAST_MACH_SIR		0x02
149
150#ifndef __ASSEMBLY__
151void sun4v_mach_sir(void);
152#endif
153
154/* mach_set_watchdog()
155 * TRAP:	HV_FAST_TRAP
156 * FUNCTION:	HV_FAST_MACH_SET_WATCHDOG
157 * ARG0:	timeout in milliseconds
158 * RET0:	status
159 * RET1:	time remaining in milliseconds
160 *
161 * A guest uses this API to set a watchdog timer.  Once the gues has set
162 * the timer, it must call the timer service again either to disable or
163 * postpone the expiration.  If the timer expires before being reset or
164 * disabled, then the hypervisor take a platform specific action leading
165 * to guest termination within a bounded time period.  The platform action
166 * may include recovery actions such as reporting the expiration to a
167 * Service Processor, and/or automatically restarting the gues.
168 *
169 * The 'timeout' parameter is specified in milliseconds, however the
170 * implementated granularity is given by the 'watchdog-resolution'
171 * property in the 'platform' node of the guest's machine description.
172 * The largest allowed timeout value is specified by the
173 * 'watchdog-max-timeout' property of the 'platform' node.
174 *
175 * If the 'timeout' argument is not zero, the watchdog timer is set to
176 * expire after a minimum of 'timeout' milliseconds.
177 *
178 * If the 'timeout' argument is zero, the watchdog timer is disabled.
179 *
180 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
181 * property, the hypervisor leaves the watchdog timer state unchanged,
182 * and returns a status of EINVAL.
183 *
184 * The 'time remaining' return value is valid regardless of whether the
185 * return status is EOK or EINVAL.  A non-zero return value indicates the
186 * number of milliseconds that were remaining until the timer was to expire.
187 * If less than one millisecond remains, the return value is '1'.  If the
188 * watchdog timer was disabled at the time of the call, the return value is
189 * zero.
190 *
191 * If the hypervisor cannot support the exact timeout value requested, but
192 * can support a larger timeout value, the hypervisor may round the actual
193 * timeout to a value larger than the requested timeout, consequently the
194 * 'time remaining' return value may be larger than the previously requested
195 * timeout value.
196 *
197 * Any guest OS debugger should be aware that the watchdog service may be in
198 * use.  Consequently, it is recommended that the watchdog service is
199 * disabled upon debugger entry (e.g. reaching a breakpoint), and then
200 * re-enabled upon returning to normal execution.  The API has been designed
201 * with this in mind, and the 'time remaining' result of the disable call may
202 * be used directly as the timeout argument of the re-enable call.
203 */
204#define HV_FAST_MACH_SET_WATCHDOG	0x05
205
206#ifndef __ASSEMBLY__
207unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
208				      unsigned long *orig_timeout);
209#endif
210
211/* CPU services.
212 *
213 * CPUs represent devices that can execute software threads.  A single
214 * chip that contains multiple cores or strands is represented as
215 * multiple CPUs with unique CPU identifiers.  CPUs are exported to
216 * OBP via the machine description (and to the OS via the OBP device
217 * tree).  CPUs are always in one of three states: stopped, running,
218 * or error.
219 *
220 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
221 * CPU within a logical domain.  Operations that are to be performed
222 * on multiple CPUs specify them via a CPU list.  A CPU list is an
223 * array in real memory, of which each 16-bit word is a CPU ID.  CPU
224 * lists are passed through the API as two arguments.  The first is
225 * the number of entries (16-bit words) in the CPU list, and the
226 * second is the (real address) pointer to the CPU ID list.
227 */
228
229/* cpu_start()
230 * TRAP:	HV_FAST_TRAP
231 * FUNCTION:	HV_FAST_CPU_START
232 * ARG0:	CPU ID
233 * ARG1:	PC
234 * ARG2:	RTBA
235 * ARG3:	target ARG0
236 * RET0:	status
237 * ERRORS:	ENOCPU		Invalid CPU ID
238 *		EINVAL		Target CPU ID is not in the stopped state
239 *		ENORADDR	Invalid PC or RTBA real address
240 *		EBADALIGN	Unaligned PC or unaligned RTBA
241 *		EWOULDBLOCK	Starting resources are not available
242 *
243 * Start CPU with given CPU ID with PC in %pc and with a real trap
244 * base address value of RTBA.  The indicated CPU must be in the
245 * stopped state.  The supplied RTBA must be aligned on a 256 byte
246 * boundary.  On successful completion, the specified CPU will be in
247 * the running state and will be supplied with "target ARG0" in %o0
248 * and RTBA in %tba.
249 */
250#define HV_FAST_CPU_START		0x10
251
252#ifndef __ASSEMBLY__
253unsigned long sun4v_cpu_start(unsigned long cpuid,
254			      unsigned long pc,
255			      unsigned long rtba,
256			      unsigned long arg0);
257#endif
258
259/* cpu_stop()
260 * TRAP:	HV_FAST_TRAP
261 * FUNCTION:	HV_FAST_CPU_STOP
262 * ARG0:	CPU ID
263 * RET0:	status
264 * ERRORS:	ENOCPU		Invalid CPU ID
265 *		EINVAL		Target CPU ID is the current cpu
266 *		EINVAL		Target CPU ID is not in the running state
267 *		EWOULDBLOCK	Stopping resources are not available
268 *		ENOTSUPPORTED	Not supported on this platform
269 *
270 * The specified CPU is stopped.  The indicated CPU must be in the
271 * running state.  On completion, it will be in the stopped state.  It
272 * is not legal to stop the current CPU.
273 *
274 * Note: As this service cannot be used to stop the current cpu, this service
275 *       may not be used to stop the last running CPU in a domain.  To stop
276 *       and exit a running domain, a guest must use the mach_exit() service.
277 */
278#define HV_FAST_CPU_STOP		0x11
279
280#ifndef __ASSEMBLY__
281unsigned long sun4v_cpu_stop(unsigned long cpuid);
282#endif
283
284/* cpu_yield()
285 * TRAP:	HV_FAST_TRAP
286 * FUNCTION:	HV_FAST_CPU_YIELD
287 * RET0:	status
288 * ERRORS:	No possible error.
289 *
290 * Suspend execution on the current CPU.  Execution will resume when
291 * an interrupt (device, %stick_compare, or cross-call) is targeted to
292 * the CPU.  On some CPUs, this API may be used by the hypervisor to
293 * save power by disabling hardware strands.
294 */
295#define HV_FAST_CPU_YIELD		0x12
296
297#ifndef __ASSEMBLY__
298unsigned long sun4v_cpu_yield(void);
299#endif
300
301/* cpu_qconf()
302 * TRAP:	HV_FAST_TRAP
303 * FUNCTION:	HV_FAST_CPU_QCONF
304 * ARG0:	queue
305 * ARG1:	base real address
306 * ARG2:	number of entries
307 * RET0:	status
308 * ERRORS:	ENORADDR	Invalid base real address
309 *		EINVAL		Invalid queue or number of entries is less
310 *				than 2 or too large.
311 *		EBADALIGN	Base real address is not correctly aligned
312 *				for size.
313 *
314 * Configure the given queue to be placed at the given base real
315 * address, with the given number of entries.  The number of entries
316 * must be a power of 2.  The base real address must be aligned
317 * exactly to match the queue size.  Each queue entry is 64 bytes
318 * long, so for example a 32 entry queue must be aligned on a 2048
319 * byte real address boundary.
320 *
321 * The specified queue is unconfigured if the number of entries is given
322 * as zero.
323 *
324 * For the current version of this API service, the argument queue is defined
325 * as follows:
326 *
327 *	queue		description
328 *	-----		-------------------------
329 *	0x3c		cpu mondo queue
330 *	0x3d		device mondo queue
331 *	0x3e		resumable error queue
332 *	0x3f		non-resumable error queue
333 *
334 * Note: The maximum number of entries for each queue for a specific cpu may
335 *       be determined from the machine description.
336 */
337#define HV_FAST_CPU_QCONF		0x14
338#define  HV_CPU_QUEUE_CPU_MONDO		 0x3c
339#define  HV_CPU_QUEUE_DEVICE_MONDO	 0x3d
340#define  HV_CPU_QUEUE_RES_ERROR		 0x3e
341#define  HV_CPU_QUEUE_NONRES_ERROR	 0x3f
342
343#ifndef __ASSEMBLY__
344unsigned long sun4v_cpu_qconf(unsigned long type,
345			      unsigned long queue_paddr,
346			      unsigned long num_queue_entries);
347#endif
348
349/* cpu_qinfo()
350 * TRAP:	HV_FAST_TRAP
351 * FUNCTION:	HV_FAST_CPU_QINFO
352 * ARG0:	queue
353 * RET0:	status
354 * RET1:	base real address
355 * RET1:	number of entries
356 * ERRORS:	EINVAL		Invalid queue
357 *
358 * Return the configuration info for the given queue.  The base real
359 * address and number of entries of the defined queue are returned.
360 * The queue argument values are the same as for cpu_qconf() above.
361 *
362 * If the specified queue is a valid queue number, but no queue has
363 * been defined, the number of entries will be set to zero and the
364 * base real address returned is undefined.
365 */
366#define HV_FAST_CPU_QINFO		0x15
367
368/* cpu_mondo_send()
369 * TRAP:	HV_FAST_TRAP
370 * FUNCTION:	HV_FAST_CPU_MONDO_SEND
371 * ARG0-1:	CPU list
372 * ARG2:	data real address
373 * RET0:	status
374 * ERRORS:	EBADALIGN	Mondo data is not 64-byte aligned or CPU list
375 *				is not 2-byte aligned.
376 *		ENORADDR	Invalid data mondo address, or invalid cpu list
377 *				address.
378 *		ENOCPU		Invalid cpu in CPU list
379 *		EWOULDBLOCK	Some or all of the listed CPUs did not receive
380 *				the mondo
381 *		ECPUERROR	One or more of the listed CPUs are in error
382 *				state, use HV_FAST_CPU_STATE to see which ones
383 *		EINVAL		CPU list includes caller's CPU ID
384 *
385 * Send a mondo interrupt to the CPUs in the given CPU list with the
386 * 64-bytes at the given data real address.  The data must be 64-byte
387 * aligned.  The mondo data will be delivered to the cpu_mondo queues
388 * of the recipient CPUs.
389 *
390 * In all cases, error or not, the CPUs in the CPU list to which the
391 * mondo has been successfully delivered will be indicated by having
392 * their entry in CPU list updated with the value 0xffff.
393 */
394#define HV_FAST_CPU_MONDO_SEND		0x42
395
396#ifndef __ASSEMBLY__
397unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count,
398				   unsigned long cpu_list_pa,
399				   unsigned long mondo_block_pa);
400#endif
401
402/* cpu_myid()
403 * TRAP:	HV_FAST_TRAP
404 * FUNCTION:	HV_FAST_CPU_MYID
405 * RET0:	status
406 * RET1:	CPU ID
407 * ERRORS:	No errors defined.
408 *
409 * Return the hypervisor ID handle for the current CPU.  Use by a
410 * virtual CPU to discover it's own identity.
411 */
412#define HV_FAST_CPU_MYID		0x16
413
414/* cpu_state()
415 * TRAP:	HV_FAST_TRAP
416 * FUNCTION:	HV_FAST_CPU_STATE
417 * ARG0:	CPU ID
418 * RET0:	status
419 * RET1:	state
420 * ERRORS:	ENOCPU		Invalid CPU ID
421 *
422 * Retrieve the current state of the CPU with the given CPU ID.
423 */
424#define HV_FAST_CPU_STATE		0x17
425#define  HV_CPU_STATE_STOPPED		 0x01
426#define  HV_CPU_STATE_RUNNING		 0x02
427#define  HV_CPU_STATE_ERROR		 0x03
428
429#ifndef __ASSEMBLY__
430long sun4v_cpu_state(unsigned long cpuid);
431#endif
432
433/* cpu_set_rtba()
434 * TRAP:	HV_FAST_TRAP
435 * FUNCTION:	HV_FAST_CPU_SET_RTBA
436 * ARG0:	RTBA
437 * RET0:	status
438 * RET1:	previous RTBA
439 * ERRORS:	ENORADDR	Invalid RTBA real address
440 *		EBADALIGN	RTBA is incorrectly aligned for a trap table
441 *
442 * Set the real trap base address of the local cpu to the given RTBA.
443 * The supplied RTBA must be aligned on a 256 byte boundary.  Upon
444 * success the previous value of the RTBA is returned in RET1.
445 *
446 * Note: This service does not affect %tba
447 */
448#define HV_FAST_CPU_SET_RTBA		0x18
449
450/* cpu_set_rtba()
451 * TRAP:	HV_FAST_TRAP
452 * FUNCTION:	HV_FAST_CPU_GET_RTBA
453 * RET0:	status
454 * RET1:	previous RTBA
455 * ERRORS:	No possible error.
456 *
457 * Returns the current value of RTBA in RET1.
458 */
459#define HV_FAST_CPU_GET_RTBA		0x19
460
461/* MMU services.
462 *
463 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
464 */
465#ifndef __ASSEMBLY__
466struct hv_tsb_descr {
467	unsigned short		pgsz_idx;
468	unsigned short		assoc;
469	unsigned int		num_ttes;	/* in TTEs */
470	unsigned int		ctx_idx;
471	unsigned int		pgsz_mask;
472	unsigned long		tsb_base;
473	unsigned long		resv;
474};
475#endif
476#define HV_TSB_DESCR_PGSZ_IDX_OFFSET	0x00
477#define HV_TSB_DESCR_ASSOC_OFFSET	0x02
478#define HV_TSB_DESCR_NUM_TTES_OFFSET	0x04
479#define HV_TSB_DESCR_CTX_IDX_OFFSET	0x08
480#define HV_TSB_DESCR_PGSZ_MASK_OFFSET	0x0c
481#define HV_TSB_DESCR_TSB_BASE_OFFSET	0x10
482#define HV_TSB_DESCR_RESV_OFFSET	0x18
483
484/* Page size bitmask.  */
485#define HV_PGSZ_MASK_8K			(1 << 0)
486#define HV_PGSZ_MASK_64K		(1 << 1)
487#define HV_PGSZ_MASK_512K		(1 << 2)
488#define HV_PGSZ_MASK_4MB		(1 << 3)
489#define HV_PGSZ_MASK_32MB		(1 << 4)
490#define HV_PGSZ_MASK_256MB		(1 << 5)
491#define HV_PGSZ_MASK_2GB		(1 << 6)
492#define HV_PGSZ_MASK_16GB		(1 << 7)
493
494/* Page size index.  The value given in the TSB descriptor must correspond
495 * to the smallest page size specified in the pgsz_mask page size bitmask.
496 */
497#define HV_PGSZ_IDX_8K			0
498#define HV_PGSZ_IDX_64K			1
499#define HV_PGSZ_IDX_512K		2
500#define HV_PGSZ_IDX_4MB			3
501#define HV_PGSZ_IDX_32MB		4
502#define HV_PGSZ_IDX_256MB		5
503#define HV_PGSZ_IDX_2GB			6
504#define HV_PGSZ_IDX_16GB		7
505
506/* MMU fault status area.
