1/*
2 *  PS3 address space management.
3 *
4 *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5 *  Copyright 2006 Sony Corp.
6 *
7 *  This program is free software; you can redistribute it and/or modify
8 *  it under the terms of the GNU General Public License as published by
9 *  the Free Software Foundation; version 2 of the License.
10 *
11 *  This program is distributed in the hope that it will be useful,
12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 *  GNU General Public License for more details.
15 *
16 *  You should have received a copy of the GNU General Public License
17 *  along with this program; if not, write to the Free Software
18 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 */
20
21#include <linux/kernel.h>
22#include <linux/export.h>
23#include <linux/memblock.h>
24#include <linux/slab.h>
25
26#include <asm/cell-regs.h>
27#include <asm/firmware.h>
28#include <asm/prom.h>
29#include <asm/udbg.h>
30#include <asm/lv1call.h>
31#include <asm/setup.h>
32
33#include "platform.h"
34
35#if defined(DEBUG)
36#define DBG udbg_printf
37#else
38#define DBG pr_devel
39#endif
40
41enum {
42#if defined(CONFIG_PS3_DYNAMIC_DMA)
43	USE_DYNAMIC_DMA = 1,
44#else
45	USE_DYNAMIC_DMA = 0,
46#endif
47};
48
49enum {
50	PAGE_SHIFT_4K = 12U,
51	PAGE_SHIFT_64K = 16U,
52	PAGE_SHIFT_16M = 24U,
53};
54
55static unsigned long make_page_sizes(unsigned long a, unsigned long b)
56{
57	return (a << 56) | (b << 48);
58}
59
60enum {
61	ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
62	ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
63};
64
65/* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
66
67enum {
68	HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
69	HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
70};
71
72/*============================================================================*/
73/* virtual address space routines                                             */
74/*============================================================================*/
75
76/**
77 * struct mem_region - memory region structure
78 * @base: base address
79 * @size: size in bytes
80 * @offset: difference between base and rm.size
81 * @destroy: flag if region should be destroyed upon shutdown
82 */
83
84struct mem_region {
85	u64 base;
86	u64 size;
87	unsigned long offset;
88	int destroy;
89};
90
91/**
92 * struct map - address space state variables holder
93 * @total: total memory available as reported by HV
94 * @vas_id - HV virtual address space id
95 * @htab_size: htab size in bytes
96 *
97 * The HV virtual address space (vas) allows for hotplug memory regions.
98 * Memory regions can be created and destroyed in the vas at runtime.
99 * @rm: real mode (bootmem) region
100 * @r1: highmem region(s)
101 *
102 * ps3 addresses
103 * virt_addr: a cpu 'translated' effective address
104 * phys_addr: an address in what Linux thinks is the physical address space
105 * lpar_addr: an address in the HV virtual address space
106 * bus_addr: an io controller 'translated' address on a device bus
107 */
108
109struct map {
110	u64 total;
111	u64 vas_id;
112	u64 htab_size;
113	struct mem_region rm;
114	struct mem_region r1;
115};
116
117#define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
118static void __maybe_unused _debug_dump_map(const struct map *m,
119	const char *func, int line)
120{
121	DBG("%s:%d: map.total     = %llxh\n", func, line, m->total);
122	DBG("%s:%d: map.rm.size   = %llxh\n", func, line, m->rm.size);
123	DBG("%s:%d: map.vas_id    = %llu\n", func, line, m->vas_id);
124	DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
125	DBG("%s:%d: map.r1.base   = %llxh\n", func, line, m->r1.base);
126	DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
127	DBG("%s:%d: map.r1.size   = %llxh\n", func, line, m->r1.size);
128}
129
130static struct map map;
131
132/**
133 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
134 * @phys_addr: linux physical address
135 */
136
137unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
138{
139	BUG_ON(is_kernel_addr(phys_addr));
140	return (phys_addr < map.rm.size || phys_addr >= map.total)
141		? phys_addr : phys_addr + map.r1.offset;
142}
143
144EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
145
146/**
147 * ps3_mm_vas_create - create the virtual address space
148 */
149
150void __init ps3_mm_vas_create(unsigned long* htab_size)
151{
152	int result;
153	u64 start_address;
154	u64 size;
155	u64 access_right;
156	u64 max_page_size;
157	u64 flags;
158
159	result = lv1_query_logical_partition_address_region_info(0,
160		&start_address, &size, &access_right, &max_page_size,
161		&flags);
162
163	if (result) {
164		DBG("%s:%d: lv1_query_logical_partition_address_region_info "
165			"failed: %s\n", __func__, __LINE__,
166			ps3_result(result));
167		goto fail;
168	}
169
170	if (max_page_size < PAGE_SHIFT_16M) {
171		DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
172			max_page_size);
173		goto fail;
174	}
175
176	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
177	BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
178
179	result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
