1/* sched.c - SPU scheduler.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
6 * 2006-03-31	NUMA domains added.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#undef DEBUG
24
25#include <linux/errno.h>
26#include <linux/sched.h>
27#include <linux/sched/rt.h>
28#include <linux/kernel.h>
29#include <linux/mm.h>
30#include <linux/slab.h>
31#include <linux/completion.h>
32#include <linux/vmalloc.h>
33#include <linux/smp.h>
34#include <linux/stddef.h>
35#include <linux/unistd.h>
36#include <linux/numa.h>
37#include <linux/mutex.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
40#include <linux/pid_namespace.h>
41#include <linux/proc_fs.h>
42#include <linux/seq_file.h>
43
44#include <asm/io.h>
45#include <asm/mmu_context.h>
46#include <asm/spu.h>
47#include <asm/spu_csa.h>
48#include <asm/spu_priv1.h>
49#include "spufs.h"
50#define CREATE_TRACE_POINTS
51#include "sputrace.h"
52
53struct spu_prio_array {
54	DECLARE_BITMAP(bitmap, MAX_PRIO);
55	struct list_head runq[MAX_PRIO];
56	spinlock_t runq_lock;
57	int nr_waiting;
58};
59
60static unsigned long spu_avenrun[3];
61static struct spu_prio_array *spu_prio;
62static struct task_struct *spusched_task;
63static struct timer_list spusched_timer;
64static struct timer_list spuloadavg_timer;
65
66/*
67 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
68 */
69#define NORMAL_PRIO		120
70
71/*
72 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
73 * tick for every 10 CPU scheduler ticks.
74 */
75#define SPUSCHED_TICK		(10)
76
77/*
78 * These are the 'tuning knobs' of the scheduler:
79 *
80 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
81 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
82 */
83#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
84#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
85
86#define SCALE_PRIO(x, prio) \
87	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
88
89/*
90 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
91 * [800ms ... 100ms ... 5ms]
92 *
93 * The higher a thread's priority, the bigger timeslices
94 * it gets during one round of execution. But even the lowest
95 * priority thread gets MIN_TIMESLICE worth of execution time.
96 */
97void spu_set_timeslice(struct spu_context *ctx)
98{
99	if (ctx->prio < NORMAL_PRIO)
100		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
101	else
102		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
103}
104
105/*
106 * Update scheduling information from the owning thread.
107 */
108void __spu_update_sched_info(struct spu_context *ctx)
109{
110	/*
111	 * assert that the context is not on the runqueue, so it is safe
112	 * to change its scheduling parameters.
113	 */
114	BUG_ON(!list_empty(&ctx->rq));
115
116	/*
117	 * 32-Bit assignments are atomic on powerpc, and we don't care about
118	 * memory ordering here because retrieving the controlling thread is
119	 * per definition racy.
120	 */
121	ctx->tid = current->pid;
122
123	/*
124	 * We do our own priority calculations, so we normally want
125	 * ->static_prio to start with. Unfortunately this field
126	 * contains junk for threads with a realtime scheduling
127	 * policy so we have to look at ->prio in this case.
128	 */
129	if (rt_prio(current->prio))
130		ctx->prio = current->prio;
131	else
132		ctx->prio = current->static_prio;
133	ctx->policy = current->policy;
134
135	/*
136	 * TO DO: the context may be loaded, so we may need to activate
137	 * it again on a different node. But it shouldn't hurt anything
138	 * to update its parameters, because we know that the scheduler
139	 * is not actively looking at this field, since it is not on the
140	 * runqueue. The context will be rescheduled on the proper node
141	 * if it is timesliced or preempted.
142	 */
143	cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current));
144
145	/* Save the current cpu id for spu interrupt routing. */
146	ctx->last_ran = raw_smp_processor_id();
147}
148
149void spu_update_sched_info(struct spu_context *ctx)
150{
151	int node;
152
153	if (ctx->state == SPU_STATE_RUNNABLE) {
154		node = ctx->spu->node;
155
156		/*
157		 * Take list_mutex to sync with find_victim().