507 *
508 * MMU related faults have their status and fault address information
509 * placed into a memory region made available by privileged code.  Each
510 * virtual processor must make a mmu_fault_area_conf() call to tell the
511 * hypervisor where that processor's fault status should be stored.
512 *
513 * The fault status block is a multiple of 64-bytes and must be aligned
514 * on a 64-byte boundary.
515 */
516#ifndef __ASSEMBLY__
517struct hv_fault_status {
518	unsigned long		i_fault_type;
519	unsigned long		i_fault_addr;
520	unsigned long		i_fault_ctx;
521	unsigned long		i_reserved[5];
522	unsigned long		d_fault_type;
523	unsigned long		d_fault_addr;
524	unsigned long		d_fault_ctx;
525	unsigned long		d_reserved[5];
526};
527#endif
528#define HV_FAULT_I_TYPE_OFFSET	0x00
529#define HV_FAULT_I_ADDR_OFFSET	0x08
530#define HV_FAULT_I_CTX_OFFSET	0x10
531#define HV_FAULT_D_TYPE_OFFSET	0x40
532#define HV_FAULT_D_ADDR_OFFSET	0x48
533#define HV_FAULT_D_CTX_OFFSET	0x50
534
535#define HV_FAULT_TYPE_FAST_MISS	1
536#define HV_FAULT_TYPE_FAST_PROT	2
537#define HV_FAULT_TYPE_MMU_MISS	3
538#define HV_FAULT_TYPE_INV_RA	4
539#define HV_FAULT_TYPE_PRIV_VIOL	5
540#define HV_FAULT_TYPE_PROT_VIOL	6
541#define HV_FAULT_TYPE_NFO	7
542#define HV_FAULT_TYPE_NFO_SEFF	8
543#define HV_FAULT_TYPE_INV_VA	9
544#define HV_FAULT_TYPE_INV_ASI	10
545#define HV_FAULT_TYPE_NC_ATOMIC	11
546#define HV_FAULT_TYPE_PRIV_ACT	12
547#define HV_FAULT_TYPE_RESV1	13
548#define HV_FAULT_TYPE_UNALIGNED	14
549#define HV_FAULT_TYPE_INV_PGSZ	15
550/* Values 16 --> -2 are reserved.  */
551#define HV_FAULT_TYPE_MULTIPLE	-1
552
553/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
554 * and mmu_{map,unmap}_perm_addr().
555 */
556#define HV_MMU_DMMU			0x01
557#define HV_MMU_IMMU			0x02
558#define HV_MMU_ALL			(HV_MMU_DMMU | HV_MMU_IMMU)
559
560/* mmu_map_addr()
561 * TRAP:	HV_MMU_MAP_ADDR_TRAP
562 * ARG0:	virtual address
563 * ARG1:	mmu context
564 * ARG2:	TTE
565 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
566 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
567 *		EBADPGSZ	Invalid page size value
568 *		ENORADDR	Invalid real address in TTE
569 *
570 * Create a non-permanent mapping using the given TTE, virtual
571 * address, and mmu context.  The flags argument determines which
572 * (data, or instruction, or both) TLB the mapping gets loaded into.
573 *
574 * The behavior is undefined if the valid bit is clear in the TTE.
575 *
576 * Note: This API call is for privileged code to specify temporary translation
577 *       mappings without the need to create and manage a TSB.
578 */
579
580/* mmu_unmap_addr()
581 * TRAP:	HV_MMU_UNMAP_ADDR_TRAP
582 * ARG0:	virtual address
583 * ARG1:	mmu context
584 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
585 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
586 *
587 * Demaps the given virtual address in the given mmu context on this
588 * CPU.  This function is intended to be used to demap pages mapped
589 * with mmu_map_addr.  This service is equivalent to invoking
590 * mmu_demap_page() with only the current CPU in the CPU list. The
591 * flags argument determines which (data, or instruction, or both) TLB
592 * the mapping gets unmapped from.
593 *
594 * Attempting to perform an unmap operation for a previously defined
595 * permanent mapping will have undefined results.
596 */
597
598/* mmu_tsb_ctx0()
599 * TRAP:	HV_FAST_TRAP
600 * FUNCTION:	HV_FAST_MMU_TSB_CTX0
601 * ARG0:	number of TSB descriptions
602 * ARG1:	TSB descriptions pointer
603 * RET0:	status
604 * ERRORS:	ENORADDR		Invalid TSB descriptions pointer or
605 *					TSB base within a descriptor
606 *		EBADALIGN		TSB descriptions pointer is not aligned
607 *					to an 8-byte boundary, or TSB base
608 *					within a descriptor is not aligned for
609 *					the given TSB size
610 *		EBADPGSZ		Invalid page size in a TSB descriptor
611 *		EBADTSB			Invalid associativity or size in a TSB
612 *					descriptor
613 *		EINVAL			Invalid number of TSB descriptions, or
614 *					invalid context index in a TSB
615 *					descriptor, or index page size not
616 *					equal to smallest page size in page
617 *					size bitmask field.
618 *
619 * Configures the TSBs for the current CPU for virtual addresses with
620 * context zero.  The TSB descriptions pointer is a pointer to an
621 * array of the given number of TSB descriptions.
622 *
623 * Note: The maximum number of TSBs available to a virtual CPU is given by the
624 *       mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
625 *       machine description.
626 */
627#define HV_FAST_MMU_TSB_CTX0		0x20
628
629#ifndef __ASSEMBLY__
630unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
631				 unsigned long tsb_desc_ra);
632#endif
633
634/* mmu_tsb_ctxnon0()
635 * TRAP:	HV_FAST_TRAP
636 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0
637 * ARG0:	number of TSB descriptions
638 * ARG1:	TSB descriptions pointer
639 * RET0:	status
640 * ERRORS:	Same as for mmu_tsb_ctx0() above.
641 *
642 * Configures the TSBs for the current CPU for virtual addresses with
643 * non-zero contexts.  The TSB descriptions pointer is a pointer to an
644 * array of the given number of TSB descriptions.
645 *
646 * Note: A maximum of 16 TSBs may be specified in the TSB description list.
647 */
648#define HV_FAST_MMU_TSB_CTXNON0		0x21
649
650/* mmu_demap_page()
651 * TRAP:	HV_FAST_TRAP
652 * FUNCTION:	HV_FAST_MMU_DEMAP_PAGE
653 * ARG0:	reserved, must be zero
654 * ARG1:	reserved, must be zero
655 * ARG2:	virtual address
656 * ARG3:	mmu context
657 * ARG4:	flags (HV_MMU_{IMMU,DMMU})
658 * RET0:	status
659 * ERRORS:	EINVAL			Invalid virtual address, context, or
660 *					flags value
661 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
662 *
663 * Demaps any page mapping of the given virtual address in the given
664 * mmu context for the current virtual CPU.  Any virtually tagged
665 * caches are guaranteed to be kept consistent.  The flags argument
666 * determines which TLB (instruction, or data, or both) participate in
667 * the operation.
668 *
669 * ARG0 and ARG1 are both reserved and must be set to zero.
670 */
671#define HV_FAST_MMU_DEMAP_PAGE		0x22
672
673/* mmu_demap_ctx()
674 * TRAP:	HV_FAST_TRAP
675 * FUNCTION:	HV_FAST_MMU_DEMAP_CTX
676 * ARG0:	reserved, must be zero
677 * ARG1:	reserved, must be zero
678 * ARG2:	mmu context
679 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
680 * RET0:	status
681 * ERRORS:	EINVAL			Invalid context or flags value
682 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
683 *
684 * Demaps all non-permanent virtual page mappings previously specified
685 * for the given context for the current virtual CPU.  Any virtual
686 * tagged caches are guaranteed to be kept consistent.  The flags
687 * argument determines which TLB (instruction, or data, or both)
688 * participate in the operation.
689 *
690 * ARG0 and ARG1 are both reserved and must be set to zero.
691 */
692#define HV_FAST_MMU_DEMAP_CTX		0x23
693
694/* mmu_demap_all()
695 * TRAP:	HV_FAST_TRAP
696 * FUNCTION:	HV_FAST_MMU_DEMAP_ALL
697 * ARG0:	reserved, must be zero
698 * ARG1:	reserved, must be zero
699 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
700 * RET0:	status
701 * ERRORS:	EINVAL			Invalid flags value
702 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
703 *
704 * Demaps all non-permanent virtual page mappings previously specified
705 * for the current virtual CPU.  Any virtual tagged caches are
706 * guaranteed to be kept consistent.  The flags argument determines
707 * which TLB (instruction, or data, or both) participate in the
708 * operation.
709 *
710 * ARG0 and ARG1 are both reserved and must be set to zero.
711 */
712#define HV_FAST_MMU_DEMAP_ALL		0x24
713
714#ifndef __ASSEMBLY__
715void sun4v_mmu_demap_all(void);
716#endif
717
718/* mmu_map_perm_addr()
719 * TRAP:	HV_FAST_TRAP
720 * FUNCTION:	HV_FAST_MMU_MAP_PERM_ADDR
721 * ARG0:	virtual address
722 * ARG1:	reserved, must be zero
723 * ARG2:	TTE
724 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
725 * RET0:	status
726 * ERRORS:	EINVAL			Invalid virtual address or flags value
727 *		EBADPGSZ		Invalid page size value
728 *		ENORADDR		Invalid real address in TTE
729 *		ETOOMANY		Too many mappings (max of 8 reached)
730 *
731 * Create a permanent mapping using the given TTE and virtual address
732 * for context 0 on the calling virtual CPU.  A maximum of 8 such
733 * permanent mappings may be specified by privileged code.  Mappings
734 * may be removed with mmu_unmap_perm_addr().
735 *
736 * The behavior is undefined if a TTE with the valid bit clear is given.
737 *
738 * Note: This call is used to specify address space mappings for which
739 *       privileged code does not expect to receive misses.  For example,
740 *       this mechanism can be used to map kernel nucleus code and data.
741 */
742#define HV_FAST_MMU_MAP_PERM_ADDR	0x25
743
744#ifndef __ASSEMBLY__
745unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
746				      unsigned long set_to_zero,
747				      unsigned long tte,
748				      unsigned long flags);
749#endif
750
751/* mmu_fault_area_conf()
752 * TRAP:	HV_FAST_TRAP
753 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_CONF
754 * ARG0:	real address
755 * RET0:	status
756 * RET1:	previous mmu fault area real address
757 * ERRORS:	ENORADDR		Invalid real address
758 *		EBADALIGN		Invalid alignment for fault area
759 *
760 * Configure the MMU fault status area for the calling CPU.  A 64-byte
761 * aligned real address specifies where MMU fault status information
762 * is placed.  The return value is the previously specified area, or 0
763 * for the first invocation.  Specifying a fault area at real address
764 * 0 is not allowed.
765 */
766#define HV_FAST_MMU_FAULT_AREA_CONF	0x26
767
768/* mmu_enable()
769 * TRAP:	HV_FAST_TRAP
770 * FUNCTION:	HV_FAST_MMU_ENABLE
771 * ARG0:	enable flag
772 * ARG1:	return target address
773 * RET0:	status
774 * ERRORS:	ENORADDR		Invalid real address when disabling
775 *					translation.
776 *		EBADALIGN		The return target address is not
777 *					aligned to an instruction.
778 *		EINVAL			The enable flag request the current
779 *					operating mode (e.g. disable if already
780 *					disabled)
781 *
782 * Enable or disable virtual address translation for the calling CPU
783 * within the virtual machine domain.  If the enable flag is zero,
784 * translation is disabled, any non-zero value will enable
785 * translation.
786 *
787 * When this function returns, the newly selected translation mode
788 * will be active.  If the mmu is being enabled, then the return
789 * target address is a virtual address else it is a real address.
790 *
791 * Upon successful completion, control will be returned to the given
792 * return target address (ie. the cpu will jump to that address).  On
793 * failure, the previous mmu mode remains and the trap simply returns
794 * as normal with the appropriate error code in RET0.
795 */
796#define HV_FAST_MMU_ENABLE		0x27
797
798/* mmu_unmap_perm_addr()
799 * TRAP:	HV_FAST_TRAP
800 * FUNCTION:	HV_FAST_MMU_UNMAP_PERM_ADDR
801 * ARG0:	virtual address
802 * ARG1:	reserved, must be zero
803 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
804 * RET0:	status
805 * ERRORS:	EINVAL			Invalid virtual address or flags value
806 *		ENOMAP			Specified mapping was not found
807 *
808 * Demaps any permanent page mapping (established via
809 * mmu_map_perm_addr()) at the given virtual address for context 0 on
810 * the current virtual CPU.  Any virtual tagged caches are guaranteed
811 * to be kept consistent.
812 */
813#define HV_FAST_MMU_UNMAP_PERM_ADDR	0x28
814
815/* mmu_tsb_ctx0_info()
816 * TRAP:	HV_FAST_TRAP
817 * FUNCTION:	HV_FAST_MMU_TSB_CTX0_INFO
818 * ARG0:	max TSBs
819 * ARG1:	buffer pointer
820 * RET0:	status
821 * RET1:	number of TSBs
822 * ERRORS:	EINVAL			Supplied buffer is too small
823 *		EBADALIGN		The buffer pointer is badly aligned
824 *		ENORADDR		Invalid real address for buffer pointer
825 *
826 * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
827 * into the provided buffer.  The size of the buffer is given in ARG1
828 * in terms of the number of TSB description entries.
829 *
830 * Upon return, RET1 always contains the number of TSB descriptions
831 * previously configured.  If zero TSBs were configured, EOK is
832 * returned with RET1 containing 0.
833 */
834#define HV_FAST_MMU_TSB_CTX0_INFO	0x29
835
836/* mmu_tsb_ctxnon0_info()
837 * TRAP:	HV_FAST_TRAP
838 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0_INFO
839 * ARG0:	max TSBs
840 * ARG1:	buffer pointer
841 * RET0:	status
842 * RET1:	number of TSBs
843 * ERRORS:	EINVAL			Supplied buffer is too small
844 *		EBADALIGN		The buffer pointer is badly aligned
845 *		ENORADDR		Invalid real address for buffer pointer
846 *
847 * Return the TSB configuration as previous defined by
848 * mmu_tsb_ctxnon0() into the provided buffer.  The size of the buffer
849 * is given in ARG1 in terms of the number of TSB description entries.
850 *
851 * Upon return, RET1 always contains the number of TSB descriptions
852 * previously configured.  If zero TSBs were configured, EOK is
853 * returned with RET1 containing 0.
854 */
855#define HV_FAST_MMU_TSB_CTXNON0_INFO	0x2a
856
857/* mmu_fault_area_info()
858 * TRAP:	HV_FAST_TRAP
859 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_INFO
860 * RET0:	status
861 * RET1:	fault area real address
862 * ERRORS:	No errors defined.
863 *
864 * Return the currently defined MMU fault status area for the current
865 * CPU.  The real address of the fault status area is returned in
866 * RET1, or 0 is returned in RET1 if no fault status area is defined.