180			2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
181			&map.vas_id, &map.htab_size);
182
183	if (result) {
184		DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
185			__func__, __LINE__, ps3_result(result));
186		goto fail;
187	}
188
189	result = lv1_select_virtual_address_space(map.vas_id);
190
191	if (result) {
192		DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
193			__func__, __LINE__, ps3_result(result));
194		goto fail;
195	}
196
197	*htab_size = map.htab_size;
198
199	debug_dump_map(&map);
200
201	return;
202
203fail:
204	panic("ps3_mm_vas_create failed");
205}
206
207/**
208 * ps3_mm_vas_destroy -
209 */
210
211void ps3_mm_vas_destroy(void)
212{
213	int result;
214
215	DBG("%s:%d: map.vas_id    = %llu\n", __func__, __LINE__, map.vas_id);
216
217	if (map.vas_id) {
218		result = lv1_select_virtual_address_space(0);
219		BUG_ON(result);
220		result = lv1_destruct_virtual_address_space(map.vas_id);
221		BUG_ON(result);
222		map.vas_id = 0;
223	}
224}
225
226static int ps3_mm_get_repository_highmem(struct mem_region *r)
227{
228	int result;
229
230	/* Assume a single highmem region. */
231
232	result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
233
234	if (result)
235		goto zero_region;
236
237	if (!r->base || !r->size) {
238		result = -1;
239		goto zero_region;
240	}
241
242	r->offset = r->base - map.rm.size;
243
244	DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
245	    __func__, __LINE__, r->base, r->size);
246
247	return 0;
248
249zero_region:
250	DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
251
252	r->size = r->base = r->offset = 0;
253	return result;
254}
255
256static int ps3_mm_set_repository_highmem(const struct mem_region *r)
257{
258	/* Assume a single highmem region. */
259
260	return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
261		ps3_repository_write_highmem_info(0, 0, 0);
262}
263
264/**
265 * ps3_mm_region_create - create a memory region in the vas
266 * @r: pointer to a struct mem_region to accept initialized values
267 * @size: requested region size
268 *
269 * This implementation creates the region with the vas large page size.
270 * @size is rounded down to a multiple of the vas large page size.
271 */
272
273static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
274{
275	int result;
276	u64 muid;
277
278	r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
279
280	DBG("%s:%d requested  %lxh\n", __func__, __LINE__, size);
281	DBG("%s:%d actual     %llxh\n", __func__, __LINE__, r->size);
282	DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
283		size - r->size, (size - r->size) / 1024 / 1024);
284
285	if (r->size == 0) {
286		DBG("%s:%d: size == 0\n", __func__, __LINE__);
287		result = -1;
288		goto zero_region;
289	}
290
291	result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
292		ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
293
294	if (result || r->base < map.rm.size) {
295		DBG("%s:%d: lv1_allocate_memory failed: %s\n",
296			__func__, __LINE__, ps3_result(result));
297		goto zero_region;
298	}
299
300	r->destroy = 1;
301	r->offset = r->base - map.rm.size;
302	return result;
303
304zero_region:
305	r->size = r->base = r->offset = 0;
306	return result;
307}
308
309/**
310 * ps3_mm_region_destroy - destroy a memory region
311 * @r: pointer to struct mem_region
312 */
313
314static void ps3_mm_region_destroy(struct mem_region *r)
315{
316	int result;
317
318	if (!r->destroy) {
319		pr_info("%s:%d: Not destroying high region: %llxh %llxh\n",
320			__func__, __LINE__, r->base, r->size);
321		return;
322	}
323
324	DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base);
325
326	if (r->base) {
327		result = lv1_release_memory(r->base);
328		BUG_ON(result);
329		r->size = r->base = r->offset = 0;
330		map.total = map.rm.size;
331	}
332	ps3_mm_set_repository_highmem(NULL);
333}
334
335/*============================================================================*/
336/* dma routines                                                               */
337/*============================================================================*/
338
339/**
340 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
341 * @r: pointer to dma region structure
342 * @lpar_addr: HV lpar address
343 */
344
345static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
346	unsigned long lpar_addr)
347{
348	if (lpar_addr >= map.rm.size)
349		lpar_addr -= map.r1.offset;
350	BUG_ON(lpar_addr < r->offset);
351	BUG_ON(lpar_addr >= r->offset + r->len);
352	return r->bus_addr + lpar_addr - r->offset;
353}
354
355#define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
356static void  __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
357	const char *func, int line)
358{
359	DBG("%s:%d: dev        %llu:%llu\n", func, line, r->dev->bus_id,
360		r->dev->dev_id);
361	DBG("%s:%d: page_size  %u\n", func, line, r->page_size);
362	DBG("%s:%d: bus_addr   %lxh\n", func, line, r->bus_addr);
363	DBG("%s:%d: len        %lxh\n", func, line, r->len);
364	DBG("%s:%d: offset     %lxh\n", func, line, r->offset);
365}
366
367  /**
368 * dma_chunk - A chunk of dma pages mapped by the io controller.