158		 */
159		mutex_lock(&cbe_spu_info[node].list_mutex);
160		__spu_update_sched_info(ctx);
161		mutex_unlock(&cbe_spu_info[node].list_mutex);
162	} else {
163		__spu_update_sched_info(ctx);
164	}
165}
166
167static int __node_allowed(struct spu_context *ctx, int node)
168{
169	if (nr_cpus_node(node)) {
170		const struct cpumask *mask = cpumask_of_node(node);
171
172		if (cpumask_intersects(mask, &ctx->cpus_allowed))
173			return 1;
174	}
175
176	return 0;
177}
178
179static int node_allowed(struct spu_context *ctx, int node)
180{
181	int rval;
182
183	spin_lock(&spu_prio->runq_lock);
184	rval = __node_allowed(ctx, node);
185	spin_unlock(&spu_prio->runq_lock);
186
187	return rval;
188}
189
190void do_notify_spus_active(void)
191{
192	int node;
193
194	/*
195	 * Wake up the active spu_contexts.
196	 *
197	 * When the awakened processes see their "notify_active" flag is set,
198	 * they will call spu_switch_notify().
199	 */
200	for_each_online_node(node) {
201		struct spu *spu;
202
203		mutex_lock(&cbe_spu_info[node].list_mutex);
204		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
205			if (spu->alloc_state != SPU_FREE) {
206				struct spu_context *ctx = spu->ctx;
207				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
208					&ctx->sched_flags);
209				mb();
210				wake_up_all(&ctx->stop_wq);
211			}
212		}
213		mutex_unlock(&cbe_spu_info[node].list_mutex);
214	}
215}
216
217/**
218 * spu_bind_context - bind spu context to physical spu
219 * @spu:	physical spu to bind to
220 * @ctx:	context to bind
221 */
222static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
223{
224	spu_context_trace(spu_bind_context__enter, ctx, spu);
225
226	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
227
228	if (ctx->flags & SPU_CREATE_NOSCHED)
229		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
230
231	ctx->stats.slb_flt_base = spu->stats.slb_flt;
232	ctx->stats.class2_intr_base = spu->stats.class2_intr;
233
234	spu_associate_mm(spu, ctx->owner);
235
236	spin_lock_irq(&spu->register_lock);
237	spu->ctx = ctx;
238	spu->flags = 0;
239	ctx->spu = spu;
240	ctx->ops = &spu_hw_ops;
241	spu->pid = current->pid;
242	spu->tgid = current->tgid;
243	spu->ibox_callback = spufs_ibox_callback;
244	spu->wbox_callback = spufs_wbox_callback;
245	spu->stop_callback = spufs_stop_callback;
246	spu->mfc_callback = spufs_mfc_callback;
247	spin_unlock_irq(&spu->register_lock);
248
249	spu_unmap_mappings(ctx);
250
251	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
252	spu_restore(&ctx->csa, spu);
253	spu->timestamp = jiffies;
254	spu_switch_notify(spu, ctx);
255	ctx->state = SPU_STATE_RUNNABLE;
256
257	spuctx_switch_state(ctx, SPU_UTIL_USER);
258}
259
260/*
261 * Must be used with the list_mutex held.
262 */
263static inline int sched_spu(struct spu *spu)
264{
265	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
266
267	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
268}
269
270static void aff_merge_remaining_ctxs(struct spu_gang *gang)
271{
272	struct spu_context *ctx;
273
274	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
275		if (list_empty(&ctx->aff_list))
276			list_add(&ctx->aff_list, &gang->aff_list_head);
277	}
278	gang->aff_flags |= AFF_MERGED;
279}
280
281static void aff_set_offsets(struct spu_gang *gang)
282{
283	struct spu_context *ctx;
284	int offset;
285
286	offset = -1;
287	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
288								aff_list) {
289		if (&ctx->aff_list == &gang->aff_list_head)
290			break;
291		ctx->aff_offset = offset--;
292	}
293
294	offset = 0;
295	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
296		if (&ctx->aff_list == &gang->aff_list_head)
297			break;
298		ctx->aff_offset = offset++;
299	}
300
301	gang->aff_flags |= AFF_OFFSETS_SET;
302}
303
304static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
305		 int group_size, int lowest_offset)
306{
307	struct spu *spu;
308	int node, n;
309
310	/*
311	 * TODO: A better algorithm could be used to find a good spu to be
312	 *       used as reference location for the ctxs chain.
313	 */
314	node = cpu_to_node(raw_smp_processor_id());
315	for (n = 0; n < MAX_NUMNODES; n++, node++) {
316		/*
317		 * "available_spus" counts how many spus are not potentially
318		 * going to be used by other affinity gangs whose reference
319		 * context is already in place. Although this code seeks to
320		 * avoid having affinity gangs with a summed amount of
321		 * contexts bigger than the amount of spus in the node,
322		 * this may happen sporadically. In this case, available_spus
323		 * becomes negative, which is harmless.
