1/*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_event.h>
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <linux/uaccess.h>
17#include <asm/reg.h>
18#include <asm/pmc.h>
19#include <asm/machdep.h>
20#include <asm/firmware.h>
21#include <asm/ptrace.h>
22#include <asm/code-patching.h>
23
24#define BHRB_MAX_ENTRIES	32
25#define BHRB_TARGET		0x0000000000000002
26#define BHRB_PREDICTION		0x0000000000000001
27#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28
29struct cpu_hw_events {
30	int n_events;
31	int n_percpu;
32	int disabled;
33	int n_added;
34	int n_limited;
35	u8  pmcs_enabled;
36	struct perf_event *event[MAX_HWEVENTS];
37	u64 events[MAX_HWEVENTS];
38	unsigned int flags[MAX_HWEVENTS];
39	/*
40	 * The order of the MMCR array is:
41	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42	 *  - 32-bit, MMCR0, MMCR1, MMCR2
43	 */
44	unsigned long mmcr[4];
45	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50
51	unsigned int group_flag;
52	int n_txn_start;
53
54	/* BHRB bits */
55	u64				bhrb_filter;	/* BHRB HW branch filter */
56	int				bhrb_users;
57	void				*bhrb_context;
58	struct	perf_branch_stack	bhrb_stack;
59	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60};
61
62static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
63
64static struct power_pmu *ppmu;
65
66/*
67 * Normally, to ignore kernel events we set the FCS (freeze counters
68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69 * hypervisor bit set in the MSR, or if we are running on a processor
70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71 * then we need to use the FCHV bit to ignore kernel events.
72 */
73static unsigned int freeze_events_kernel = MMCR0_FCS;
74
75/*
76 * 32-bit doesn't have MMCRA but does have an MMCR2,
77 * and a few other names are different.
78 */
79#ifdef CONFIG_PPC32
80
81#define MMCR0_FCHV		0
82#define MMCR0_PMCjCE		MMCR0_PMCnCE
83#define MMCR0_FC56		0
84#define MMCR0_PMAO		0
85#define MMCR0_EBE		0
86#define MMCR0_BHRBA		0
87#define MMCR0_PMCC		0
88#define MMCR0_PMCC_U6		0
89
90#define SPRN_MMCRA		SPRN_MMCR2
91#define MMCRA_SAMPLE_ENABLE	0
92
93static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
94{
95	return 0;
96}
97static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
98static inline u32 perf_get_misc_flags(struct pt_regs *regs)
99{
100	return 0;
101}
102static inline void perf_read_regs(struct pt_regs *regs)
103{
104	regs->result = 0;
105}
106static inline int perf_intr_is_nmi(struct pt_regs *regs)
107{
108	return 0;
109}
110
111static inline int siar_valid(struct pt_regs *regs)
112{
113	return 1;
114}
115
116static bool is_ebb_event(struct perf_event *event) { return false; }
117static int ebb_event_check(struct perf_event *event) { return 0; }
118static void ebb_event_add(struct perf_event *event) { }
119static void ebb_switch_out(unsigned long mmcr0) { }
120static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
121{
122	return cpuhw->mmcr[0];
123}
124
125static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
126static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
127static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
128static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
129static void pmao_restore_workaround(bool ebb) { }
130#endif /* CONFIG_PPC32 */
131
132static bool regs_use_siar(struct pt_regs *regs)
133{
134	/*
135	 * When we take a performance monitor exception the regs are setup
136	 * using perf_read_regs() which overloads some fields, in particular
137	 * regs->result to tell us whether to use SIAR.
138	 *
139	 * However if the regs are from another exception, eg. a syscall, then
140	 * they have not been setup using perf_read_regs() and so regs->result
141	 * is something random.
142	 */
143	return ((TRAP(regs) == 0xf00) && regs->result);
144}
145
146/*
147 * Things that are specific to 64-bit implementations.
148 */
149#ifdef CONFIG_PPC64
150
151static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
152{
153	unsigned long mmcra = regs->dsisr;
154
155	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
156		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
157		if (slot > 1)
158			return 4 * (slot - 1);
159	}
160
161	return 0;
162}
163
164/*
165 * The user wants a data address recorded.