369 * @region - The dma region that owns this chunk.
370 * @lpar_addr: Starting lpar address of the area to map.
371 * @bus_addr: Starting ioc bus address of the area to map.
372 * @len: Length in bytes of the area to map.
373 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
374 * list of all chuncks owned by the region.
375 *
376 * This implementation uses a very simple dma page manager
377 * based on the dma_chunk structure.  This scheme assumes
378 * that all drivers use very well behaved dma ops.
379 */
380
381struct dma_chunk {
382	struct ps3_dma_region *region;
383	unsigned long lpar_addr;
384	unsigned long bus_addr;
385	unsigned long len;
386	struct list_head link;
387	unsigned int usage_count;
388};
389
390#define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
391static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
392	int line)
393{
394	DBG("%s:%d: r.dev        %llu:%llu\n", func, line,
395		c->region->dev->bus_id, c->region->dev->dev_id);
396	DBG("%s:%d: r.bus_addr   %lxh\n", func, line, c->region->bus_addr);
397	DBG("%s:%d: r.page_size  %u\n", func, line, c->region->page_size);
398	DBG("%s:%d: r.len        %lxh\n", func, line, c->region->len);
399	DBG("%s:%d: r.offset     %lxh\n", func, line, c->region->offset);
400	DBG("%s:%d: c.lpar_addr  %lxh\n", func, line, c->lpar_addr);
401	DBG("%s:%d: c.bus_addr   %lxh\n", func, line, c->bus_addr);
402	DBG("%s:%d: c.len        %lxh\n", func, line, c->len);
403}
404
405static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
406	unsigned long bus_addr, unsigned long len)
407{
408	struct dma_chunk *c;
409	unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
410	unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
411					      1 << r->page_size);
412
413	list_for_each_entry(c, &r->chunk_list.head, link) {
414		/* intersection */
415		if (aligned_bus >= c->bus_addr &&
416		    aligned_bus + aligned_len <= c->bus_addr + c->len)
417			return c;
418
419		/* below */
420		if (aligned_bus + aligned_len <= c->bus_addr)
421			continue;
422
423		/* above */
424		if (aligned_bus >= c->bus_addr + c->len)
425			continue;
426
427		/* we don't handle the multi-chunk case for now */
428		dma_dump_chunk(c);
429		BUG();
430	}
431	return NULL;
432}
433
434static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
435	unsigned long lpar_addr, unsigned long len)
436{
437	struct dma_chunk *c;
438	unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
439	unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
440					      1 << r->page_size);
441
442	list_for_each_entry(c, &r->chunk_list.head, link) {
443		/* intersection */
444		if (c->lpar_addr <= aligned_lpar &&
445		    aligned_lpar < c->lpar_addr + c->len) {
446			if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
447				return c;
448			else {
449				dma_dump_chunk(c);
450				BUG();
451			}
452		}
453		/* below */
454		if (aligned_lpar + aligned_len <= c->lpar_addr) {
455			continue;
456		}
457		/* above */
458		if (c->lpar_addr + c->len <= aligned_lpar) {
459			continue;
460		}
461	}
462	return NULL;
463}
464
465static int dma_sb_free_chunk(struct dma_chunk *c)
466{
467	int result = 0;
468
469	if (c->bus_addr) {
470		result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
471			c->region->dev->dev_id, c->bus_addr, c->len);
472		BUG_ON(result);
473	}
474
475	kfree(c);
476	return result;
477}
478
479static int dma_ioc0_free_chunk(struct dma_chunk *c)
480{
481	int result = 0;
482	int iopage;
483	unsigned long offset;
484	struct ps3_dma_region *r = c->region;
485
486	DBG("%s:start\n", __func__);
487	for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
488		offset = (1 << r->page_size) * iopage;
489		/* put INVALID entry */
490		result = lv1_put_iopte(0,
491				       c->bus_addr + offset,
492				       c->lpar_addr + offset,
493				       r->ioid,
494				       0);
495		DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
496		    c->bus_addr + offset,
497		    c->lpar_addr + offset,
498		    r->ioid);
499
500		if (result) {
501			DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
502			    __LINE__, ps3_result(result));
503		}
504	}
505	kfree(c);
506	DBG("%s:end\n", __func__);
507	return result;
508}
509
510/**
511 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
512 * @r: Pointer to a struct ps3_dma_region.