324		 */
325		int available_spus;
326
327		node = (node < MAX_NUMNODES) ? node : 0;
328		if (!node_allowed(ctx, node))
329			continue;
330
331		available_spus = 0;
332		mutex_lock(&cbe_spu_info[node].list_mutex);
333		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
334			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
335					&& spu->ctx->gang->aff_ref_spu)
336				available_spus -= spu->ctx->gang->contexts;
337			available_spus++;
338		}
339		if (available_spus < ctx->gang->contexts) {
340			mutex_unlock(&cbe_spu_info[node].list_mutex);
341			continue;
342		}
343
344		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
345			if ((!mem_aff || spu->has_mem_affinity) &&
346							sched_spu(spu)) {
347				mutex_unlock(&cbe_spu_info[node].list_mutex);
348				return spu;
349			}
350		}
351		mutex_unlock(&cbe_spu_info[node].list_mutex);
352	}
353	return NULL;
354}
355
356static void aff_set_ref_point_location(struct spu_gang *gang)
357{
358	int mem_aff, gs, lowest_offset;
359	struct spu_context *ctx;
360	struct spu *tmp;
361
362	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
363	lowest_offset = 0;
364	gs = 0;
365
366	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
367		gs++;
368
369	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
370								aff_list) {
371		if (&ctx->aff_list == &gang->aff_list_head)
372			break;
373		lowest_offset = ctx->aff_offset;
374	}
375
376	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
377							lowest_offset);
378}
379
380static struct spu *ctx_location(struct spu *ref, int offset, int node)
381{
382	struct spu *spu;
383
384	spu = NULL;
385	if (offset >= 0) {
386		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
387			BUG_ON(spu->node != node);
388			if (offset == 0)
389				break;
390			if (sched_spu(spu))
391				offset--;
392		}
393	} else {
394		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
395			BUG_ON(spu->node != node);
396			if (offset == 0)
397				break;
398			if (sched_spu(spu))
399				offset++;
400		}
401	}
402
403	return spu;
404}
405
406/*
407 * affinity_check is called each time a context is going to be scheduled.
408 * It returns the spu ptr on which the context must run.
409 */
410static int has_affinity(struct spu_context *ctx)
411{
412	struct spu_gang *gang = ctx->gang;
413
414	if (list_empty(&ctx->aff_list))
415		return 0;
416
417	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
418		ctx->gang->aff_ref_spu = NULL;
419
420	if (!gang->aff_ref_spu) {
421		if (!(gang->aff_flags & AFF_MERGED))
422			aff_merge_remaining_ctxs(gang);
423		if (!(gang->aff_flags & AFF_OFFSETS_SET))
424			aff_set_offsets(gang);
425		aff_set_ref_point_location(gang);
426	}
427
428	return gang->aff_ref_spu != NULL;
429}
430
431/**
432 * spu_unbind_context - unbind spu context from physical spu
433 * @spu:	physical spu to unbind from
434 * @ctx:	context to unbind
435 */
436static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
437{
438	u32 status;
439
440	spu_context_trace(spu_unbind_context__enter, ctx, spu);
441
442	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
443
444 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
445		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
446
447	if (ctx->gang)
448		/*
449		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
450		 * being considered in this gang. Using atomic_dec_if_positive
451		 * allow us to skip an explicit check for affinity in this gang
452		 */
453		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
454
455	spu_switch_notify(spu, NULL);
456	spu_unmap_mappings(ctx);
457	spu_save(&ctx->csa, spu);
458	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
459
460	spin_lock_irq(&spu->register_lock);
461	spu->timestamp = jiffies;
462	ctx->state = SPU_STATE_SAVED;
463	spu->ibox_callback = NULL;
464	spu->wbox_callback = NULL;
465	spu->stop_callback = NULL;
466	spu->mfc_callback = NULL;
467	spu->pid = 0;
468	spu->tgid = 0;
469	ctx->ops = &spu_backing_ops;
470	spu->flags = 0;
471	spu->ctx = NULL;
472	spin_unlock_irq(&spu->register_lock);
473
474	spu_associate_mm(spu, NULL);
475
476	ctx->stats.slb_flt +=
477		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
478	ctx->stats.class2_intr +=
479		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
480
481	/* This maps the underlying spu state to idle */
482	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
483	ctx->spu = NULL;
484
485	if (spu_stopped(ctx, &status))
486		wake_up_all(&ctx->stop_wq);
487}
488
489/**
490 * spu_add_to_rq - add a context to the runqueue
491 * @ctx:       context to add
492 */
493static void __spu_add_to_rq(struct spu_context *ctx)
494{
495	/*
496	 * Unfortunately this code path can be called from multiple threads
497	 * on behalf of a single context due to the way the problem state
498	 * mmap support works.