867 *
868 * Note: mmu_fault_area_conf() may be called with the return value (RET1)
869 *       from this service if there is a need to save and restore the fault
870 *	 area for a cpu.
871 */
872#define HV_FAST_MMU_FAULT_AREA_INFO	0x2b
873
874/* Cache and Memory services. */
875
876/* mem_scrub()
877 * TRAP:	HV_FAST_TRAP
878 * FUNCTION:	HV_FAST_MEM_SCRUB
879 * ARG0:	real address
880 * ARG1:	length
881 * RET0:	status
882 * RET1:	length scrubbed
883 * ERRORS:	ENORADDR	Invalid real address
884 *		EBADALIGN	Start address or length are not correctly
885 *				aligned
886 *		EINVAL		Length is zero
887 *
888 * Zero the memory contents in the range real address to real address
889 * plus length minus 1.  Also, valid ECC will be generated for that
890 * memory address range.  Scrubbing is started at the given real
891 * address, but may not scrub the entire given length.  The actual
892 * length scrubbed will be returned in RET1.
893 *
894 * The real address and length must be aligned on an 8K boundary, or
895 * contain the start address and length from a sun4v error report.
896 *
897 * Note: There are two uses for this function.  The first use is to block clear
898 *       and initialize memory and the second is to scrub an u ncorrectable
899 *       error reported via a resumable or non-resumable trap.  The second
900 *       use requires the arguments to be equal to the real address and length
901 *       provided in a sun4v memory error report.
902 */
903#define HV_FAST_MEM_SCRUB		0x31
904
905/* mem_sync()
906 * TRAP:	HV_FAST_TRAP
907 * FUNCTION:	HV_FAST_MEM_SYNC
908 * ARG0:	real address
909 * ARG1:	length
910 * RET0:	status
911 * RET1:	length synced
912 * ERRORS:	ENORADDR	Invalid real address
913 *		EBADALIGN	Start address or length are not correctly
914 *				aligned
915 *		EINVAL		Length is zero
916 *
917 * Force the next access within the real address to real address plus
918 * length minus 1 to be fetches from main system memory.  Less than
919 * the given length may be synced, the actual amount synced is
920 * returned in RET1.  The real address and length must be aligned on
921 * an 8K boundary.
922 */
923#define HV_FAST_MEM_SYNC		0x32
924
925/* Time of day services.
926 *
927 * The hypervisor maintains the time of day on a per-domain basis.
928 * Changing the time of day in one domain does not affect the time of
929 * day on any other domain.
930 *
931 * Time is described by a single unsigned 64-bit word which is the
932 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
933 * 1970).
934 */
935
936/* tod_get()
937 * TRAP:	HV_FAST_TRAP
938 * FUNCTION:	HV_FAST_TOD_GET
939 * RET0:	status
940 * RET1:	TOD
941 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
942 *		ENOTSUPPORTED	If TOD not supported on this platform
943 *
944 * Return the current time of day.  May block if TOD access is
945 * temporarily not possible.
946 */
947#define HV_FAST_TOD_GET			0x50
948
949#ifndef __ASSEMBLY__
950unsigned long sun4v_tod_get(unsigned long *time);
951#endif
952
953/* tod_set()
954 * TRAP:	HV_FAST_TRAP
955 * FUNCTION:	HV_FAST_TOD_SET
956 * ARG0:	TOD
957 * RET0:	status
958 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
959 *		ENOTSUPPORTED	If TOD not supported on this platform
960 *
961 * The current time of day is set to the value specified in ARG0.  May
962 * block if TOD access is temporarily not possible.
963 */
964#define HV_FAST_TOD_SET			0x51
965
966#ifndef __ASSEMBLY__
967unsigned long sun4v_tod_set(unsigned long time);
968#endif
969
970/* Console services */
971
972/* con_getchar()
973 * TRAP:	HV_FAST_TRAP
974 * FUNCTION:	HV_FAST_CONS_GETCHAR
975 * RET0:	status
976 * RET1:	character
977 * ERRORS:	EWOULDBLOCK	No character available.
978 *
979 * Returns a character from the console device.  If no character is
980 * available then an EWOULDBLOCK error is returned.  If a character is
981 * available, then the returned status is EOK and the character value
982 * is in RET1.
983 *
984 * A virtual BREAK is represented by the 64-bit value -1.
985 *
986 * A virtual HUP signal is represented by the 64-bit value -2.
987 */
988#define HV_FAST_CONS_GETCHAR		0x60
989
990/* con_putchar()
991 * TRAP:	HV_FAST_TRAP
992 * FUNCTION:	HV_FAST_CONS_PUTCHAR
993 * ARG0:	character
994 * RET0:	status
995 * ERRORS:	EINVAL		Illegal character
996 *		EWOULDBLOCK	Output buffer currently full, would block
997 *
998 * Send a character to the console device.  Only character values
999 * between 0 and 255 may be used.  Values outside this range are
1000 * invalid except for the 64-bit value -1 which is used to send a
1001 * virtual BREAK.
1002 */
1003#define HV_FAST_CONS_PUTCHAR		0x61
1004
1005/* con_read()
1006 * TRAP:	HV_FAST_TRAP
1007 * FUNCTION:	HV_FAST_CONS_READ
1008 * ARG0:	buffer real address
1009 * ARG1:	buffer size in bytes
1010 * RET0:	status
1011 * RET1:	bytes read or BREAK or HUP
1012 * ERRORS:	EWOULDBLOCK	No character available.
1013 *
1014 * Reads characters into a buffer from the console device.  If no
1015 * character is available then an EWOULDBLOCK error is returned.
1016 * If a character is available, then the returned status is EOK
1017 * and the number of bytes read into the given buffer is provided
1018 * in RET1.
1019 *
1020 * A virtual BREAK is represented by the 64-bit RET1 value -1.
1021 *
1022 * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1023 *
1024 * If BREAK or HUP are indicated, no bytes were read into buffer.
1025 */
1026#define HV_FAST_CONS_READ		0x62
1027
1028/* con_write()
1029 * TRAP:	HV_FAST_TRAP
1030 * FUNCTION:	HV_FAST_CONS_WRITE
1031 * ARG0:	buffer real address
1032 * ARG1:	buffer size in bytes
1033 * RET0:	status
1034 * RET1:	bytes written
1035 * ERRORS:	EWOULDBLOCK	Output buffer currently full, would block
1036 *
1037 * Send a characters in buffer to the console device.  Breaks must be
1038 * sent using con_putchar().
1039 */
1040#define HV_FAST_CONS_WRITE		0x63
1041
1042#ifndef __ASSEMBLY__
1043long sun4v_con_getchar(long *status);
1044long sun4v_con_putchar(long c);
1045long sun4v_con_read(unsigned long buffer,
1046		    unsigned long size,
1047		    unsigned long *bytes_read);
1048unsigned long sun4v_con_write(unsigned long buffer,
1049			      unsigned long size,
1050			      unsigned long *bytes_written);
1051#endif
1052
1053/* mach_set_soft_state()
1054 * TRAP:	HV_FAST_TRAP
1055 * FUNCTION:	HV_FAST_MACH_SET_SOFT_STATE
1056 * ARG0:	software state
1057 * ARG1:	software state description pointer
1058 * RET0:	status
1059 * ERRORS:	EINVAL		software state not valid or software state
1060 *				description is not NULL terminated
1061 *		ENORADDR	software state description pointer is not a
1062 *				valid real address
1063 *		EBADALIGNED	software state description is not correctly
1064 *				aligned
1065 *
1066 * This allows the guest to report it's soft state to the hypervisor.  There
1067 * are two primary components to this state.  The first part states whether
1068 * the guest software is running or not.  The second containts optional
1069 * details specific to the software.
1070 *
1071 * The software state argument is defined below in HV_SOFT_STATE_*, and
1072 * indicates whether the guest is operating normally or in a transitional
1073 * state.
1074 *
1075 * The software state description argument is a real address of a data buffer
1076 * of size 32-bytes aligned on a 32-byte boundary.  It is treated as a NULL
1077 * terminated 7-bit ASCII string of up to 31 characters not including the
1078 * NULL termination.
1079 */
1080#define HV_FAST_MACH_SET_SOFT_STATE	0x70
1081#define  HV_SOFT_STATE_NORMAL		 0x01
1082#define  HV_SOFT_STATE_TRANSITION	 0x02
1083
1084#ifndef __ASSEMBLY__
1085unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1086				        unsigned long msg_string_ra);
1087#endif
1088
1089/* mach_get_soft_state()
1090 * TRAP:	HV_FAST_TRAP
1091 * FUNCTION:	HV_FAST_MACH_GET_SOFT_STATE
1092 * ARG0:	software state description pointer
1093 * RET0:	status
1094 * RET1:	software state
1095 * ERRORS:	ENORADDR	software state description pointer is not a
1096 *				valid real address
1097 *		EBADALIGNED	software state description is not correctly
1098 *				aligned
1099 *
1100 * Retrieve the current value of the guest's software state.  The rules
1101 * for the software state pointer are the same as for mach_set_soft_state()
1102 * above.
1103 */
1104#define HV_FAST_MACH_GET_SOFT_STATE	0x71
1105
1106/* svc_send()
1107 * TRAP:	HV_FAST_TRAP
1108 * FUNCTION:	HV_FAST_SVC_SEND
1109 * ARG0:	service ID
1110 * ARG1:	buffer real address
1111 * ARG2:	buffer size
1112 * RET0:	STATUS
1113 * RET1:	sent_bytes
1114 *
1115 * Be careful, all output registers are clobbered by this operation,
1116 * so for example it is not possible to save away a value in %o4
1117 * across the trap.
1118 */
1119#define HV_FAST_SVC_SEND		0x80
1120
1121/* svc_recv()
1122 * TRAP:	HV_FAST_TRAP
1123 * FUNCTION:	HV_FAST_SVC_RECV
1124 * ARG0:	service ID
1125 * ARG1:	buffer real address
1126 * ARG2:	buffer size
1127 * RET0:	STATUS
1128 * RET1:	recv_bytes
1129 *
1130 * Be careful, all output registers are clobbered by this operation,
1131 * so for example it is not possible to save away a value in %o4
1132 * across the trap.
1133 */
1134#define HV_FAST_SVC_RECV		0x81
1135
1136/* svc_getstatus()
1137 * TRAP:	HV_FAST_TRAP
1138 * FUNCTION:	HV_FAST_SVC_GETSTATUS
1139 * ARG0:	service ID
1140 * RET0:	STATUS
1141 * RET1:	status bits
1142 */
1143#define HV_FAST_SVC_GETSTATUS		0x82
1144
1145/* svc_setstatus()
1146 * TRAP:	HV_FAST_TRAP
1147 * FUNCTION:	HV_FAST_SVC_SETSTATUS
1148 * ARG0:	service ID
1149 * ARG1:	bits to set
1150 * RET0:	STATUS
1151 */
1152#define HV_FAST_SVC_SETSTATUS		0x83
1153
1154/* svc_clrstatus()
1155 * TRAP:	HV_FAST_TRAP
1156 * FUNCTION:	HV_FAST_SVC_CLRSTATUS
1157 * ARG0:	service ID
1158 * ARG1:	bits to clear
1159 * RET0:	STATUS
1160 */
1161#define HV_FAST_SVC_CLRSTATUS		0x84
1162
1163#ifndef __ASSEMBLY__
1164unsigned long sun4v_svc_send(unsigned long svc_id,
1165			     unsigned long buffer,
1166			     unsigned long buffer_size,
1167			     unsigned long *sent_bytes);
1168unsigned long sun4v_svc_recv(unsigned long svc_id,
1169			     unsigned long buffer,
1170			     unsigned long buffer_size,
1171			     unsigned long *recv_bytes);
1172unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1173				  unsigned long *status_bits);
1174unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1175				  unsigned long status_bits);
1176unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1177				  unsigned long status_bits);
1178#endif
1179
1180/* Trap trace services.
1181 *
1182 * The hypervisor provides a trap tracing capability for privileged
1183 * code running on each virtual CPU.  Privileged code provides a
1184 * round-robin trap trace queue within which the hypervisor writes
1185 * 64-byte entries detailing hyperprivileged traps taken n behalf of
1186 * privileged code.  This is provided as a debugging capability for
1187 * privileged code.
1188 *
1189 * The trap trace control structure is 64-bytes long and placed at the
1190 * start (offset 0) of the trap trace buffer, and is described as
1191 * follows:
1192 */
1193#ifndef __ASSEMBLY__
1194struct hv_trap_trace_control {
1195	unsigned long		head_offset;
1196	unsigned long		tail_offset;
1197	unsigned long		__reserved[0x30 / sizeof(unsigned long)];
1198};
1199#endif
1200#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET	0x00
1201#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET	0x08
1202
1203/* The head offset is the offset of the most recently completed entry
1204 * in the trap-trace buffer.  The tail offset is the offset of the
1205 * next entry to be written.  The control structure is owned and
1206 * modified by the hypervisor.  A guest may not modify the control
1207 * structure contents.  Attempts to do so will result in undefined
1208 * behavior for the guest.
1209 *
1210 * Each trap trace buffer entry is laid out as follows:
1211 */
1212#ifndef __ASSEMBLY__
1213struct hv_trap_trace_entry {
1214	unsigned char	type;		/* Hypervisor or guest entry?	*/
1215	unsigned char	hpstate;	/* Hyper-privileged state	*/
1216	unsigned char	tl;		/* Trap level			*/
1217	unsigned char	gl;		/* Global register level	*/
1218	unsigned short	tt;		/* Trap type			*/
1219	unsigned short	tag;		/* Extended trap identifier	*/
1220	unsigned long	tstate;		/* Trap state			*/
1221	unsigned long	tick;		/* Tick				*/
1222	unsigned long	tpc;		/* Trap PC			*/
1223	unsigned long	f1;		/* Entry specific		*/
1224	unsigned long	f2;		/* Entry specific		*/
1225	unsigned long	f3;		/* Entry specific		*/
1226	unsigned long	f4;		/* Entry specific		*/
1227};
1228#endif
1229#define HV_TRAP_TRACE_ENTRY_TYPE	0x00
1230#define HV_TRAP_TRACE_ENTRY_HPSTATE	0x01
1231#define HV_TRAP_TRACE_ENTRY_TL		0x02
1232#define HV_TRAP_TRACE_ENTRY_GL		0x03
1233#define HV_TRAP_TRACE_ENTRY_TT		0x04
1234#define HV_TRAP_TRACE_ENTRY_TAG		0x06
1235#define HV_TRAP_TRACE_ENTRY_TSTATE	0x08
1236#define HV_TRAP_TRACE_ENTRY_TICK	0x10
1237#define HV_TRAP_TRACE_ENTRY_TPC		0x18
1238#define HV_TRAP_TRACE_ENTRY_F1		0x20
1239#define HV_TRAP_TRACE_ENTRY_F2		0x28
1240#define HV_TRAP_TRACE_ENTRY_F3		0x30
1241#define HV_TRAP_TRACE_ENTRY_F4		0x38
1242
1243/* The type field is encoded as follows.  */
1244#define HV_TRAP_TYPE_UNDEF		0x00 /* Entry content undefined     */
1245#define HV_TRAP_TYPE_HV			0x01 /* Hypervisor trap entry       */
1246#define HV_TRAP_TYPE_GUEST		0xff /* Added via ttrace_addentry() */
1247
1248/* ttrace_buf_conf()
1249 * TRAP:	HV_FAST_TRAP
1250 * FUNCTION:	HV_FAST_TTRACE_BUF_CONF
1251 * ARG0:	real address
1252 * ARG1:	number of entries
1253 * RET0:	status
1254 * RET1:	number of entries
1255 * ERRORS:	ENORADDR	Invalid real address
1256 *		EINVAL		Size is too small
1257 *		EBADALIGN	Real address not aligned on 64-byte boundary
1258 *
1259 * Requests hypervisor trap tracing and declares a virtual CPU's trap
1260 * trace buffer to the hypervisor.  The real address supplies the real
1261 * base address of the trap trace queue and must be 64-byte aligned.