513 * @phys_addr: Starting physical address of the area to map.
514 * @len: Length in bytes of the area to map.
515 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
516 *
517 * This is the lowest level dma mapping routine, and is the one that will
518 * make the HV call to add the pages into the io controller address space.
519 */
520
521static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
522	    unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
523{
524	int result;
525	struct dma_chunk *c;
526
527	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
528
529	if (!c) {
530		result = -ENOMEM;
531		goto fail_alloc;
532	}
533
534	c->region = r;
535	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
536	c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
537	c->len = len;
538
539	BUG_ON(iopte_flag != 0xf800000000000000UL);
540	result = lv1_map_device_dma_region(c->region->dev->bus_id,
541					   c->region->dev->dev_id, c->lpar_addr,
542					   c->bus_addr, c->len, iopte_flag);
543	if (result) {
544		DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
545			__func__, __LINE__, ps3_result(result));
546		goto fail_map;
547	}
548
549	list_add(&c->link, &r->chunk_list.head);
550
551	*c_out = c;
552	return 0;
553
554fail_map:
555	kfree(c);
556fail_alloc:
557	*c_out = NULL;
558	DBG(" <- %s:%d\n", __func__, __LINE__);
559	return result;
560}
561
562static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
563			      unsigned long len, struct dma_chunk **c_out,
564			      u64 iopte_flag)
565{
566	int result;
567	struct dma_chunk *c, *last;
568	int iopage, pages;
569	unsigned long offset;
570
571	DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
572	    phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
573	c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
574
575	if (!c) {
576		result = -ENOMEM;
577		goto fail_alloc;
578	}
579
580	c->region = r;
581	c->len = len;
582	c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
583	/* allocate IO address */
584	if (list_empty(&r->chunk_list.head)) {
585		/* first one */
586		c->bus_addr = r->bus_addr;
587	} else {
588		/* derive from last bus addr*/
589		last  = list_entry(r->chunk_list.head.next,
590				   struct dma_chunk, link);
591		c->bus_addr = last->bus_addr + last->len;
592		DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
593		    last->bus_addr, last->len);
594	}
595
596	/* FIXME: check whether length exceeds region size */
597
598	/* build ioptes for the area */
599	pages = len >> r->page_size;
600	DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
601	    r->page_size, r->len, pages, iopte_flag);
602	for (iopage = 0; iopage < pages; iopage++) {
603		offset = (1 << r->page_size) * iopage;
604		result = lv1_put_iopte(0,
605				       c->bus_addr + offset,
606				       c->lpar_addr + offset,
607				       r->ioid,
608				       iopte_flag);
609		if (result) {
610			pr_warning("%s:%d: lv1_put_iopte failed: %s\n",
611				   __func__, __LINE__, ps3_result(result));
612			goto fail_map;
613		}
614		DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
615		    iopage, c->bus_addr + offset, c->lpar_addr + offset,
616		    r->ioid);
617	}
618
619	/* be sure that last allocated one is inserted at head */
620	list_add(&c->link, &r->chunk_list.head);
621
622	*c_out = c;
623	DBG("%s: end\n", __func__);
624	return 0;
625
626fail_map:
627	for (iopage--; 0 <= iopage; iopage--) {
628		lv1_put_iopte(0,
629			      c->bus_addr + offset,
630			      c->lpar_addr + offset,
631			      r->ioid,
632			      0);
633	}
634	kfree(c);
635fail_alloc:
636	*c_out = NULL;
637	return result;
638}
639
640/**
641 * dma_sb_region_create - Create a device dma region.