499	 *
500	 * Fortunately we need to wake up all these threads at the same time
501	 * and can simply skip the runqueue addition for every but the first
502	 * thread getting into this codepath.
503	 *
504	 * It's still quite hacky, and long-term we should proxy all other
505	 * threads through the owner thread so that spu_run is in control
506	 * of all the scheduling activity for a given context.
507	 */
508	if (list_empty(&ctx->rq)) {
509		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
510		set_bit(ctx->prio, spu_prio->bitmap);
511		if (!spu_prio->nr_waiting++)
512			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
513	}
514}
515
516static void spu_add_to_rq(struct spu_context *ctx)
517{
518	spin_lock(&spu_prio->runq_lock);
519	__spu_add_to_rq(ctx);
520	spin_unlock(&spu_prio->runq_lock);
521}
522
523static void __spu_del_from_rq(struct spu_context *ctx)
524{
525	int prio = ctx->prio;
526
527	if (!list_empty(&ctx->rq)) {
528		if (!--spu_prio->nr_waiting)
529			del_timer(&spusched_timer);
530		list_del_init(&ctx->rq);
531
532		if (list_empty(&spu_prio->runq[prio]))
533			clear_bit(prio, spu_prio->bitmap);
534	}
535}
536
537void spu_del_from_rq(struct spu_context *ctx)
538{
539	spin_lock(&spu_prio->runq_lock);
540	__spu_del_from_rq(ctx);
541	spin_unlock(&spu_prio->runq_lock);
542}
543
544static void spu_prio_wait(struct spu_context *ctx)
545{
546	DEFINE_WAIT(wait);
547
548	/*
549	 * The caller must explicitly wait for a context to be loaded
550	 * if the nosched flag is set.  If NOSCHED is not set, the caller
551	 * queues the context and waits for an spu event or error.
552	 */
553	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
554
555	spin_lock(&spu_prio->runq_lock);
556	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
557	if (!signal_pending(current)) {
558		__spu_add_to_rq(ctx);
559		spin_unlock(&spu_prio->runq_lock);
560		mutex_unlock(&ctx->state_mutex);
561		schedule();
562		mutex_lock(&ctx->state_mutex);
563		spin_lock(&spu_prio->runq_lock);
564		__spu_del_from_rq(ctx);
565	}
566	spin_unlock(&spu_prio->runq_lock);
567	__set_current_state(TASK_RUNNING);
568	remove_wait_queue(&ctx->stop_wq, &wait);
569}
570
571static struct spu *spu_get_idle(struct spu_context *ctx)
572{
573	struct spu *spu, *aff_ref_spu;
574	int node, n;
575
576	spu_context_nospu_trace(spu_get_idle__enter, ctx);
577
578	if (ctx->gang) {
579		mutex_lock(&ctx->gang->aff_mutex);
580		if (has_affinity(ctx)) {
581			aff_ref_spu = ctx->gang->aff_ref_spu;
582			atomic_inc(&ctx->gang->aff_sched_count);
583			mutex_unlock(&ctx->gang->aff_mutex);
584			node = aff_ref_spu->node;
585
586			mutex_lock(&cbe_spu_info[node].list_mutex);
587			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
588			if (spu && spu->alloc_state == SPU_FREE)
589				goto found;
590			mutex_unlock(&cbe_spu_info[node].list_mutex);
591
592			atomic_dec(&ctx->gang->aff_sched_count);
593			goto not_found;
594		}
595		mutex_unlock(&ctx->gang->aff_mutex);
596	}
597	node = cpu_to_node(raw_smp_processor_id());
598	for (n = 0; n < MAX_NUMNODES; n++, node++) {
599		node = (node < MAX_NUMNODES) ? node : 0;
600		if (!node_allowed(ctx, node))
601			continue;
602
603		mutex_lock(&cbe_spu_info[node].list_mutex);
604		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
605			if (spu->alloc_state == SPU_FREE)
606				goto found;
607		}
608		mutex_unlock(&cbe_spu_info[node].list_mutex);
609	}
610
611 not_found:
612	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
613	return NULL;
614
615 found:
616	spu->alloc_state = SPU_USED;
617	mutex_unlock(&cbe_spu_info[node].list_mutex);
618	spu_context_trace(spu_get_idle__found, ctx, spu);
619	spu_init_channels(spu);
620	return spu;
621}
622
623/**
624 * find_victim - find a lower priority context to preempt
625 * @ctx:	canidate context for running
626 *
627 * Returns the freed physical spu to run the new context on.