1262 * Specifying a value of 0 for the number of entries disables trap
1263 * tracing for the calling virtual CPU.  The buffer allocated must be
1264 * sized for a power of two number of 64-byte trap trace entries plus
1265 * an initial 64-byte control structure.
1266 *
1267 * This may be invoked any number of times so that a virtual CPU may
1268 * relocate a trap trace buffer or create "snapshots" of information.
1269 *
1270 * If the real address is illegal or badly aligned, then trap tracing
1271 * is disabled and an error is returned.
1272 *
1273 * Upon failure with EINVAL, this service call returns in RET1 the
1274 * minimum number of buffer entries required.  Upon other failures
1275 * RET1 is undefined.
1276 */
1277#define HV_FAST_TTRACE_BUF_CONF		0x90
1278
1279/* ttrace_buf_info()
1280 * TRAP:	HV_FAST_TRAP
1281 * FUNCTION:	HV_FAST_TTRACE_BUF_INFO
1282 * RET0:	status
1283 * RET1:	real address
1284 * RET2:	size
1285 * ERRORS:	None defined.
1286 *
1287 * Returns the size and location of the previously declared trap-trace
1288 * buffer.  In the event that no buffer was previously defined, or the
1289 * buffer is disabled, this call will return a size of zero bytes.
1290 */
1291#define HV_FAST_TTRACE_BUF_INFO		0x91
1292
1293/* ttrace_enable()
1294 * TRAP:	HV_FAST_TRAP
1295 * FUNCTION:	HV_FAST_TTRACE_ENABLE
1296 * ARG0:	enable
1297 * RET0:	status
1298 * RET1:	previous enable state
1299 * ERRORS:	EINVAL		No trap trace buffer currently defined
1300 *
1301 * Enable or disable trap tracing, and return the previous enabled
1302 * state in RET1.  Future systems may define various flags for the
1303 * enable argument (ARG0), for the moment a guest should pass
1304 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1305 * tracing - which will ensure future compatibility.
1306 */
1307#define HV_FAST_TTRACE_ENABLE		0x92
1308
1309/* ttrace_freeze()
1310 * TRAP:	HV_FAST_TRAP
1311 * FUNCTION:	HV_FAST_TTRACE_FREEZE
1312 * ARG0:	freeze
1313 * RET0:	status
1314 * RET1:	previous freeze state
1315 * ERRORS:	EINVAL		No trap trace buffer currently defined
1316 *
1317 * Freeze or unfreeze trap tracing, returning the previous freeze
1318 * state in RET1.  A guest should pass a non-zero value to freeze and
1319 * a zero value to unfreeze all tracing.  The returned previous state
1320 * is 0 for not frozen and 1 for frozen.
1321 */
1322#define HV_FAST_TTRACE_FREEZE		0x93
1323
1324/* ttrace_addentry()
1325 * TRAP:	HV_TTRACE_ADDENTRY_TRAP
1326 * ARG0:	tag (16-bits)
1327 * ARG1:	data word 0
1328 * ARG2:	data word 1
1329 * ARG3:	data word 2
1330 * ARG4:	data word 3
1331 * RET0:	status
1332 * ERRORS:	EINVAL		No trap trace buffer currently defined
1333 *
1334 * Add an entry to the trap trace buffer.  Upon return only ARG0/RET0
1335 * is modified - none of the other registers holding arguments are
1336 * volatile across this hypervisor service.
1337 */
1338
1339/* Core dump services.
1340 *
1341 * Since the hypervisor viraulizes and thus obscures a lot of the
1342 * physical machine layout and state, traditional OS crash dumps can
1343 * be difficult to diagnose especially when the problem is a
1344 * configuration error of some sort.
1345 *
1346 * The dump services provide an opaque buffer into which the
1347 * hypervisor can place it's internal state in order to assist in
1348 * debugging such situations.  The contents are opaque and extremely
1349 * platform and hypervisor implementation specific.  The guest, during
1350 * a core dump, requests that the hypervisor update any information in
1351 * the dump buffer in preparation to being dumped as part of the
1352 * domain's memory image.
1353 */
1354
1355/* dump_buf_update()
1356 * TRAP:	HV_FAST_TRAP
1357 * FUNCTION:	HV_FAST_DUMP_BUF_UPDATE
1358 * ARG0:	real address
1359 * ARG1:	size
1360 * RET0:	status
1361 * RET1:	required size of dump buffer
1362 * ERRORS:	ENORADDR	Invalid real address
1363 *		EBADALIGN	Real address is not aligned on a 64-byte
1364 *				boundary
1365 *		EINVAL		Size is non-zero but less than minimum size
1366 *				required
1367 *		ENOTSUPPORTED	Operation not supported on current logical
1368 *				domain
1369 *
1370 * Declare a domain dump buffer to the hypervisor.  The real address
1371 * provided for the domain dump buffer must be 64-byte aligned.  The
1372 * size specifies the size of the dump buffer and may be larger than
1373 * the minimum size specified in the machine description.  The
1374 * hypervisor will fill the dump buffer with opaque data.
1375 *
1376 * Note: A guest may elect to include dump buffer contents as part of a crash
1377 *       dump to assist with debugging.  This function may be called any number
1378 *       of times so that a guest may relocate a dump buffer, or create
1379 *       "snapshots" of any dump-buffer information.  Each call to
1380 *       dump_buf_update() atomically declares the new dump buffer to the
1381 *       hypervisor.
1382 *
1383 * A specified size of 0 unconfigures the dump buffer.  If the real
1384 * address is illegal or badly aligned, then any currently active dump
1385 * buffer is disabled and an error is returned.
1386 *
1387 * In the event that the call fails with EINVAL, RET1 contains the
1388 * minimum size requires by the hypervisor for a valid dump buffer.
1389 */
1390#define HV_FAST_DUMP_BUF_UPDATE		0x94
1391
1392/* dump_buf_info()
1393 * TRAP:	HV_FAST_TRAP
1394 * FUNCTION:	HV_FAST_DUMP_BUF_INFO
1395 * RET0:	status
1396 * RET1:	real address of current dump buffer
1397 * RET2:	size of current dump buffer
1398 * ERRORS:	No errors defined.
1399 *
1400 * Return the currently configures dump buffer description.  A
1401 * returned size of 0 bytes indicates an undefined dump buffer.  In
1402 * this case the return address in RET1 is undefined.
1403 */
1404#define HV_FAST_DUMP_BUF_INFO		0x95
1405
1406/* Device interrupt services.
1407 *
1408 * Device interrupts are allocated to system bus bridges by the hypervisor,
1409 * and described to OBP in the machine description.  OBP then describes
1410 * these interrupts to the OS via properties in the device tree.
1411 *
1412 * Terminology:
1413 *
1414 *	cpuid		Unique opaque value which represents a target cpu.
1415 *
1416 *	devhandle	Device handle.  It uniquely identifies a device, and
1417 *			consistes of the lower 28-bits of the hi-cell of the
1418 *			first entry of the device's "reg" property in the
1419 *			OBP device tree.
1420 *
1421 *	devino		Device interrupt number.  Specifies the relative
1422 *			interrupt number within the device.  The unique
1423 *			combination of devhandle and devino are used to
1424 *			identify a specific device interrupt.
1425 *
1426 *			Note: The devino value is the same as the values in the
1427 *			      "interrupts" property or "interrupt-map" property
1428 *			      in the OBP device tree for that device.
1429 *
1430 *	sysino		System interrupt number.  A 64-bit unsigned interger
1431 *			representing a unique interrupt within a virtual
1432 *			machine.
1433 *
1434 *	intr_state	A flag representing the interrupt state for a given
1435 *			sysino.  The state values are defined below.
1436 *
1437 *	intr_enabled	A flag representing the 'enabled' state for a given
1438 *			sysino.  The enable values are defined below.
1439 */
1440
1441#define HV_INTR_STATE_IDLE		0 /* Nothing pending */
1442#define HV_INTR_STATE_RECEIVED		1 /* Interrupt received by hardware */
1443#define HV_INTR_STATE_DELIVERED		2 /* Interrupt delivered to queue */
1444
1445#define HV_INTR_DISABLED		0 /* sysino not enabled */
1446#define HV_INTR_ENABLED			1 /* sysino enabled */
1447
1448/* intr_devino_to_sysino()
1449 * TRAP:	HV_FAST_TRAP
1450 * FUNCTION:	HV_FAST_INTR_DEVINO2SYSINO
1451 * ARG0:	devhandle
1452 * ARG1:	devino
1453 * RET0:	status
1454 * RET1:	sysino
1455 * ERRORS:	EINVAL		Invalid devhandle/devino
1456 *
1457 * Converts a device specific interrupt number of the given
1458 * devhandle/devino into a system specific ino (sysino).
1459 */
1460#define HV_FAST_INTR_DEVINO2SYSINO	0xa0
1461
1462#ifndef __ASSEMBLY__
1463unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1464				     unsigned long devino);
1465#endif
1466
1467/* intr_getenabled()
1468 * TRAP:	HV_FAST_TRAP
1469 * FUNCTION:	HV_FAST_INTR_GETENABLED
1470 * ARG0:	sysino
1471 * RET0:	status
1472 * RET1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1473 * ERRORS:	EINVAL		Invalid sysino
1474 *
1475 * Returns interrupt enabled state in RET1 for the interrupt defined
1476 * by the given sysino.
1477 */
1478#define HV_FAST_INTR_GETENABLED		0xa1
1479
1480#ifndef __ASSEMBLY__
1481unsigned long sun4v_intr_getenabled(unsigned long sysino);
1482#endif
1483
1484/* intr_setenabled()
1485 * TRAP:	HV_FAST_TRAP
1486 * FUNCTION:	HV_FAST_INTR_SETENABLED
1487 * ARG0:	sysino
1488 * ARG1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1489 * RET0:	status
1490 * ERRORS:	EINVAL		Invalid sysino or intr_enabled value
1491 *
1492 * Set the 'enabled' state of the interrupt sysino.
1493 */
1494#define HV_FAST_INTR_SETENABLED		0xa2
1495
1496#ifndef __ASSEMBLY__
1497unsigned long sun4v_intr_setenabled(unsigned long sysino,
1498				    unsigned long intr_enabled);
1499#endif
1500
1501/* intr_getstate()
1502 * TRAP:	HV_FAST_TRAP
1503 * FUNCTION:	HV_FAST_INTR_GETSTATE
1504 * ARG0:	sysino
1505 * RET0:	status
1506 * RET1:	intr_state (HV_INTR_STATE_*)
1507 * ERRORS:	EINVAL		Invalid sysino
1508 *
1509 * Returns current state of the interrupt defined by the given sysino.
1510 */
1511#define HV_FAST_INTR_GETSTATE		0xa3
1512
1513#ifndef __ASSEMBLY__
1514unsigned long sun4v_intr_getstate(unsigned long sysino);
1515#endif
1516
1517/* intr_setstate()
1518 * TRAP:	HV_FAST_TRAP
1519 * FUNCTION:	HV_FAST_INTR_SETSTATE
1520 * ARG0:	sysino
1521 * ARG1:	intr_state (HV_INTR_STATE_*)
1522 * RET0:	status
1523 * ERRORS:	EINVAL		Invalid sysino or intr_state value
1524 *
1525 * Sets the current state of the interrupt described by the given sysino
1526 * value.
1527 *
1528 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1529 *       interrupt for sysino.
1530 */
1531#define HV_FAST_INTR_SETSTATE		0xa4
1532
1533#ifndef __ASSEMBLY__
1534unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1535#endif
1536
1537/* intr_gettarget()
1538 * TRAP:	HV_FAST_TRAP
1539 * FUNCTION:	HV_FAST_INTR_GETTARGET
1540 * ARG0:	sysino
1541 * RET0:	status
1542 * RET1:	cpuid
1543 * ERRORS:	EINVAL		Invalid sysino
1544 *
1545 * Returns CPU that is the current target of the interrupt defined by
1546 * the given sysino.  The CPU value returned is undefined if the target
1547 * has not been set via intr_settarget().
1548 */
1549#define HV_FAST_INTR_GETTARGET		0xa5
1550
1551#ifndef __ASSEMBLY__
1552unsigned long sun4v_intr_gettarget(unsigned long sysino);
1553#endif
1554
1555/* intr_settarget()
1556 * TRAP:	HV_FAST_TRAP
1557 * FUNCTION:	HV_FAST_INTR_SETTARGET
1558 * ARG0:	sysino
1559 * ARG1:	cpuid
1560 * RET0:	status
1561 * ERRORS:	EINVAL		Invalid sysino
1562 *		ENOCPU		Invalid cpuid
1563 *
1564 * Set the target CPU for the interrupt defined by the given sysino.