642 * @r: Pointer to a struct ps3_dma_region.
643 *
644 * This is the lowest level dma region create routine, and is the one that
645 * will make the HV call to create the region.
646 */
647
648static int dma_sb_region_create(struct ps3_dma_region *r)
649{
650	int result;
651	u64 bus_addr;
652
653	DBG(" -> %s:%d:\n", __func__, __LINE__);
654
655	BUG_ON(!r);
656
657	if (!r->dev->bus_id) {
658		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
659			r->dev->bus_id, r->dev->dev_id);
660		return 0;
661	}
662
663	DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
664	    __LINE__, r->len, r->page_size, r->offset);
665
666	BUG_ON(!r->len);
667	BUG_ON(!r->page_size);
668	BUG_ON(!r->region_ops);
669
670	INIT_LIST_HEAD(&r->chunk_list.head);
671	spin_lock_init(&r->chunk_list.lock);
672
673	result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
674		roundup_pow_of_two(r->len), r->page_size, r->region_type,
675		&bus_addr);
676	r->bus_addr = bus_addr;
677
678	if (result) {
679		DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
680			__func__, __LINE__, ps3_result(result));
681		r->len = r->bus_addr = 0;
682	}
683
684	return result;
685}
686
687static int dma_ioc0_region_create(struct ps3_dma_region *r)
688{
689	int result;
690	u64 bus_addr;
691
692	INIT_LIST_HEAD(&r->chunk_list.head);
693	spin_lock_init(&r->chunk_list.lock);
694
695	result = lv1_allocate_io_segment(0,
696					 r->len,
697					 r->page_size,
698					 &bus_addr);
699	r->bus_addr = bus_addr;
700	if (result) {
701		DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
702			__func__, __LINE__, ps3_result(result));
703		r->len = r->bus_addr = 0;
704	}
705	DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
706	    r->len, r->page_size, r->bus_addr);
707	return result;
708}
709
710/**
711 * dma_region_free - Free a device dma region.
712 * @r: Pointer to a struct ps3_dma_region.
713 *
714 * This is the lowest level dma region free routine, and is the one that
715 * will make the HV call to free the region.
716 */
717
718static int dma_sb_region_free(struct ps3_dma_region *r)
719{
720	int result;
721	struct dma_chunk *c;
722	struct dma_chunk *tmp;
723
724	BUG_ON(!r);
725
726	if (!r->dev->bus_id) {
727		pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
728			r->dev->bus_id, r->dev->dev_id);
729		return 0;
730	}
731
732	list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
733		list_del(&c->link);
734		dma_sb_free_chunk(c);
735	}
736
737	result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
738		r->bus_addr);
739
740	if (result)
741		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
742			__func__, __LINE__, ps3_result(result));
743
744	r->bus_addr = 0;
745
746	return result;
747}
748
749static int dma_ioc0_region_free(struct ps3_dma_region *r)
750{
751	int result;
752	struct dma_chunk *c, *n;
753
754	DBG("%s: start\n", __func__);
755	list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
756		list_del(&c->link);
757		dma_ioc0_free_chunk(c);
758	}
759
760	result = lv1_release_io_segment(0, r->bus_addr);
761
762	if (result)
763		DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
764			__func__, __LINE__, ps3_result(result));
765
766	r->bus_addr = 0;
767	DBG("%s: end\n", __func__);
768
769	return result;
770}
771
772/**
773 * dma_sb_map_area - Map an area of memory into a device dma region.
774 * @r: Pointer to a struct ps3_dma_region.
775 * @virt_addr: Starting virtual address of the area to map.
776 * @len: Length in bytes of the area to map.
777 * @bus_addr: A pointer to return the starting ioc bus address of the area to
778 * map.
779 *
780 * This is the common dma mapping routine.