628 */
629static struct spu *find_victim(struct spu_context *ctx)
630{
631	struct spu_context *victim = NULL;
632	struct spu *spu;
633	int node, n;
634
635	spu_context_nospu_trace(spu_find_victim__enter, ctx);
636
637	/*
638	 * Look for a possible preemption candidate on the local node first.
639	 * If there is no candidate look at the other nodes.  This isn't
640	 * exactly fair, but so far the whole spu scheduler tries to keep
641	 * a strong node affinity.  We might want to fine-tune this in
642	 * the future.
643	 */
644 restart:
645	node = cpu_to_node(raw_smp_processor_id());
646	for (n = 0; n < MAX_NUMNODES; n++, node++) {
647		node = (node < MAX_NUMNODES) ? node : 0;
648		if (!node_allowed(ctx, node))
649			continue;
650
651		mutex_lock(&cbe_spu_info[node].list_mutex);
652		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
653			struct spu_context *tmp = spu->ctx;
654
655			if (tmp && tmp->prio > ctx->prio &&
656			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
657			    (!victim || tmp->prio > victim->prio)) {
658				victim = spu->ctx;
659			}
660		}
661		if (victim)
662			get_spu_context(victim);
663		mutex_unlock(&cbe_spu_info[node].list_mutex);
664
665		if (victim) {
666			/*
667			 * This nests ctx->state_mutex, but we always lock
668			 * higher priority contexts before lower priority
669			 * ones, so this is safe until we introduce
670			 * priority inheritance schemes.
671			 *
672			 * XXX if the highest priority context is locked,
673			 * this can loop a long time.  Might be better to
674			 * look at another context or give up after X retries.
675			 */
676			if (!mutex_trylock(&victim->state_mutex)) {
677				put_spu_context(victim);
678				victim = NULL;
679				goto restart;
680			}
681
682			spu = victim->spu;
683			if (!spu || victim->prio <= ctx->prio) {
684				/*
685				 * This race can happen because we've dropped
686				 * the active list mutex.  Not a problem, just
687				 * restart the search.
688				 */
689				mutex_unlock(&victim->state_mutex);
690				put_spu_context(victim);
691				victim = NULL;
692				goto restart;
693			}
694
695			spu_context_trace(__spu_deactivate__unload, ctx, spu);
696
697			mutex_lock(&cbe_spu_info[node].list_mutex);
698			cbe_spu_info[node].nr_active--;
699			spu_unbind_context(spu, victim);
700			mutex_unlock(&cbe_spu_info[node].list_mutex);
701
702			victim->stats.invol_ctx_switch++;
703			spu->stats.invol_ctx_switch++;
704			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
705				spu_add_to_rq(victim);
706
707			mutex_unlock(&victim->state_mutex);
708			put_spu_context(victim);
709
710			return spu;
711		}
712	}
713
714	return NULL;
715}
716
717static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
718{
719	int node = spu->node;
720	int success = 0;
721
722	spu_set_timeslice(ctx);
723
724	mutex_lock(&cbe_spu_info[node].list_mutex);
725	if (spu->ctx == NULL) {
726		spu_bind_context(spu, ctx);
727		cbe_spu_info[node].nr_active++;
728		spu->alloc_state = SPU_USED;
729		success = 1;
730	}
731	mutex_unlock(&cbe_spu_info[node].list_mutex);
732
733	if (success)
734		wake_up_all(&ctx->run_wq);
735	else
736		spu_add_to_rq(ctx);
737}
738
739static void spu_schedule(struct spu *spu, struct spu_context *ctx)
740{
741	/* not a candidate for interruptible because it's called either
742	   from the scheduler thread or from spu_deactivate */
743	mutex_lock(&ctx->state_mutex);
744	if (ctx->state == SPU_STATE_SAVED)
745		__spu_schedule(spu, ctx);
746	spu_release(ctx);
747}
748
749/**
750 * spu_unschedule - remove a context from a spu, and possibly release it.