1565 */
1566#define HV_FAST_INTR_SETTARGET		0xa6
1567
1568#ifndef __ASSEMBLY__
1569unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1570#endif
1571
1572/* vintr_get_cookie()
1573 * TRAP:	HV_FAST_TRAP
1574 * FUNCTION:	HV_FAST_VINTR_GET_COOKIE
1575 * ARG0:	device handle
1576 * ARG1:	device ino
1577 * RET0:	status
1578 * RET1:	cookie
1579 */
1580#define HV_FAST_VINTR_GET_COOKIE	0xa7
1581
1582/* vintr_set_cookie()
1583 * TRAP:	HV_FAST_TRAP
1584 * FUNCTION:	HV_FAST_VINTR_SET_COOKIE
1585 * ARG0:	device handle
1586 * ARG1:	device ino
1587 * ARG2:	cookie
1588 * RET0:	status
1589 */
1590#define HV_FAST_VINTR_SET_COOKIE	0xa8
1591
1592/* vintr_get_valid()
1593 * TRAP:	HV_FAST_TRAP
1594 * FUNCTION:	HV_FAST_VINTR_GET_VALID
1595 * ARG0:	device handle
1596 * ARG1:	device ino
1597 * RET0:	status
1598 * RET1:	valid state
1599 */
1600#define HV_FAST_VINTR_GET_VALID		0xa9
1601
1602/* vintr_set_valid()
1603 * TRAP:	HV_FAST_TRAP
1604 * FUNCTION:	HV_FAST_VINTR_SET_VALID
1605 * ARG0:	device handle
1606 * ARG1:	device ino
1607 * ARG2:	valid state
1608 * RET0:	status
1609 */
1610#define HV_FAST_VINTR_SET_VALID		0xaa
1611
1612/* vintr_get_state()
1613 * TRAP:	HV_FAST_TRAP
1614 * FUNCTION:	HV_FAST_VINTR_GET_STATE
1615 * ARG0:	device handle
1616 * ARG1:	device ino
1617 * RET0:	status
1618 * RET1:	state
1619 */
1620#define HV_FAST_VINTR_GET_STATE		0xab
1621
1622/* vintr_set_state()
1623 * TRAP:	HV_FAST_TRAP
1624 * FUNCTION:	HV_FAST_VINTR_SET_STATE
1625 * ARG0:	device handle
1626 * ARG1:	device ino
1627 * ARG2:	state
1628 * RET0:	status
1629 */
1630#define HV_FAST_VINTR_SET_STATE		0xac
1631
1632/* vintr_get_target()
1633 * TRAP:	HV_FAST_TRAP
1634 * FUNCTION:	HV_FAST_VINTR_GET_TARGET
1635 * ARG0:	device handle
1636 * ARG1:	device ino
1637 * RET0:	status
1638 * RET1:	cpuid
1639 */
1640#define HV_FAST_VINTR_GET_TARGET	0xad
1641
1642/* vintr_set_target()
1643 * TRAP:	HV_FAST_TRAP
1644 * FUNCTION:	HV_FAST_VINTR_SET_TARGET
1645 * ARG0:	device handle
1646 * ARG1:	device ino
1647 * ARG2:	cpuid
1648 * RET0:	status
1649 */
1650#define HV_FAST_VINTR_SET_TARGET	0xae
1651
1652#ifndef __ASSEMBLY__
1653unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1654				     unsigned long dev_ino,
1655				     unsigned long *cookie);
1656unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1657				     unsigned long dev_ino,
1658				     unsigned long cookie);
1659unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1660				    unsigned long dev_ino,
1661				    unsigned long *valid);
1662unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1663				    unsigned long dev_ino,
1664				    unsigned long valid);
1665unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1666				    unsigned long dev_ino,
1667				    unsigned long *state);
1668unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1669				    unsigned long dev_ino,
1670				    unsigned long state);
1671unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1672				     unsigned long dev_ino,
1673				     unsigned long *cpuid);
1674unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1675				     unsigned long dev_ino,
1676				     unsigned long cpuid);
1677#endif
1678
1679/* PCI IO services.
1680 *
1681 * See the terminology descriptions in the device interrupt services
1682 * section above as those apply here too.  Here are terminology
1683 * definitions specific to these PCI IO services:
1684 *
1685 *	tsbnum		TSB number.  Indentifies which io-tsb is used.
1686 *			For this version of the specification, tsbnum
1687 *			must be zero.
1688 *
1689 *	tsbindex	TSB index.  Identifies which entry in the TSB
1690 *			is used.  The first entry is zero.
1691 *
1692 *	tsbid		A 64-bit aligned data structure which contains
1693 *			a tsbnum and a tsbindex.  Bits 63:32 contain the
1694 *			tsbnum and bits 31:00 contain the tsbindex.
1695 *
1696 *			Use the HV_PCI_TSBID() macro to construct such
1697 * 			values.
1698 *
1699 *	io_attributes	IO attributes for IOMMU mappings.  One of more
1700 *			of the attritbute bits are stores in a 64-bit
1701 *			value.  The values are defined below.
1702 *
1703 *	r_addr		64-bit real address
1704 *
1705 *	pci_device	PCI device address.  A PCI device address identifies
1706 *			a specific device on a specific PCI bus segment.
1707 *			A PCI device address ia a 32-bit unsigned integer
1708 *			with the following format:
1709 *
1710 *				00000000.bbbbbbbb.dddddfff.00000000
1711 *
1712 *			Use the HV_PCI_DEVICE_BUILD() macro to construct
1713 *			such values.
1714 *
1715 *	pci_config_offset
1716 *			PCI configureation space offset.  For conventional
1717 *			PCI a value between 0 and 255.  For extended
1718 *			configuration space, a value between 0 and 4095.
1719 *
1720 *			Note: For PCI configuration space accesses, the offset
1721 *			      must be aligned to the access size.
1722 *
1723 *	error_flag	A return value which specifies if the action succeeded
1724 *			or failed.  0 means no error, non-0 means some error
1725 *			occurred while performing the service.
1726 *
1727 *	io_sync_direction
1728 *			Direction definition for pci_dma_sync(), defined
1729 *			below in HV_PCI_SYNC_*.
1730 *
1731 *	io_page_list	A list of io_page_addresses, an io_page_address is
1732 *			a real address.
1733 *
1734 *	io_page_list_p	A pointer to an io_page_list.
1735 *
1736 *	"size based byte swap" - Some functions do size based byte swapping
1737 *				 which allows sw to access pointers and
1738 *				 counters in native form when the processor
1739 *				 operates in a different endianness than the
1740 *				 IO bus.  Size-based byte swapping converts a
1741 *				 multi-byte field between big-endian and
1742 *				 little-endian format.
1743 */
1744
1745#define HV_PCI_MAP_ATTR_READ		0x01
1746#define HV_PCI_MAP_ATTR_WRITE		0x02
1747
1748#define HV_PCI_DEVICE_BUILD(b,d,f)	\
1749	((((b) & 0xff) << 16) | \
1750	 (((d) & 0x1f) << 11) | \
1751	 (((f) & 0x07) <<  8))
1752
1753#define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1754	((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1755
1756#define HV_PCI_SYNC_FOR_DEVICE		0x01
1757#define HV_PCI_SYNC_FOR_CPU		0x02
1758
1759/* pci_iommu_map()
1760 * TRAP:	HV_FAST_TRAP
1761 * FUNCTION:	HV_FAST_PCI_IOMMU_MAP
1762 * ARG0:	devhandle
1763 * ARG1:	tsbid
1764 * ARG2:	#ttes
1765 * ARG3:	io_attributes
1766 * ARG4:	io_page_list_p
1767 * RET0:	status
1768 * RET1:	#ttes mapped
1769 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex/io_attributes
1770 *		EBADALIGN	Improperly aligned real address
1771 *		ENORADDR	Invalid real address
1772 *
1773 * Create IOMMU mappings in the sun4v device defined by the given
1774 * devhandle.  The mappings are created in the TSB defined by the
1775 * tsbnum component of the given tsbid.  The first mapping is created
1776 * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1777 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1778 * the second at tsbnum, tsbindex + 1, etc.
1779 *
1780 * All mappings are created with the attributes defined by the io_attributes
1781 * argument.  The page mapping addresses are described in the io_page_list
1782 * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1783 * The first entry in the io_page_list is the address for the first iotte, the
1784 * 2nd for the 2nd iotte, and so on.
1785 *
1786 * Each io_page_address in the io_page_list must be appropriately aligned.
1787 * #ttes must be greater than zero.  For this version of the spec, the tsbnum
1788 * component of the given tsbid must be zero.
1789 *
1790 * Returns the actual number of mappings creates, which may be less than
1791 * or equal to the argument #ttes.  If the function returns a value which
1792 * is less than the #ttes, the caller may continus to call the function with
1793 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1794 * mapped.
1795 *
1796 * Note: This function does not imply an iotte cache flush.  The guest must
1797 *       demap an entry before re-mapping it.
1798 */
1799#define HV_FAST_PCI_IOMMU_MAP		0xb0
1800
1801/* pci_iommu_demap()
1802 * TRAP:	HV_FAST_TRAP
1803 * FUNCTION:	HV_FAST_PCI_IOMMU_DEMAP
1804 * ARG0:	devhandle
1805 * ARG1:	tsbid
1806 * ARG2:	#ttes
1807 * RET0:	status
1808 * RET1:	#ttes demapped
1809 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1810 *
1811 * Demap and flush IOMMU mappings in the device defined by the given
1812 * devhandle.  Demaps up to #ttes entries in the TSB defined by the tsbnum
1813 * component of the given tsbid, starting at the TSB index defined by the
1814 * tsbindex component of the given tsbid.
1815 *
1816 * For this version of the spec, the tsbnum of the given tsbid must be zero.
1817 * #ttes must be greater than zero.
1818 *
1819 * Returns the actual number of ttes demapped, which may be less than or equal
1820 * to the argument #ttes.  If #ttes demapped is less than #ttes, the caller
1821 * may continue to call this function with updated tsbid and #ttes arguments
1822 * until all pages are demapped.
1823 *
1824 * Note: Entries do not have to be mapped to be demapped.  A demap of an
1825 *       unmapped page will flush the entry from the tte cache.
1826 */
1827#define HV_FAST_PCI_IOMMU_DEMAP		0xb1
1828
1829/* pci_iommu_getmap()
1830 * TRAP:	HV_FAST_TRAP
1831 * FUNCTION:	HV_FAST_PCI_IOMMU_GETMAP
1832 * ARG0:	devhandle
1833 * ARG1:	tsbid
1834 * RET0:	status
1835 * RET1:	io_attributes
1836 * RET2:	real address
1837 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1838 *		ENOMAP		Mapping is not valid, no translation exists
1839 *
1840 * Read and return the mapping in the device described by the given devhandle
1841 * and tsbid.  If successful, the io_attributes shall be returned in RET1
1842 * and the page address of the mapping shall be returned in RET2.
1843 *
1844 * For this version of the spec, the tsbnum component of the given tsbid
1845 * must be zero.
1846 */
1847#define HV_FAST_PCI_IOMMU_GETMAP	0xb2
1848
1849/* pci_iommu_getbypass()
1850 * TRAP:	HV_FAST_TRAP
1851 * FUNCTION:	HV_FAST_PCI_IOMMU_GETBYPASS
1852 * ARG0:	devhandle
1853 * ARG1:	real address
1854 * ARG2:	io_attributes
1855 * RET0:	status
1856 * RET1:	io_addr
1857 * ERRORS:	EINVAL		Invalid devhandle/io_attributes
1858 *		ENORADDR	Invalid real address
1859 *		ENOTSUPPORTED	Function not supported in this implementation.
1860 *
1861 * Create a "special" mapping in the device described by the given devhandle,
1862 * for the given real address and attributes.  Return the IO address in RET1
1863 * if successful.
1864 */
1865#define HV_FAST_PCI_IOMMU_GETBYPASS	0xb3
1866
1867/* pci_config_get()
1868 * TRAP:	HV_FAST_TRAP
1869 * FUNCTION:	HV_FAST_PCI_CONFIG_GET
1870 * ARG0:	devhandle
1871 * ARG1:	pci_device
1872 * ARG2:	pci_config_offset
1873 * ARG3:	size
1874 * RET0:	status
1875 * RET1:	error_flag
1876 * RET2:	data
1877 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1878 *		EBADALIGN	pci_config_offset not size aligned
1879 *		ENOACCESS	Access to this offset is not permitted
1880 *
1881 * Read PCI configuration space for the adapter described by the given
1882 * devhandle.  Read size (1, 2, or 4) bytes of data from the given
1883 * pci_device, at pci_config_offset from the beginning of the device's
1884 * configuration space.  If there was no error, RET1 is set to zero and
1885 * RET2 is set to the data read.  Insignificant bits in RET2 are not
1886 * guaranteed to have any specific value and therefore must be ignored.
1887 *
1888 * The data returned in RET2 is size based byte swapped.
1889 *
1890 * If an error occurs during the read, set RET1 to a non-zero value.  The
1891 * given pci_config_offset must be 'size' aligned.
1892 */
1893#define HV_FAST_PCI_CONFIG_GET		0xb4
1894
1895/* pci_config_put()
1896 * TRAP:	HV_FAST_TRAP
1897 * FUNCTION:	HV_FAST_PCI_CONFIG_PUT
1898 * ARG0:	devhandle
1899 * ARG1:	pci_device
1900 * ARG2:	pci_config_offset
1901 * ARG3:	size
1902 * ARG4:	data
1903 * RET0:	status
1904 * RET1:	error_flag
1905 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1906 *		EBADALIGN	pci_config_offset not size aligned
1907 *		ENOACCESS	Access to this offset is not permitted
1908 *
1909 * Write PCI configuration space for the adapter described by the given
1910 * devhandle.  Write size (1, 2, or 4) bytes of data in a single operation,
1911 * at pci_config_offset from the beginning of the device's configuration
1912 * space.  The data argument contains the data to be written to configuration
1913 * space.  Prior to writing, the data is size based byte swapped.
1914 *
1915 * If an error occurs during the write access, do not generate an error
1916 * report, do set RET1 to a non-zero value.  Otherwise RET1 is zero.
1917 * The given pci_config_offset must be 'size' aligned.
1918 *
1919 * This function is permitted to read from offset zero in the configuration
1920 * space described by the given pci_device if necessary to ensure that the
1921 * write access to config space completes.
1922 */
1923#define HV_FAST_PCI_CONFIG_PUT		0xb5
1924
1925/* pci_peek()
1926 * TRAP:	HV_FAST_TRAP
1927 * FUNCTION:	HV_FAST_PCI_PEEK
1928 * ARG0:	devhandle
1929 * ARG1:	real address
1930 * ARG2:	size
1931 * RET0:	status
1932 * RET1:	error_flag
1933 * RET2:	data
1934 * ERRORS:	EINVAL		Invalid devhandle or size
1935 *		EBADALIGN	Improperly aligned real address
1936 *		ENORADDR	Bad real address
1937 *		ENOACCESS	Guest access prohibited
1938 *
1939 * Attempt to read the IO address given by the given devhandle, real address,
1940 * and size.  Size must be 1, 2, 4, or 8.  The read is performed as a single
1941 * access operation using the given size.  If an error occurs when reading
1942 * from the given location, do not generate an error report, but return a
1943 * non-zero value in RET1.  If the read was successful, return zero in RET1
1944 * and return the actual data read in RET2.  The data returned is size based
1945 * byte swapped.
1946 *
1947 * Non-significant bits in RET2 are not guaranteed to have any specific value
1948 * and therefore must be ignored.  If RET1 is returned as non-zero, the data
1949 * value is not guaranteed to have any specific value and should be ignored.
1950 *
1951 * The caller must have permission to read from the given devhandle, real
1952 * address, which must be an IO address.  The argument real address must be a
1953 * size aligned address.
1954 *
1955 * The hypervisor implementation of this function must block access to any
1956 * IO address that the guest does not have explicit permission to access.
1957 */
1958#define HV_FAST_PCI_PEEK		0xb6
1959
1960/* pci_poke()
1961 * TRAP:	HV_FAST_TRAP
1962 * FUNCTION:	HV_FAST_PCI_POKE
1963 * ARG0:	devhandle
1964 * ARG1:	real address
1965 * ARG2:	size
1966 * ARG3:	data
1967 * ARG4:	pci_device
1968 * RET0:	status
1969 * RET1:	error_flag
1970 * ERRORS:	EINVAL		Invalid devhandle, size, or pci_device
1971 *		EBADALIGN	Improperly aligned real address
1972 *		ENORADDR	Bad real address
1973 *		ENOACCESS	Guest access prohibited
1974 *		ENOTSUPPORTED	Function is not supported by implementation
1975 *
1976 * Attempt to write data to the IO address given by the given devhandle,
1977 * real address, and size.  Size must be 1, 2, 4, or 8.  The write is
1978 * performed as a single access operation using the given size. Prior to
1979 * writing the data is size based swapped.