781 */
782
783static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
784	   unsigned long len, dma_addr_t *bus_addr,
785	   u64 iopte_flag)
786{
787	int result;
788	unsigned long flags;
789	struct dma_chunk *c;
790	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
791		: virt_addr;
792	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
793	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
794					      1 << r->page_size);
795	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
796
797	if (!USE_DYNAMIC_DMA) {
798		unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
799		DBG(" -> %s:%d\n", __func__, __LINE__);
800		DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
801			virt_addr);
802		DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
803			phys_addr);
804		DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
805			lpar_addr);
806		DBG("%s:%d len       %lxh\n", __func__, __LINE__, len);
807		DBG("%s:%d bus_addr  %llxh (%lxh)\n", __func__, __LINE__,
808		*bus_addr, len);
809	}
810
811	spin_lock_irqsave(&r->chunk_list.lock, flags);
812	c = dma_find_chunk(r, *bus_addr, len);
813
814	if (c) {
815		DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
816		dma_dump_chunk(c);
817		c->usage_count++;
818		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
819		return 0;
820	}
821
822	result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
823
824	if (result) {
825		*bus_addr = 0;
826		DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
827			__func__, __LINE__, result);
828		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
829		return result;
830	}
831
832	c->usage_count = 1;
833
834	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
835	return result;
836}
837
838static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
839	     unsigned long len, dma_addr_t *bus_addr,
840	     u64 iopte_flag)
841{
842	int result;
843	unsigned long flags;
844	struct dma_chunk *c;
845	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
846		: virt_addr;
847	unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
848	unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
849					      1 << r->page_size);
850
851	DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
852	    virt_addr, len);
853	DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
854	    phys_addr, aligned_phys, aligned_len);
855
856	spin_lock_irqsave(&r->chunk_list.lock, flags);
857	c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
858
859	if (c) {
860		/* FIXME */
861		BUG();
862		*bus_addr = c->bus_addr + phys_addr - aligned_phys;
863		c->usage_count++;
864		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
865		return 0;
866	}
867
868	result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
869				    iopte_flag);
870
871	if (result) {
872		*bus_addr = 0;
873		DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
874			__func__, __LINE__, result);
875		spin_unlock_irqrestore(&r->chunk_list.lock, flags);
876		return result;
877	}
878	*bus_addr = c->bus_addr + phys_addr - aligned_phys;
879	DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
880	    virt_addr, phys_addr, aligned_phys, *bus_addr);
881	c->usage_count = 1;
882
883	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
884	return result;
885}
886
887/**
888 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
889 * @r: Pointer to a struct ps3_dma_region.
890 * @bus_addr: The starting ioc bus address of the area to unmap.
891 * @len: Length in bytes of the area to unmap.
892 *
893 * This is the common dma unmap routine.
894 */
895
896static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
897	unsigned long len)
898{
899	unsigned long flags;
900	struct dma_chunk *c;
901
902	spin_lock_irqsave(&r->chunk_list.lock, flags);
903	c = dma_find_chunk(r, bus_addr, len);
904
905	if (!c) {
906		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
907			1 << r->page_size);
908		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
909			- aligned_bus, 1 << r->page_size);
910		DBG("%s:%d: not found: bus_addr %llxh\n",
911			__func__, __LINE__, bus_addr);
912		DBG("%s:%d: not found: len %lxh\n",
913			__func__, __LINE__, len);
914		DBG("%s:%d: not found: aligned_bus %lxh\n",
915			__func__, __LINE__, aligned_bus);
916		DBG("%s:%d: not found: aligned_len %lxh\n",
917			__func__, __LINE__, aligned_len);
918		BUG();
919	}
920
921	c->usage_count--;
922
923	if (!c->usage_count) {
924		list_del(&c->link);
925		dma_sb_free_chunk(c);
926	}
927
928	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
929	return 0;
930}
931
932static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
933			dma_addr_t bus_addr, unsigned long len)
934{
935	unsigned long flags;
936	struct dma_chunk *c;
937
938	DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
939	spin_lock_irqsave(&r->chunk_list.lock, flags);
940	c = dma_find_chunk(r, bus_addr, len);
941
942	if (!c) {
943		unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
944							1 << r->page_size);
945		unsigned long aligned_len = _ALIGN_UP(len + bus_addr
946						      - aligned_bus,
947						      1 << r->page_size);
948		DBG("%s:%d: not found: bus_addr %llxh\n",
949		    __func__, __LINE__, bus_addr);
950		DBG("%s:%d: not found: len %lxh\n",
951		    __func__, __LINE__, len);
952		DBG("%s:%d: not found: aligned_bus %lxh\n",
953		    __func__, __LINE__, aligned_bus);
954		DBG("%s:%d: not found: aligned_len %lxh\n",
955		    __func__, __LINE__, aligned_len);
956		BUG();
957	}
958
959	c->usage_count--;
960
961	if (!c->usage_count) {
962		list_del(&c->link);
963		dma_ioc0_free_chunk(c);
964	}
965
966	spin_unlock_irqrestore(&r->chunk_list.lock, flags);
967	DBG("%s: end\n", __func__);
968	return 0;
969}
970
971/**
972 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
973 * @r: Pointer to a struct ps3_dma_region.