751 * @spu:	The SPU to unschedule from
752 * @ctx:	The context currently scheduled on the SPU
753 * @free_spu	Whether to free the SPU for other contexts
754 *
755 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
756 * SPU is made available for other contexts (ie, may be returned by
757 * spu_get_idle). If this is zero, the caller is expected to schedule another
758 * context to this spu.
759 *
760 * Should be called with ctx->state_mutex held.
761 */
762static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
763		int free_spu)
764{
765	int node = spu->node;
766
767	mutex_lock(&cbe_spu_info[node].list_mutex);
768	cbe_spu_info[node].nr_active--;
769	if (free_spu)
770		spu->alloc_state = SPU_FREE;
771	spu_unbind_context(spu, ctx);
772	ctx->stats.invol_ctx_switch++;
773	spu->stats.invol_ctx_switch++;
774	mutex_unlock(&cbe_spu_info[node].list_mutex);
775}
776
777/**
778 * spu_activate - find a free spu for a context and execute it
779 * @ctx:	spu context to schedule
780 * @flags:	flags (currently ignored)
781 *
782 * Tries to find a free spu to run @ctx.  If no free spu is available
783 * add the context to the runqueue so it gets woken up once an spu
784 * is available.
785 */
786int spu_activate(struct spu_context *ctx, unsigned long flags)
787{
788	struct spu *spu;
789
790	/*
791	 * If there are multiple threads waiting for a single context
792	 * only one actually binds the context while the others will
793	 * only be able to acquire the state_mutex once the context
794	 * already is in runnable state.
795	 */
796	if (ctx->spu)
797		return 0;
798
799spu_activate_top:
800	if (signal_pending(current))
801		return -ERESTARTSYS;
802
803	spu = spu_get_idle(ctx);
804	/*
805	 * If this is a realtime thread we try to get it running by
806	 * preempting a lower priority thread.
807	 */
808	if (!spu && rt_prio(ctx->prio))
809		spu = find_victim(ctx);
810	if (spu) {
811		unsigned long runcntl;
812
813		runcntl = ctx->ops->runcntl_read(ctx);
814		__spu_schedule(spu, ctx);
815		if (runcntl & SPU_RUNCNTL_RUNNABLE)
816			spuctx_switch_state(ctx, SPU_UTIL_USER);
817
818		return 0;
819	}
820
821	if (ctx->flags & SPU_CREATE_NOSCHED) {
822		spu_prio_wait(ctx);
823		goto spu_activate_top;
824	}
825
826	spu_add_to_rq(ctx);
827
828	return 0;
829}
830
831/**
832 * grab_runnable_context - try to find a runnable context
833 *
834 * Remove the highest priority context on the runqueue and return it
835 * to the caller.  Returns %NULL if no runnable context was found.
836 */
837static struct spu_context *grab_runnable_context(int prio, int node)
838{
839	struct spu_context *ctx;
840	int best;
841
842	spin_lock(&spu_prio->runq_lock);
843	best = find_first_bit(spu_prio->bitmap, prio);
844	while (best < prio) {
845		struct list_head *rq = &spu_prio->runq[best];
846
847		list_for_each_entry(ctx, rq, rq) {
848			/* XXX(hch): check for affinity here as well */
849			if (__node_allowed(ctx, node)) {
850				__spu_del_from_rq(ctx);
851				goto found;
852			}
853		}
854		best++;
855	}
856	ctx = NULL;
857 found:
858	spin_unlock(&spu_prio->runq_lock);
859	return ctx;
860}
861
862static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
863{
864	struct spu *spu = ctx->spu;
865	struct spu_context *new = NULL;
866
867	if (spu) {
868		new = grab_runnable_context(max_prio, spu->node);
869		if (new || force) {
870			spu_unschedule(spu, ctx, new == NULL);
871			if (new) {
872				if (new->flags & SPU_CREATE_NOSCHED)
873					wake_up(&new->stop_wq);
874				else {
875					spu_release(ctx);
876					spu_schedule(spu, new);
877					/* this one can't easily be made
878					   interruptible */
879					mutex_lock(&ctx->state_mutex);
880				}
881			}
882		}
883	}
884
885	return new != NULL;
886}
887
888/**
889 * spu_deactivate - unbind a context from it's physical spu
890 * @ctx:	spu context to unbind
891 *
892 * Unbind @ctx from the physical spu it is running on and schedule
893 * the highest priority context to run on the freed physical spu.