1980 *
1981 * If an error occurs when writing to the given location, do not generate an
1982 * error report, but return a non-zero value in RET1.  If the write was
1983 * successful, return zero in RET1.
1984 *
1985 * pci_device describes the configuration address of the device being
1986 * written to.  The implementation may safely read from offset 0 with
1987 * the configuration space of the device described by devhandle and
1988 * pci_device in order to guarantee that the write portion of the operation
1989 * completes
1990 *
1991 * Any error that occurs due to the read shall be reported using the normal
1992 * error reporting mechanisms .. the read error is not suppressed.
1993 *
1994 * The caller must have permission to write to the given devhandle, real
1995 * address, which must be an IO address.  The argument real address must be a
1996 * size aligned address.  The caller must have permission to read from
1997 * the given devhandle, pci_device cofiguration space offset 0.
1998 *
1999 * The hypervisor implementation of this function must block access to any
2000 * IO address that the guest does not have explicit permission to access.
2001 */
2002#define HV_FAST_PCI_POKE		0xb7
2003
2004/* pci_dma_sync()
2005 * TRAP:	HV_FAST_TRAP
2006 * FUNCTION:	HV_FAST_PCI_DMA_SYNC
2007 * ARG0:	devhandle
2008 * ARG1:	real address
2009 * ARG2:	size
2010 * ARG3:	io_sync_direction
2011 * RET0:	status
2012 * RET1:	#synced
2013 * ERRORS:	EINVAL		Invalid devhandle or io_sync_direction
2014 *		ENORADDR	Bad real address
2015 *
2016 * Synchronize a memory region described by the given real address and size,
2017 * for the device defined by the given devhandle using the direction(s)
2018 * defined by the given io_sync_direction.  The argument size is the size of
2019 * the memory region in bytes.
2020 *
2021 * Return the actual number of bytes synchronized in the return value #synced,
2022 * which may be less than or equal to the argument size.  If the return
2023 * value #synced is less than size, the caller must continue to call this
2024 * function with updated real address and size arguments until the entire
2025 * memory region is synchronized.
2026 */
2027#define HV_FAST_PCI_DMA_SYNC		0xb8
2028
2029/* PCI MSI services.  */
2030
2031#define HV_MSITYPE_MSI32		0x00
2032#define HV_MSITYPE_MSI64		0x01
2033
2034#define HV_MSIQSTATE_IDLE		0x00
2035#define HV_MSIQSTATE_ERROR		0x01
2036
2037#define HV_MSIQ_INVALID			0x00
2038#define HV_MSIQ_VALID			0x01
2039
2040#define HV_MSISTATE_IDLE		0x00
2041#define HV_MSISTATE_DELIVERED		0x01
2042
2043#define HV_MSIVALID_INVALID		0x00
2044#define HV_MSIVALID_VALID		0x01
2045
2046#define HV_PCIE_MSGTYPE_PME_MSG		0x18
2047#define HV_PCIE_MSGTYPE_PME_ACK_MSG	0x1b
2048#define HV_PCIE_MSGTYPE_CORR_MSG	0x30
2049#define HV_PCIE_MSGTYPE_NONFATAL_MSG	0x31
2050#define HV_PCIE_MSGTYPE_FATAL_MSG	0x33
2051
2052#define HV_MSG_INVALID			0x00
2053#define HV_MSG_VALID			0x01
2054
2055/* pci_msiq_conf()
2056 * TRAP:	HV_FAST_TRAP
2057 * FUNCTION:	HV_FAST_PCI_MSIQ_CONF
2058 * ARG0:	devhandle
2059 * ARG1:	msiqid
2060 * ARG2:	real address
2061 * ARG3:	number of entries
2062 * RET0:	status
2063 * ERRORS:	EINVAL		Invalid devhandle, msiqid or nentries
2064 *		EBADALIGN	Improperly aligned real address
2065 *		ENORADDR	Bad real address
2066 *
2067 * Configure the MSI queue given by the devhandle and msiqid arguments,
2068 * and to be placed at the given real address and be of the given
2069 * number of entries.  The real address must be aligned exactly to match
2070 * the queue size.  Each queue entry is 64-bytes long, so f.e. a 32 entry
2071 * queue must be aligned on a 2048 byte real address boundary.  The MSI-EQ
2072 * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2073 *
2074 * Implementation Note: Certain implementations have fixed sized queues.  In
2075 *                      that case, number of entries must contain the correct
2076 *                      value.
2077 */
2078#define HV_FAST_PCI_MSIQ_CONF		0xc0
2079
2080/* pci_msiq_info()
2081 * TRAP:	HV_FAST_TRAP
2082 * FUNCTION:	HV_FAST_PCI_MSIQ_INFO
2083 * ARG0:	devhandle
2084 * ARG1:	msiqid
2085 * RET0:	status
2086 * RET1:	real address
2087 * RET2:	number of entries
2088 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2089 *
2090 * Return the configuration information for the MSI queue described
2091 * by the given devhandle and msiqid.  The base address of the queue
2092 * is returned in ARG1 and the number of entries is returned in ARG2.
2093 * If the queue is unconfigured, the real address is undefined and the
2094 * number of entries will be returned as zero.
2095 */
2096#define HV_FAST_PCI_MSIQ_INFO		0xc1
2097
2098/* pci_msiq_getvalid()
2099 * TRAP:	HV_FAST_TRAP
2100 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2101 * ARG0:	devhandle
2102 * ARG1:	msiqid
2103 * RET0:	status
2104 * RET1:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2105 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2106 *
2107 * Get the valid state of the MSI-EQ described by the given devhandle and
2108 * msiqid.
2109 */
2110#define HV_FAST_PCI_MSIQ_GETVALID	0xc2
2111
2112/* pci_msiq_setvalid()
2113 * TRAP:	HV_FAST_TRAP
2114 * FUNCTION:	HV_FAST_PCI_MSIQ_SETVALID
2115 * ARG0:	devhandle
2116 * ARG1:	msiqid
2117 * ARG2:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2118 * RET0:	status
2119 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqvalid
2120 *				value or MSI EQ is uninitialized
2121 *
2122 * Set the valid state of the MSI-EQ described by the given devhandle and
2123 * msiqid to the given msiqvalid.
2124 */
2125#define HV_FAST_PCI_MSIQ_SETVALID	0xc3
2126
2127/* pci_msiq_getstate()
2128 * TRAP:	HV_FAST_TRAP
2129 * FUNCTION:	HV_FAST_PCI_MSIQ_GETSTATE
2130 * ARG0:	devhandle
2131 * ARG1:	msiqid
2132 * RET0:	status
2133 * RET1:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2134 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2135 *
2136 * Get the state of the MSI-EQ described by the given devhandle and
2137 * msiqid.
2138 */
2139#define HV_FAST_PCI_MSIQ_GETSTATE	0xc4
2140
2141/* pci_msiq_getvalid()
2142 * TRAP:	HV_FAST_TRAP
2143 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2144 * ARG0:	devhandle
2145 * ARG1:	msiqid
2146 * ARG2:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2147 * RET0:	status
2148 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqstate
2149 *				value or MSI EQ is uninitialized
2150 *
2151 * Set the state of the MSI-EQ described by the given devhandle and
2152 * msiqid to the given msiqvalid.
2153 */
2154#define HV_FAST_PCI_MSIQ_SETSTATE	0xc5
2155
2156/* pci_msiq_gethead()
2157 * TRAP:	HV_FAST_TRAP
2158 * FUNCTION:	HV_FAST_PCI_MSIQ_GETHEAD
2159 * ARG0:	devhandle
2160 * ARG1:	msiqid
2161 * RET0:	status
2162 * RET1:	msiqhead
2163 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2164 *
2165 * Get the current MSI EQ queue head for the MSI-EQ described by the
2166 * given devhandle and msiqid.
2167 */
2168#define HV_FAST_PCI_MSIQ_GETHEAD	0xc6
2169
2170/* pci_msiq_sethead()
2171 * TRAP:	HV_FAST_TRAP
2172 * FUNCTION:	HV_FAST_PCI_MSIQ_SETHEAD
2173 * ARG0:	devhandle
2174 * ARG1:	msiqid
2175 * ARG2:	msiqhead
2176 * RET0:	status
2177 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqhead,
2178 *				or MSI EQ is uninitialized
2179 *
2180 * Set the current MSI EQ queue head for the MSI-EQ described by the
2181 * given devhandle and msiqid.
2182 */
2183#define HV_FAST_PCI_MSIQ_SETHEAD	0xc7
2184
2185/* pci_msiq_gettail()
2186 * TRAP:	HV_FAST_TRAP
2187 * FUNCTION:	HV_FAST_PCI_MSIQ_GETTAIL
2188 * ARG0:	devhandle
2189 * ARG1:	msiqid
2190 * RET0:	status
2191 * RET1:	msiqtail
2192 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2193 *
2194 * Get the current MSI EQ queue tail for the MSI-EQ described by the
2195 * given devhandle and msiqid.
2196 */
2197#define HV_FAST_PCI_MSIQ_GETTAIL	0xc8
2198
2199/* pci_msi_getvalid()
2200 * TRAP:	HV_FAST_TRAP
2201 * FUNCTION:	HV_FAST_PCI_MSI_GETVALID
2202 * ARG0:	devhandle
2203 * ARG1:	msinum
2204 * RET0:	status
2205 * RET1:	msivalidstate
2206 * ERRORS:	EINVAL		Invalid devhandle or msinum
2207 *
2208 * Get the current valid/enabled state for the MSI defined by the
2209 * given devhandle and msinum.
2210 */
2211#define HV_FAST_PCI_MSI_GETVALID	0xc9
2212
2213/* pci_msi_setvalid()
2214 * TRAP:	HV_FAST_TRAP
2215 * FUNCTION:	HV_FAST_PCI_MSI_SETVALID
2216 * ARG0:	devhandle
2217 * ARG1:	msinum
2218 * ARG2:	msivalidstate
2219 * RET0:	status
2220 * ERRORS:	EINVAL		Invalid devhandle or msinum or msivalidstate
2221 *
2222 * Set the current valid/enabled state for the MSI defined by the
2223 * given devhandle and msinum.
2224 */
2225#define HV_FAST_PCI_MSI_SETVALID	0xca
2226
2227/* pci_msi_getmsiq()
2228 * TRAP:	HV_FAST_TRAP
2229 * FUNCTION:	HV_FAST_PCI_MSI_GETMSIQ
2230 * ARG0:	devhandle
2231 * ARG1:	msinum
2232 * RET0:	status
2233 * RET1:	msiqid
2234 * ERRORS:	EINVAL		Invalid devhandle or msinum or MSI is unbound
2235 *
2236 * Get the MSI EQ that the MSI defined by the given devhandle and
2237 * msinum is bound to.
2238 */
2239#define HV_FAST_PCI_MSI_GETMSIQ		0xcb
2240
2241/* pci_msi_setmsiq()
2242 * TRAP:	HV_FAST_TRAP
2243 * FUNCTION:	HV_FAST_PCI_MSI_SETMSIQ
2244 * ARG0:	devhandle
2245 * ARG1:	msinum
2246 * ARG2:	msitype
2247 * ARG3:	msiqid
2248 * RET0:	status
2249 * ERRORS:	EINVAL		Invalid devhandle or msinum or msiqid
2250 *
2251 * Set the MSI EQ that the MSI defined by the given devhandle and
2252 * msinum is bound to.
2253 */
2254#define HV_FAST_PCI_MSI_SETMSIQ		0xcc
2255
2256/* pci_msi_getstate()
2257 * TRAP:	HV_FAST_TRAP
2258 * FUNCTION:	HV_FAST_PCI_MSI_GETSTATE
2259 * ARG0:	devhandle
2260 * ARG1:	msinum
2261 * RET0:	status
2262 * RET1:	msistate
2263 * ERRORS:	EINVAL		Invalid devhandle or msinum
2264 *
2265 * Get the state of the MSI defined by the given devhandle and msinum.
2266 * If not initialized, return HV_MSISTATE_IDLE.
2267 */
2268#define HV_FAST_PCI_MSI_GETSTATE	0xcd
2269
2270/* pci_msi_setstate()
2271 * TRAP:	HV_FAST_TRAP
2272 * FUNCTION:	HV_FAST_PCI_MSI_SETSTATE
2273 * ARG0:	devhandle
2274 * ARG1:	msinum
2275 * ARG2:	msistate
2276 * RET0:	status
2277 * ERRORS:	EINVAL		Invalid devhandle or msinum or msistate
2278 *
2279 * Set the state of the MSI defined by the given devhandle and msinum.
2280 */
2281#define HV_FAST_PCI_MSI_SETSTATE	0xce
2282
2283/* pci_msg_getmsiq()
2284 * TRAP:	HV_FAST_TRAP
2285 * FUNCTION:	HV_FAST_PCI_MSG_GETMSIQ
2286 * ARG0:	devhandle
2287 * ARG1:	msgtype
2288 * RET0:	status
2289 * RET1:	msiqid
2290 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2291 *
2292 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2293 */
2294#define HV_FAST_PCI_MSG_GETMSIQ		0xd0
2295
2296/* pci_msg_setmsiq()
2297 * TRAP:	HV_FAST_TRAP
2298 * FUNCTION:	HV_FAST_PCI_MSG_SETMSIQ
2299 * ARG0:	devhandle
2300 * ARG1:	msgtype
2301 * ARG2:	msiqid
2302 * RET0:	status
2303 * ERRORS:	EINVAL		Invalid devhandle, msgtype, or msiqid
2304 *
2305 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2306 */
2307#define HV_FAST_PCI_MSG_SETMSIQ		0xd1
2308
2309/* pci_msg_getvalid()
2310 * TRAP:	HV_FAST_TRAP
2311 * FUNCTION:	HV_FAST_PCI_MSG_GETVALID
2312 * ARG0:	devhandle
2313 * ARG1:	msgtype
2314 * RET0:	status
2315 * RET1:	msgvalidstate
2316 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2317 *
2318 * Get the valid/enabled state of the MSG defined by the given
2319 * devhandle and msgtype.
2320 */
2321#define HV_FAST_PCI_MSG_GETVALID	0xd2
2322
2323/* pci_msg_setvalid()
2324 * TRAP:	HV_FAST_TRAP
2325 * FUNCTION:	HV_FAST_PCI_MSG_SETVALID
2326 * ARG0:	devhandle
2327 * ARG1:	msgtype
2328 * ARG2:	msgvalidstate
2329 * RET0:	status
2330 * ERRORS:	EINVAL		Invalid devhandle or msgtype or msgvalidstate
2331 *
2332 * Set the valid/enabled state of the MSG defined by the given
2333 * devhandle and msgtype.