974 *
975 * This routine creates an HV dma region for the device and maps all available
976 * ram into the io controller bus address space.
977 */
978
979static int dma_sb_region_create_linear(struct ps3_dma_region *r)
980{
981	int result;
982	unsigned long virt_addr, len;
983	dma_addr_t tmp;
984
985	if (r->len > 16*1024*1024) {	/* FIXME: need proper fix */
986		/* force 16M dma pages for linear mapping */
987		if (r->page_size != PS3_DMA_16M) {
988			pr_info("%s:%d: forcing 16M pages for linear map\n",
989				__func__, __LINE__);
990			r->page_size = PS3_DMA_16M;
991			r->len = _ALIGN_UP(r->len, 1 << r->page_size);
992		}
993	}
994
995	result = dma_sb_region_create(r);
996	BUG_ON(result);
997
998	if (r->offset < map.rm.size) {
999		/* Map (part of) 1st RAM chunk */
1000		virt_addr = map.rm.base + r->offset;
1001		len = map.rm.size - r->offset;
1002		if (len > r->len)
1003			len = r->len;
1004		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1005			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1006			CBE_IOPTE_M);
1007		BUG_ON(result);
1008	}
1009
1010	if (r->offset + r->len > map.rm.size) {
1011		/* Map (part of) 2nd RAM chunk */
1012		virt_addr = map.rm.size;
1013		len = r->len;
1014		if (r->offset >= map.rm.size)
1015			virt_addr += r->offset - map.rm.size;
1016		else
1017			len -= map.rm.size - r->offset;
1018		result = dma_sb_map_area(r, virt_addr, len, &tmp,
1019			CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1020			CBE_IOPTE_M);
1021		BUG_ON(result);
1022	}
1023
1024	return result;
1025}
1026
1027/**
1028 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1029 * @r: Pointer to a struct ps3_dma_region.
1030 *
1031 * This routine will unmap all mapped areas and free the HV dma region.
1032 */
1033
1034static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1035{
1036	int result;
1037	dma_addr_t bus_addr;
1038	unsigned long len, lpar_addr;
1039
1040	if (r->offset < map.rm.size) {
1041		/* Unmap (part of) 1st RAM chunk */
1042		lpar_addr = map.rm.base + r->offset;
1043		len = map.rm.size - r->offset;
1044		if (len > r->len)
1045			len = r->len;
1046		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1047		result = dma_sb_unmap_area(r, bus_addr, len);
1048		BUG_ON(result);
1049	}
1050
1051	if (r->offset + r->len > map.rm.size) {
1052		/* Unmap (part of) 2nd RAM chunk */
1053		lpar_addr = map.r1.base;
1054		len = r->len;
1055		if (r->offset >= map.rm.size)
1056			lpar_addr += r->offset - map.rm.size;
1057		else
1058			len -= map.rm.size - r->offset;
1059		bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1060		result = dma_sb_unmap_area(r, bus_addr, len);
1061		BUG_ON(result);
1062	}
1063
1064	result = dma_sb_region_free(r);
1065	BUG_ON(result);
1066
1067	return result;
1068}
1069
1070/**
1071 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1072 * @r: Pointer to a struct ps3_dma_region.
1073 * @virt_addr: Starting virtual address of the area to map.
1074 * @len: Length in bytes of the area to map.
1075 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1076 * map.
1077 *
1078 * This routine just returns the corresponding bus address.  Actual mapping
1079 * occurs in dma_region_create_linear().
1080 */
1081
1082static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1083	unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1084	u64 iopte_flag)
1085{
1086	unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1087		: virt_addr;
1088	*bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1089	return 0;
1090}
1091
1092/**
1093 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1094 * @r: Pointer to a struct ps3_dma_region.
1095 * @bus_addr: The starting ioc bus address of the area to unmap.
1096 * @len: Length in bytes of the area to unmap.
1097 *
1098 * This routine does nothing.  Unmapping occurs in dma_sb_region_free_linear().