894 */
895void spu_deactivate(struct spu_context *ctx)
896{
897	spu_context_nospu_trace(spu_deactivate__enter, ctx);
898	__spu_deactivate(ctx, 1, MAX_PRIO);
899}
900
901/**
902 * spu_yield -	yield a physical spu if others are waiting
903 * @ctx:	spu context to yield
904 *
905 * Check if there is a higher priority context waiting and if yes
906 * unbind @ctx from the physical spu and schedule the highest
907 * priority context to run on the freed physical spu instead.
908 */
909void spu_yield(struct spu_context *ctx)
910{
911	spu_context_nospu_trace(spu_yield__enter, ctx);
912	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
913		mutex_lock(&ctx->state_mutex);
914		__spu_deactivate(ctx, 0, MAX_PRIO);
915		mutex_unlock(&ctx->state_mutex);
916	}
917}
918
919static noinline void spusched_tick(struct spu_context *ctx)
920{
921	struct spu_context *new = NULL;
922	struct spu *spu = NULL;
923
924	if (spu_acquire(ctx))
925		BUG();	/* a kernel thread never has signals pending */
926
927	if (ctx->state != SPU_STATE_RUNNABLE)
928		goto out;
929	if (ctx->flags & SPU_CREATE_NOSCHED)
930		goto out;
931	if (ctx->policy == SCHED_FIFO)
932		goto out;
933
934	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
935		goto out;
936
937	spu = ctx->spu;
938
939	spu_context_trace(spusched_tick__preempt, ctx, spu);
940
941	new = grab_runnable_context(ctx->prio + 1, spu->node);
942	if (new) {
943		spu_unschedule(spu, ctx, 0);
944		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
945			spu_add_to_rq(ctx);
946	} else {
947		spu_context_nospu_trace(spusched_tick__newslice, ctx);
948		if (!ctx->time_slice)
949			ctx->time_slice++;
950	}
951out:
952	spu_release(ctx);
953
954	if (new)
955		spu_schedule(spu, new);
956}
957
958/**
959 * count_active_contexts - count nr of active tasks
960 *
961 * Return the number of tasks currently running or waiting to run.
962 *
963 * Note that we don't take runq_lock / list_mutex here.  Reading
964 * a single 32bit value is atomic on powerpc, and we don't care
965 * about memory ordering issues here.
966 */
967static unsigned long count_active_contexts(void)
968{
969	int nr_active = 0, node;
970
971	for (node = 0; node < MAX_NUMNODES; node++)
972		nr_active += cbe_spu_info[node].nr_active;
973	nr_active += spu_prio->nr_waiting;
974
975	return nr_active;
976}
977
978/**
979 * spu_calc_load - update the avenrun load estimates.
980 *
981 * No locking against reading these values from userspace, as for
982 * the CPU loadavg code.
983 */
984static void spu_calc_load(void)
985{
986	unsigned long active_tasks; /* fixed-point */
987
988	active_tasks = count_active_contexts() * FIXED_1;
989	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
990	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
991	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
992}
993
994static void spusched_wake(unsigned long data)
995{
996	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
997	wake_up_process(spusched_task);
998}
999
1000static void spuloadavg_wake(unsigned long data)
1001{
1002	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1003	spu_calc_load();
1004}
1005
1006static int spusched_thread(void *unused)
1007{
1008	struct spu *spu;
1009	int node;
1010
1011	while (!kthread_should_stop()) {
1012		set_current_state(TASK_INTERRUPTIBLE);
1013		schedule();
1014		for (node = 0; node < MAX_NUMNODES; node++) {
1015			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1016
1017			mutex_lock(mtx);
1018			list_for_each_entry(spu, &cbe_spu_info[node].spus,
1019					cbe_list) {
1020				struct spu_context *ctx = spu->ctx;
1021
1022				if (ctx) {
1023					get_spu_context(ctx);
1024					mutex_unlock(mtx);
1025					spusched_tick(ctx);
1026					mutex_lock(mtx);
1027					put_spu_context(ctx);
1028				}
1029			}
1030			mutex_unlock(mtx);
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037void spuctx_switch_state(struct spu_context *ctx,
1038		enum spu_utilization_state new_state)
1039{
1040	unsigned long long curtime;
1041	signed long long delta;
1042	struct spu *spu;
1043	enum spu_utilization_state old_state;
1044	int node;
1045
1046	curtime = ktime_get_ns();
1047	delta = curtime - ctx->stats.tstamp;
1048
1049	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1050	WARN_ON(delta < 0);
1051
1052	spu = ctx->spu;
1053	old_state = ctx->stats.util_state;
1054	ctx->stats.util_state = new_state;
1055	ctx->stats.tstamp = curtime;
1056
1057	/*
1058	 * Update the physical SPU utilization statistics.