2334 */
2335#define HV_FAST_PCI_MSG_SETVALID	0xd3
2336
2337/* Logical Domain Channel services.  */
2338
2339#define LDC_CHANNEL_DOWN		0
2340#define LDC_CHANNEL_UP			1
2341#define LDC_CHANNEL_RESETTING		2
2342
2343/* ldc_tx_qconf()
2344 * TRAP:	HV_FAST_TRAP
2345 * FUNCTION:	HV_FAST_LDC_TX_QCONF
2346 * ARG0:	channel ID
2347 * ARG1:	real address base of queue
2348 * ARG2:	num entries in queue
2349 * RET0:	status
2350 *
2351 * Configure transmit queue for the LDC endpoint specified by the
2352 * given channel ID, to be placed at the given real address, and
2353 * be of the given num entries.  Num entries must be a power of two.
2354 * The real address base of the queue must be aligned on the queue
2355 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2356 * queue must be aligned on a 2048 byte real address boundary.
2357 *
2358 * Upon configuration of a valid transmit queue the head and tail
2359 * pointers are set to a hypervisor specific identical value indicating
2360 * that the queue initially is empty.
2361 *
2362 * The endpoint's transmit queue is un-configured if num entries is zero.
2363 *
2364 * The maximum number of entries for each queue for a specific cpu may be
2365 * determined from the machine description.  A transmit queue may be
2366 * specified even in the event that the LDC is down (peer endpoint has no
2367 * receive queue specified).  Transmission will begin as soon as the peer
2368 * endpoint defines a receive queue.
2369 *
2370 * It is recommended that a guest wait for a transmit queue to empty prior
2371 * to reconfiguring it, or un-configuring it.  Re or un-configuring of a
2372 * non-empty transmit queue behaves exactly as defined above, however it
2373 * is undefined as to how many of the pending entries in the original queue
2374 * will be delivered prior to the re-configuration taking effect.
2375 * Furthermore, as the queue configuration causes a reset of the head and
2376 * tail pointers there is no way for a guest to determine how many entries
2377 * have been sent after the configuration operation.
2378 */
2379#define HV_FAST_LDC_TX_QCONF		0xe0
2380
2381/* ldc_tx_qinfo()
2382 * TRAP:	HV_FAST_TRAP
2383 * FUNCTION:	HV_FAST_LDC_TX_QINFO
2384 * ARG0:	channel ID
2385 * RET0:	status
2386 * RET1:	real address base of queue
2387 * RET2:	num entries in queue
2388 *
2389 * Return the configuration info for the transmit queue of LDC endpoint
2390 * defined by the given channel ID.  The real address is the currently
2391 * defined real address base of the defined queue, and num entries is the
2392 * size of the queue in terms of number of entries.
2393 *
2394 * If the specified channel ID is a valid endpoint number, but no transmit
2395 * queue has been defined this service will return success, but with num
2396 * entries set to zero and the real address will have an undefined value.
2397 */
2398#define HV_FAST_LDC_TX_QINFO		0xe1
2399
2400/* ldc_tx_get_state()
2401 * TRAP:	HV_FAST_TRAP
2402 * FUNCTION:	HV_FAST_LDC_TX_GET_STATE
2403 * ARG0:	channel ID
2404 * RET0:	status
2405 * RET1:	head offset
2406 * RET2:	tail offset
2407 * RET3:	channel state
2408 *
2409 * Return the transmit state, and the head and tail queue pointers, for
2410 * the transmit queue of the LDC endpoint defined by the given channel ID.
2411 * The head and tail values are the byte offset of the head and tail
2412 * positions of the transmit queue for the specified endpoint.
2413 */
2414#define HV_FAST_LDC_TX_GET_STATE	0xe2
2415
2416/* ldc_tx_set_qtail()
2417 * TRAP:	HV_FAST_TRAP
2418 * FUNCTION:	HV_FAST_LDC_TX_SET_QTAIL
2419 * ARG0:	channel ID
2420 * ARG1:	tail offset
2421 * RET0:	status
2422 *
2423 * Update the tail pointer for the transmit queue associated with the LDC
2424 * endpoint defined by the given channel ID.  The tail offset specified
2425 * must be aligned on a 64 byte boundary, and calculated so as to increase
2426 * the number of pending entries on the transmit queue.  Any attempt to
2427 * decrease the number of pending transmit queue entires is considered
2428 * an invalid tail offset and will result in an EINVAL error.
2429 *
2430 * Since the tail of the transmit queue may not be moved backwards, the
2431 * transmit queue may be flushed by configuring a new transmit queue,
2432 * whereupon the hypervisor will configure the initial transmit head and
2433 * tail pointers to be equal.
2434 */
2435#define HV_FAST_LDC_TX_SET_QTAIL	0xe3
2436
2437/* ldc_rx_qconf()
2438 * TRAP:	HV_FAST_TRAP
2439 * FUNCTION:	HV_FAST_LDC_RX_QCONF
2440 * ARG0:	channel ID
2441 * ARG1:	real address base of queue
2442 * ARG2:	num entries in queue
2443 * RET0:	status
2444 *
2445 * Configure receive queue for the LDC endpoint specified by the
2446 * given channel ID, to be placed at the given real address, and
2447 * be of the given num entries.  Num entries must be a power of two.
2448 * The real address base of the queue must be aligned on the queue
2449 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2450 * queue must be aligned on a 2048 byte real address boundary.
2451 *
2452 * The endpoint's transmit queue is un-configured if num entries is zero.
2453 *
2454 * If a valid receive queue is specified for a local endpoint the LDC is
2455 * in the up state for the purpose of transmission to this endpoint.
2456 *
2457 * The maximum number of entries for each queue for a specific cpu may be
2458 * determined from the machine description.
2459 *
2460 * As receive queue configuration causes a reset of the queue's head and
2461 * tail pointers there is no way for a gues to determine how many entries
2462 * have been received between a preceding ldc_get_rx_state() API call
2463 * and the completion of the configuration operation.  It should be noted
2464 * that datagram delivery is not guaranteed via domain channels anyway,
2465 * and therefore any higher protocol should be resilient to datagram
2466 * loss if necessary.  However, to overcome this specific race potential
2467 * it is recommended, for example, that a higher level protocol be employed
2468 * to ensure either retransmission, or ensure that no datagrams are pending
2469 * on the peer endpoint's transmit queue prior to the configuration process.
2470 */
2471#define HV_FAST_LDC_RX_QCONF		0xe4
2472
2473/* ldc_rx_qinfo()
2474 * TRAP:	HV_FAST_TRAP
2475 * FUNCTION:	HV_FAST_LDC_RX_QINFO
2476 * ARG0:	channel ID
2477 * RET0:	status
2478 * RET1:	real address base of queue
2479 * RET2:	num entries in queue
2480 *
2481 * Return the configuration info for the receive queue of LDC endpoint
2482 * defined by the given channel ID.  The real address is the currently
2483 * defined real address base of the defined queue, and num entries is the
2484 * size of the queue in terms of number of entries.
2485 *
2486 * If the specified channel ID is a valid endpoint number, but no receive
2487 * queue has been defined this service will return success, but with num
2488 * entries set to zero and the real address will have an undefined value.
2489 */
2490#define HV_FAST_LDC_RX_QINFO		0xe5
2491
2492/* ldc_rx_get_state()
2493 * TRAP:	HV_FAST_TRAP
2494 * FUNCTION:	HV_FAST_LDC_RX_GET_STATE
2495 * ARG0:	channel ID
2496 * RET0:	status
2497 * RET1:	head offset
2498 * RET2:	tail offset
2499 * RET3:	channel state
2500 *
2501 * Return the receive state, and the head and tail queue pointers, for
2502 * the receive queue of the LDC endpoint defined by the given channel ID.
2503 * The head and tail values are the byte offset of the head and tail
2504 * positions of the receive queue for the specified endpoint.
2505 */
2506#define HV_FAST_LDC_RX_GET_STATE	0xe6
2507
2508/* ldc_rx_set_qhead()
2509 * TRAP:	HV_FAST_TRAP
2510 * FUNCTION:	HV_FAST_LDC_RX_SET_QHEAD
2511 * ARG0:	channel ID
2512 * ARG1:	head offset
2513 * RET0:	status
2514 *
2515 * Update the head pointer for the receive queue associated with the LDC
2516 * endpoint defined by the given channel ID.  The head offset specified
2517 * must be aligned on a 64 byte boundary, and calculated so as to decrease
2518 * the number of pending entries on the receive queue.  Any attempt to
2519 * increase the number of pending receive queue entires is considered
2520 * an invalid head offset and will result in an EINVAL error.
2521 *
2522 * The receive queue may be flushed by setting the head offset equal
2523 * to the current tail offset.
2524 */
2525#define HV_FAST_LDC_RX_SET_QHEAD	0xe7
2526
2527/* LDC Map Table Entry.  Each slot is defined by a translation table
2528 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
2529 * hypervisor invalidation cookie.
2530 */
2531#define LDC_MTE_PADDR	0x0fffffffffffe000 /* pa[55:13]          */
2532#define LDC_MTE_COPY_W	0x0000000000000400 /* copy write access  */
2533#define LDC_MTE_COPY_R	0x0000000000000200 /* copy read access   */
2534#define LDC_MTE_IOMMU_W	0x0000000000000100 /* IOMMU write access */
2535#define LDC_MTE_IOMMU_R	0x0000000000000080 /* IOMMU read access  */
2536#define LDC_MTE_EXEC	0x0000000000000040 /* execute            */
2537#define LDC_MTE_WRITE	0x0000000000000020 /* read               */
2538#define LDC_MTE_READ	0x0000000000000010 /* write              */
2539#define LDC_MTE_SZALL	0x000000000000000f /* page size bits     */
2540#define LDC_MTE_SZ16GB	0x0000000000000007 /* 16GB page          */
2541#define LDC_MTE_SZ2GB	0x0000000000000006 /* 2GB page           */
2542#define LDC_MTE_SZ256MB	0x0000000000000005 /* 256MB page         */
2543#define LDC_MTE_SZ32MB	0x0000000000000004 /* 32MB page          */
2544#define LDC_MTE_SZ4MB	0x0000000000000003 /* 4MB page           */
2545#define LDC_MTE_SZ512K	0x0000000000000002 /* 512K page          */
2546#define LDC_MTE_SZ64K	0x0000000000000001 /* 64K page           */
2547#define LDC_MTE_SZ8K	0x0000000000000000 /* 8K page            */
2548
2549#ifndef __ASSEMBLY__
2550struct ldc_mtable_entry {
2551	unsigned long	mte;
2552	unsigned long	cookie;
2553};
2554#endif
2555
2556/* ldc_set_map_table()
2557 * TRAP:	HV_FAST_TRAP
2558 * FUNCTION:	HV_FAST_LDC_SET_MAP_TABLE
2559 * ARG0:	channel ID
2560 * ARG1:	table real address
2561 * ARG2:	num entries
2562 * RET0:	status
2563 *
2564 * Register the MTE table at the given table real address, with the
2565 * specified num entries, for the LDC indicated by the given channel
2566 * ID.
2567 */
2568#define HV_FAST_LDC_SET_MAP_TABLE	0xea
2569
2570/* ldc_get_map_table()
2571 * TRAP:	HV_FAST_TRAP
2572 * FUNCTION:	HV_FAST_LDC_GET_MAP_TABLE
2573 * ARG0:	channel ID
2574 * RET0:	status
2575 * RET1:	table real address
2576 * RET2:	num entries
2577 *
2578 * Return the configuration of the current mapping table registered
2579 * for the given channel ID.
2580 */
2581#define HV_FAST_LDC_GET_MAP_TABLE	0xeb
2582
2583#define LDC_COPY_IN	0
2584#define LDC_COPY_OUT	1
2585
2586/* ldc_copy()
2587 * TRAP:	HV_FAST_TRAP
2588 * FUNCTION:	HV_FAST_LDC_COPY
2589 * ARG0:	channel ID
2590 * ARG1:	LDC_COPY_* direction code
2591 * ARG2:	target real address
2592 * ARG3:	local real address
2593 * ARG4:	length in bytes
2594 * RET0:	status
2595 * RET1:	actual length in bytes
2596 */
2597#define HV_FAST_LDC_COPY		0xec
2598
2599#define LDC_MEM_READ	1
2600#define LDC_MEM_WRITE	2
2601#define LDC_MEM_EXEC	4
2602
2603/* ldc_mapin()
2604 * TRAP:	HV_FAST_TRAP
2605 * FUNCTION:	HV_FAST_LDC_MAPIN
2606 * ARG0:	channel ID
2607 * ARG1:	cookie
2608 * RET0:	status
2609 * RET1:	real address
2610 * RET2:	LDC_MEM_* permissions
2611 */
2612#define HV_FAST_LDC_MAPIN		0xed
2613
2614/* ldc_unmap()
2615 * TRAP:	HV_FAST_TRAP
2616 * FUNCTION:	HV_FAST_LDC_UNMAP
2617 * ARG0:	real address
2618 * RET0:	status
2619 */
2620#define HV_FAST_LDC_UNMAP		0xee
2621
2622/* ldc_revoke()
2623 * TRAP:	HV_FAST_TRAP
2624 * FUNCTION:	HV_FAST_LDC_REVOKE
2625 * ARG0:	channel ID
2626 * ARG1:	cookie
2627 * ARG2:	ldc_mtable_entry cookie
2628 * RET0:	status
2629 */
2630#define HV_FAST_LDC_REVOKE		0xef
2631
2632#ifndef __ASSEMBLY__
2633unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
2634				 unsigned long ra,
2635				 unsigned long num_entries);
2636unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
2637				 unsigned long *ra,
2638				 unsigned long *num_entries);
2639unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
2640				     unsigned long *head_off,
2641				     unsigned long *tail_off,
2642				     unsigned long *chan_state);
2643unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
2644				     unsigned long tail_off);
2645unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
2646				 unsigned long ra,
2647				 unsigned long num_entries);
2648unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
2649				 unsigned long *ra,
2650				 unsigned long *num_entries);
2651unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
2652				     unsigned long *head_off,
2653				     unsigned long *tail_off,
2654				     unsigned long *chan_state);
2655unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
2656				     unsigned long head_off);
2657unsigned long sun4v_ldc_set_map_table(unsigned long channel,
2658				      unsigned long ra,
2659				      unsigned long num_entries);
2660unsigned long sun4v_ldc_get_map_table(unsigned long channel,
2661				      unsigned long *ra,
2662				      unsigned long *num_entries);
2663unsigned long sun4v_ldc_copy(unsigned long channel,
2664			     unsigned long dir_code,
2665			     unsigned long tgt_raddr,
2666			     unsigned long lcl_raddr,
2667			     unsigned long len,
2668			     unsigned long *actual_len);
2669unsigned long sun4v_ldc_mapin(unsigned long channel,
2670			      unsigned long cookie,
2671			      unsigned long *ra,
2672			      unsigned long *perm);
2673unsigned long sun4v_ldc_unmap(unsigned long ra);
2674unsigned long sun4v_ldc_revoke(unsigned long channel,
2675			       unsigned long cookie,
2676			       unsigned long mte_cookie);
2677#endif
2678
2679/* Performance counter services.  */
2680
2681#define HV_PERF_JBUS_PERF_CTRL_REG	0x00
2682#define HV_PERF_JBUS_PERF_CNT_REG	0x01
2683#define HV_PERF_DRAM_PERF_CTRL_REG_0	0x02
2684#define HV_PERF_DRAM_PERF_CNT_REG_0	0x03
2685#define HV_PERF_DRAM_PERF_CTRL_REG_1	0x04
2686#define HV_PERF_DRAM_PERF_CNT_REG_1	0x05
2687#define HV_PERF_DRAM_PERF_CTRL_REG_2	0x06
2688#define HV_PERF_DRAM_PERF_CNT_REG_2	0x07
2689#define HV_PERF_DRAM_PERF_CTRL_REG_3	0x08
2690#define HV_PERF_DRAM_PERF_CNT_REG_3	0x09
2691
2692/* get_perfreg()
2693 * TRAP:	HV_FAST_TRAP
2694 * FUNCTION:	HV_FAST_GET_PERFREG
2695 * ARG0:	performance reg number
2696 * RET0:	status
2697 * RET1:	performance reg value
2698 * ERRORS:	EINVAL		Invalid performance register number
2699 *		ENOACCESS	No access allowed to performance counters
2700 *
2701 * Read the value of the given DRAM/JBUS performance counter/control register.