1099 */
1100
1101static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1102	dma_addr_t bus_addr, unsigned long len)
1103{
1104	return 0;
1105};
1106
1107static const struct ps3_dma_region_ops ps3_dma_sb_region_ops =  {
1108	.create = dma_sb_region_create,
1109	.free = dma_sb_region_free,
1110	.map = dma_sb_map_area,
1111	.unmap = dma_sb_unmap_area
1112};
1113
1114static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1115	.create = dma_sb_region_create_linear,
1116	.free = dma_sb_region_free_linear,
1117	.map = dma_sb_map_area_linear,
1118	.unmap = dma_sb_unmap_area_linear
1119};
1120
1121static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1122	.create = dma_ioc0_region_create,
1123	.free = dma_ioc0_region_free,
1124	.map = dma_ioc0_map_area,
1125	.unmap = dma_ioc0_unmap_area
1126};
1127
1128int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1129	struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1130	enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1131{
1132	unsigned long lpar_addr;
1133
1134	lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1135
1136	r->dev = dev;
1137	r->page_size = page_size;
1138	r->region_type = region_type;
1139	r->offset = lpar_addr;
1140	if (r->offset >= map.rm.size)
1141		r->offset -= map.r1.offset;
1142	r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1143
1144	switch (dev->dev_type) {
1145	case PS3_DEVICE_TYPE_SB:
1146		r->region_ops =  (USE_DYNAMIC_DMA)
1147			? &ps3_dma_sb_region_ops
1148			: &ps3_dma_sb_region_linear_ops;
1149		break;
1150	case PS3_DEVICE_TYPE_IOC0:
1151		r->region_ops = &ps3_dma_ioc0_region_ops;
1152		break;
1153	default:
1154		BUG();
1155		return -EINVAL;
1156	}
1157	return 0;
1158}
1159EXPORT_SYMBOL(ps3_dma_region_init);
1160
1161int ps3_dma_region_create(struct ps3_dma_region *r)
1162{
1163	BUG_ON(!r);
1164	BUG_ON(!r->region_ops);
1165	BUG_ON(!r->region_ops->create);
1166	return r->region_ops->create(r);
1167}
1168EXPORT_SYMBOL(ps3_dma_region_create);
1169
1170int ps3_dma_region_free(struct ps3_dma_region *r)
1171{
1172	BUG_ON(!r);
1173	BUG_ON(!r->region_ops);
1174	BUG_ON(!r->region_ops->free);
1175	return r->region_ops->free(r);
1176}
1177EXPORT_SYMBOL(ps3_dma_region_free);
1178
1179int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1180	unsigned long len, dma_addr_t *bus_addr,
1181	u64 iopte_flag)
1182{
1183	return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1184}
1185
1186int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1187	unsigned long len)
1188{
1189	return r->region_ops->unmap(r, bus_addr, len);
1190}
1191
1192/*============================================================================*/
1193/* system startup routines                                                    */
1194/*============================================================================*/
1195
1196/**
1197 * ps3_mm_init - initialize the address space state variables
1198 */
1199
1200void __init ps3_mm_init(void)
1201{
1202	int result;
1203
1204	DBG(" -> %s:%d\n", __func__, __LINE__);
1205
1206	result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1207		&map.total);
1208
1209	if (result)
1210		panic("ps3_repository_read_mm_info() failed");
1211
1212	map.rm.offset = map.rm.base;
1213	map.vas_id = map.htab_size = 0;
1214
1215	/* this implementation assumes map.rm.base is zero */
1216
1217	BUG_ON(map.rm.base);
1218	BUG_ON(!map.rm.size);
1219
1220	/* Check if we got the highmem region from an earlier boot step */
1221
1222	if (ps3_mm_get_repository_highmem(&map.r1)) {
1223		result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1224
1225		if (!result)
1226			ps3_mm_set_repository_highmem(&map.r1);
1227	}
1228
1229	/* correct map.total for the real total amount of memory we use */
1230	map.total = map.rm.size + map.r1.size;
1231
1232	if (!map.r1.size) {
1233		DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1234	} else {
1235		DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1236			__func__, __LINE__, map.rm.size,
1237			map.total - map.rm.size);
1238		memblock_add(map.rm.size, map.total - map.rm.size);
1239	}
1240
1241	DBG(" <- %s:%d\n", __func__, __LINE__);
1242}
1243
1244/**
1245 * ps3_mm_shutdown - final cleanup of address space
1246 */
1247
1248void ps3_mm_shutdown(void)
1249{
1250	ps3_mm_region_destroy(&map.r1);
1251}
1252