1059	 */
1060	if (spu) {
1061		ctx->stats.times[old_state] += delta;
1062		spu->stats.times[old_state] += delta;
1063		spu->stats.util_state = new_state;
1064		spu->stats.tstamp = curtime;
1065		node = spu->node;
1066		if (old_state == SPU_UTIL_USER)
1067			atomic_dec(&cbe_spu_info[node].busy_spus);
1068		if (new_state == SPU_UTIL_USER)
1069			atomic_inc(&cbe_spu_info[node].busy_spus);
1070	}
1071}
1072
1073#define LOAD_INT(x) ((x) >> FSHIFT)
1074#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1075
1076static int show_spu_loadavg(struct seq_file *s, void *private)
1077{
1078	int a, b, c;
1079
1080	a = spu_avenrun[0] + (FIXED_1/200);
1081	b = spu_avenrun[1] + (FIXED_1/200);
1082	c = spu_avenrun[2] + (FIXED_1/200);
1083
1084	/*
1085	 * Note that last_pid doesn't really make much sense for the
1086	 * SPU loadavg (it even seems very odd on the CPU side...),
1087	 * but we include it here to have a 100% compatible interface.
1088	 */
1089	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1090		LOAD_INT(a), LOAD_FRAC(a),
1091		LOAD_INT(b), LOAD_FRAC(b),
1092		LOAD_INT(c), LOAD_FRAC(c),
1093		count_active_contexts(),
1094		atomic_read(&nr_spu_contexts),
1095		task_active_pid_ns(current)->last_pid);
1096	return 0;
1097}
1098
1099static int spu_loadavg_open(struct inode *inode, struct file *file)
1100{
1101	return single_open(file, show_spu_loadavg, NULL);
1102}
1103
1104static const struct file_operations spu_loadavg_fops = {
1105	.open		= spu_loadavg_open,
1106	.read		= seq_read,
1107	.llseek		= seq_lseek,
1108	.release	= single_release,
1109};
1110
1111int __init spu_sched_init(void)
1112{
1113	struct proc_dir_entry *entry;
1114	int err = -ENOMEM, i;
1115
1116	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1117	if (!spu_prio)
1118		goto out;
1119
1120	for (i = 0; i < MAX_PRIO; i++) {
1121		INIT_LIST_HEAD(&spu_prio->runq[i]);
1122		__clear_bit(i, spu_prio->bitmap);
1123	}
1124	spin_lock_init(&spu_prio->runq_lock);
1125
1126	setup_timer(&spusched_timer, spusched_wake, 0);
1127	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1128
1129	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1130	if (IS_ERR(spusched_task)) {
1131		err = PTR_ERR(spusched_task);
1132		goto out_free_spu_prio;
1133	}
1134
1135	mod_timer(&spuloadavg_timer, 0);
1136
1137	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1138	if (!entry)
1139		goto out_stop_kthread;
1140
1141	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1142			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1143	return 0;
1144
1145 out_stop_kthread:
1146	kthread_stop(spusched_task);
1147 out_free_spu_prio:
1148	kfree(spu_prio);
1149 out:
1150	return err;
1151}
1152
1153void spu_sched_exit(void)
1154{
1155	struct spu *spu;
1156	int node;
1157
1158	remove_proc_entry("spu_loadavg", NULL);
1159
1160	del_timer_sync(&spusched_timer);
1161	del_timer_sync(&spuloadavg_timer);
1162	kthread_stop(spusched_task);
1163
1164	for (node = 0; node < MAX_NUMNODES; node++) {
1165		mutex_lock(&cbe_spu_info[node].list_mutex);
1166		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1167			if (spu->alloc_state != SPU_FREE)
1168				spu->alloc_state = SPU_FREE;
1169		mutex_unlock(&cbe_spu_info[node].list_mutex);
1170	}
1171	kfree(spu_prio);
1172}
1173