2702 */
2703#define HV_FAST_GET_PERFREG		0x100
2704
2705/* set_perfreg()
2706 * TRAP:	HV_FAST_TRAP
2707 * FUNCTION:	HV_FAST_SET_PERFREG
2708 * ARG0:	performance reg number
2709 * ARG1:	performance reg value
2710 * RET0:	status
2711 * ERRORS:	EINVAL		Invalid performance register number
2712 *		ENOACCESS	No access allowed to performance counters
2713 *
2714 * Write the given performance reg value to the given DRAM/JBUS
2715 * performance counter/control register.
2716 */
2717#define HV_FAST_SET_PERFREG		0x101
2718
2719#define HV_N2_PERF_SPARC_CTL		0x0
2720#define HV_N2_PERF_DRAM_CTL0		0x1
2721#define HV_N2_PERF_DRAM_CNT0		0x2
2722#define HV_N2_PERF_DRAM_CTL1		0x3
2723#define HV_N2_PERF_DRAM_CNT1		0x4
2724#define HV_N2_PERF_DRAM_CTL2		0x5
2725#define HV_N2_PERF_DRAM_CNT2		0x6
2726#define HV_N2_PERF_DRAM_CTL3		0x7
2727#define HV_N2_PERF_DRAM_CNT3		0x8
2728
2729#define HV_FAST_N2_GET_PERFREG		0x104
2730#define HV_FAST_N2_SET_PERFREG		0x105
2731
2732#ifndef __ASSEMBLY__
2733unsigned long sun4v_niagara_getperf(unsigned long reg,
2734				    unsigned long *val);
2735unsigned long sun4v_niagara_setperf(unsigned long reg,
2736				    unsigned long val);
2737unsigned long sun4v_niagara2_getperf(unsigned long reg,
2738				     unsigned long *val);
2739unsigned long sun4v_niagara2_setperf(unsigned long reg,
2740				     unsigned long val);
2741#endif
2742
2743/* MMU statistics services.
2744 *
2745 * The hypervisor maintains MMU statistics and privileged code provides
2746 * a buffer where these statistics can be collected.  It is continually
2747 * updated once configured.  The layout is as follows:
2748 */
2749#ifndef __ASSEMBLY__
2750struct hv_mmu_statistics {
2751	unsigned long immu_tsb_hits_ctx0_8k_tte;
2752	unsigned long immu_tsb_ticks_ctx0_8k_tte;
2753	unsigned long immu_tsb_hits_ctx0_64k_tte;
2754	unsigned long immu_tsb_ticks_ctx0_64k_tte;
2755	unsigned long __reserved1[2];
2756	unsigned long immu_tsb_hits_ctx0_4mb_tte;
2757	unsigned long immu_tsb_ticks_ctx0_4mb_tte;
2758	unsigned long __reserved2[2];
2759	unsigned long immu_tsb_hits_ctx0_256mb_tte;
2760	unsigned long immu_tsb_ticks_ctx0_256mb_tte;
2761	unsigned long __reserved3[4];
2762	unsigned long immu_tsb_hits_ctxnon0_8k_tte;
2763	unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
2764	unsigned long immu_tsb_hits_ctxnon0_64k_tte;
2765	unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
2766	unsigned long __reserved4[2];
2767	unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
2768	unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
2769	unsigned long __reserved5[2];
2770	unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
2771	unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
2772	unsigned long __reserved6[4];
2773	unsigned long dmmu_tsb_hits_ctx0_8k_tte;
2774	unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
2775	unsigned long dmmu_tsb_hits_ctx0_64k_tte;
2776	unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
2777	unsigned long __reserved7[2];
2778	unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
2779	unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
2780	unsigned long __reserved8[2];
2781	unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
2782	unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
2783	unsigned long __reserved9[4];
2784	unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
2785	unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
2786	unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
2787	unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
2788	unsigned long __reserved10[2];
2789	unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
2790	unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
2791	unsigned long __reserved11[2];
2792	unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
2793	unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
2794	unsigned long __reserved12[4];
2795};
2796#endif
2797
2798/* mmustat_conf()
2799 * TRAP:	HV_FAST_TRAP
2800 * FUNCTION:	HV_FAST_MMUSTAT_CONF
2801 * ARG0:	real address
2802 * RET0:	status
2803 * RET1:	real address
2804 * ERRORS:	ENORADDR	Invalid real address
2805 *		EBADALIGN	Real address not aligned on 64-byte boundary
2806 *		EBADTRAP	API not supported on this processor
2807 *
2808 * Enable MMU statistic gathering using the buffer at the given real
2809 * address on the current virtual CPU.  The new buffer real address
2810 * is given in ARG1, and the previously specified buffer real address
2811 * is returned in RET1, or is returned as zero for the first invocation.
2812 *
2813 * If the passed in real address argument is zero, this will disable
2814 * MMU statistic collection on the current virtual CPU.  If an error is
2815 * returned then no statistics are collected.
2816 *
2817 * The buffer contents should be initialized to all zeros before being
2818 * given to the hypervisor or else the statistics will be meaningless.
2819 */
2820#define HV_FAST_MMUSTAT_CONF		0x102
2821
2822/* mmustat_info()
2823 * TRAP:	HV_FAST_TRAP
2824 * FUNCTION:	HV_FAST_MMUSTAT_INFO
2825 * RET0:	status
2826 * RET1:	real address
2827 * ERRORS:	EBADTRAP	API not supported on this processor
2828 *
2829 * Return the current state and real address of the currently configured
2830 * MMU statistics buffer on the current virtual CPU.
2831 */
2832#define HV_FAST_MMUSTAT_INFO		0x103
2833
2834#ifndef __ASSEMBLY__
2835unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
2836unsigned long sun4v_mmustat_info(unsigned long *ra);
2837#endif
2838
2839/* NCS crypto services  */
2840
2841/* ncs_request() sub-function numbers */
2842#define HV_NCS_QCONF			0x01
2843#define HV_NCS_QTAIL_UPDATE		0x02
2844
2845#ifndef __ASSEMBLY__
2846struct hv_ncs_queue_entry {
2847	/* MAU Control Register */
2848	unsigned long	mau_control;
2849#define MAU_CONTROL_INV_PARITY	0x0000000000002000
2850#define MAU_CONTROL_STRAND	0x0000000000001800
2851#define MAU_CONTROL_BUSY	0x0000000000000400
2852#define MAU_CONTROL_INT		0x0000000000000200
2853#define MAU_CONTROL_OP		0x00000000000001c0
2854#define MAU_CONTROL_OP_SHIFT	6
2855#define MAU_OP_LOAD_MA_MEMORY	0x0
2856#define MAU_OP_STORE_MA_MEMORY	0x1
2857#define MAU_OP_MODULAR_MULT	0x2
2858#define MAU_OP_MODULAR_REDUCE	0x3
2859#define MAU_OP_MODULAR_EXP_LOOP	0x4
2860#define MAU_CONTROL_LEN		0x000000000000003f
2861#define MAU_CONTROL_LEN_SHIFT	0
2862
2863	/* Real address of bytes to load or store bytes
2864	 * into/out-of the MAU.
2865	 */
2866	unsigned long	mau_mpa;
2867
2868	/* Modular Arithmetic MA Offset Register.  */
2869	unsigned long	mau_ma;
2870
2871	/* Modular Arithmetic N Prime Register.  */
2872	unsigned long	mau_np;
2873};
2874
2875struct hv_ncs_qconf_arg {
2876	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2877	unsigned long	base;     /* Real address base of queue */
2878	unsigned long	end;	  /* Real address end of queue */
2879	unsigned long	num_ents; /* Number of entries in queue */
2880};
2881
2882struct hv_ncs_qtail_update_arg {
2883	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2884	unsigned long	tail;     /* New tail index to use */
2885	unsigned long	syncflag; /* only SYNCFLAG_SYNC is implemented */
2886#define HV_NCS_SYNCFLAG_SYNC	0x00
2887#define HV_NCS_SYNCFLAG_ASYNC	0x01
2888};
2889#endif
2890
2891/* ncs_request()
2892 * TRAP:	HV_FAST_TRAP
2893 * FUNCTION:	HV_FAST_NCS_REQUEST
2894 * ARG0:	NCS sub-function
2895 * ARG1:	sub-function argument real address
2896 * ARG2:	size in bytes of sub-function argument
2897 * RET0:	status
2898 *
2899 * The MAU chip of the Niagara processor is not directly accessible
2900 * to privileged code, instead it is programmed indirectly via this
2901 * hypervisor API.
2902 *
2903 * The interfaces defines a queue of MAU operations to perform.
2904 * Privileged code registers a queue with the hypervisor by invoking
2905 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
2906 * base, end, and number of entries of the queue.  Each queue entry
2907 * contains a MAU register struct block.
2908 *
2909 * The privileged code then proceeds to add entries to the queue and
2910 * then invoke the HV_NCS_QTAIL_UPDATE sub-function.  Since only
2911 * synchronous operations are supported by the current hypervisor,
2912 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
2913 * completion and return HV_EOK, or return an error code.
2914 *
2915 * The real address of the sub-function argument must be aligned on at
2916 * least an 8-byte boundary.
2917 *
2918 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
2919 * offset, into the queue and must be less than or equal the 'num_ents'
2920 * argument given in the HV_NCS_QCONF call.
2921 */
2922#define HV_FAST_NCS_REQUEST		0x110
2923
2924#ifndef __ASSEMBLY__
2925unsigned long sun4v_ncs_request(unsigned long request,
2926			        unsigned long arg_ra,
2927			        unsigned long arg_size);
2928#endif
2929
2930#define HV_FAST_FIRE_GET_PERFREG	0x120
2931#define HV_FAST_FIRE_SET_PERFREG	0x121
2932
2933#define HV_FAST_REBOOT_DATA_SET		0x172
2934
2935#ifndef __ASSEMBLY__
2936unsigned long sun4v_reboot_data_set(unsigned long ra,
2937				    unsigned long len);
2938#endif
2939
2940#define HV_FAST_VT_GET_PERFREG		0x184
2941#define HV_FAST_VT_SET_PERFREG		0x185
2942
2943#ifndef __ASSEMBLY__
2944unsigned long sun4v_vt_get_perfreg(unsigned long reg_num,
2945				   unsigned long *reg_val);
2946unsigned long sun4v_vt_set_perfreg(unsigned long reg_num,
2947				   unsigned long reg_val);
2948#endif
2949
2950#define	HV_FAST_T5_GET_PERFREG		0x1a8
2951#define	HV_FAST_T5_SET_PERFREG		0x1a9
2952
2953#ifndef	__ASSEMBLY__
2954unsigned long sun4v_t5_get_perfreg(unsigned long reg_num,
2955				   unsigned long *reg_val);
2956unsigned long sun4v_t5_set_perfreg(unsigned long reg_num,
2957				   unsigned long reg_val);
2958#endif
2959
2960
2961#define HV_FAST_M7_GET_PERFREG	0x43
2962#define HV_FAST_M7_SET_PERFREG	0x44
2963
2964#ifndef	__ASSEMBLY__
2965unsigned long sun4v_m7_get_perfreg(unsigned long reg_num,
2966				      unsigned long *reg_val);
2967unsigned long sun4v_m7_set_perfreg(unsigned long reg_num,
2968				      unsigned long reg_val);
2969#endif
2970
2971/* Function numbers for HV_CORE_TRAP.  */
2972#define HV_CORE_SET_VER			0x00
2973#define HV_CORE_PUTCHAR			0x01
2974#define HV_CORE_EXIT			0x02
2975#define HV_CORE_GET_VER			0x03
2976
2977/* Hypervisor API groups for use with HV_CORE_SET_VER and
2978 * HV_CORE_GET_VER.
2979 */
2980#define HV_GRP_SUN4V			0x0000
2981#define HV_GRP_CORE			0x0001
2982#define HV_GRP_INTR			0x0002
2983#define HV_GRP_SOFT_STATE		0x0003
2984#define HV_GRP_TM			0x0080
2985#define HV_GRP_PCI			0x0100
2986#define HV_GRP_LDOM			0x0101
2987#define HV_GRP_SVC_CHAN			0x0102
2988#define HV_GRP_NCS			0x0103
2989#define HV_GRP_RNG			0x0104
2990#define HV_GRP_PBOOT			0x0105
2991#define HV_GRP_TPM			0x0107
2992#define HV_GRP_SDIO			0x0108
2993#define HV_GRP_SDIO_ERR			0x0109
2994#define HV_GRP_REBOOT_DATA		0x0110
2995#define HV_GRP_M7_PERF			0x0114
2996#define HV_GRP_NIAG_PERF		0x0200
2997#define HV_GRP_FIRE_PERF		0x0201
2998#define HV_GRP_N2_CPU			0x0202
2999#define HV_GRP_NIU			0x0204
3000#define HV_GRP_VF_CPU			0x0205
3001#define HV_GRP_KT_CPU			0x0209
3002#define HV_GRP_VT_CPU			0x020c
3003#define HV_GRP_T5_CPU			0x0211
3004#define HV_GRP_DIAG			0x0300
3005
3006#ifndef __ASSEMBLY__
3007unsigned long sun4v_get_version(unsigned long group,
3008			        unsigned long *major,
3009			        unsigned long *minor);
3010unsigned long sun4v_set_version(unsigned long group,
3011			        unsigned long major,
3012			        unsigned long minor,
3013			        unsigned long *actual_minor);
3014
3015int sun4v_hvapi_register(unsigned long group, unsigned long major,
3016			 unsigned long *minor);
3017void sun4v_hvapi_unregister(unsigned long group);
3018int sun4v_hvapi_get(unsigned long group,
3019		    unsigned long *major,
3020		    unsigned long *minor);
3021void sun4v_hvapi_init(void);
3022#endif
3023
3024#endif /* !(_SPARC64_HYPERVISOR_H) */
3025