166 * If we're not doing instruction sampling, give them the SDAR
167 * (sampled data address).  If we are doing instruction sampling, then
168 * only give them the SDAR if it corresponds to the instruction
169 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
170 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
171 */
172static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
173{
174	unsigned long mmcra = regs->dsisr;
175	bool sdar_valid;
176
177	if (ppmu->flags & PPMU_HAS_SIER)
178		sdar_valid = regs->dar & SIER_SDAR_VALID;
179	else {
180		unsigned long sdsync;
181
182		if (ppmu->flags & PPMU_SIAR_VALID)
183			sdsync = POWER7P_MMCRA_SDAR_VALID;
184		else if (ppmu->flags & PPMU_ALT_SIPR)
185			sdsync = POWER6_MMCRA_SDSYNC;
186		else
187			sdsync = MMCRA_SDSYNC;
188
189		sdar_valid = mmcra & sdsync;
190	}
191
192	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
193		*addrp = mfspr(SPRN_SDAR);
194}
195
196static bool regs_sihv(struct pt_regs *regs)
197{
198	unsigned long sihv = MMCRA_SIHV;
199
200	if (ppmu->flags & PPMU_HAS_SIER)
201		return !!(regs->dar & SIER_SIHV);
202
203	if (ppmu->flags & PPMU_ALT_SIPR)
204		sihv = POWER6_MMCRA_SIHV;
205
206	return !!(regs->dsisr & sihv);
207}
208
209static bool regs_sipr(struct pt_regs *regs)
210{
211	unsigned long sipr = MMCRA_SIPR;
212
213	if (ppmu->flags & PPMU_HAS_SIER)
214		return !!(regs->dar & SIER_SIPR);
215
216	if (ppmu->flags & PPMU_ALT_SIPR)
217		sipr = POWER6_MMCRA_SIPR;
218
219	return !!(regs->dsisr & sipr);
220}
221
222static inline u32 perf_flags_from_msr(struct pt_regs *regs)
223{
224	if (regs->msr & MSR_PR)
225		return PERF_RECORD_MISC_USER;
226	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
227		return PERF_RECORD_MISC_HYPERVISOR;
228	return PERF_RECORD_MISC_KERNEL;
229}
230
231static inline u32 perf_get_misc_flags(struct pt_regs *regs)
232{
233	bool use_siar = regs_use_siar(regs);
234
235	if (!use_siar)
236		return perf_flags_from_msr(regs);
237
238	/*
239	 * If we don't have flags in MMCRA, rather than using
240	 * the MSR, we intuit the flags from the address in
241	 * SIAR which should give slightly more reliable
242	 * results
243	 */
244	if (ppmu->flags & PPMU_NO_SIPR) {
245		unsigned long siar = mfspr(SPRN_SIAR);
246		if (siar >= PAGE_OFFSET)
247			return PERF_RECORD_MISC_KERNEL;
248		return PERF_RECORD_MISC_USER;
249	}
250
251	/* PR has priority over HV, so order below is important */
252	if (regs_sipr(regs))
253		return PERF_RECORD_MISC_USER;
254
255	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
256		return PERF_RECORD_MISC_HYPERVISOR;
257
258	return PERF_RECORD_MISC_KERNEL;
259}
260
261/*
262 * Overload regs->dsisr to store MMCRA so we only need to read it once
263 * on each interrupt.
264 * Overload regs->dar to store SIER if we have it.
265 * Overload regs->result to specify whether we should use the MSR (result
266 * is zero) or the SIAR (result is non zero).
267 */
268static inline void perf_read_regs(struct pt_regs *regs)
269{
270	unsigned long mmcra = mfspr(SPRN_MMCRA);
271	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
272	int use_siar;
273
274	regs->dsisr = mmcra;
275
276	if (ppmu->flags & PPMU_HAS_SIER)
277		regs->dar = mfspr(SPRN_SIER);
278
279	/*
280	 * If this isn't a PMU exception (eg a software event) the SIAR is
281	 * not valid. Use pt_regs.
282	 *
283	 * If it is a marked event use the SIAR.
284	 *
285	 * If the PMU doesn't update the SIAR for non marked events use
286	 * pt_regs.
287	 *
288	 * If the PMU has HV/PR flags then check to see if they
289	 * place the exception in userspace. If so, use pt_regs. In
290	 * continuous sampling mode the SIAR and the PMU exception are
291	 * not synchronised, so they may be many instructions apart.
292	 * This can result in confusing backtraces. We still want
293	 * hypervisor samples as well as samples in the kernel with
294	 * interrupts off hence the userspace check.
295	 */
296	if (TRAP(regs) != 0xf00)
297		use_siar = 0;
298	else if (marked)
299		use_siar = 1;
300	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
301		use_siar = 0;
302	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
303		use_siar = 0;
304	else
305		use_siar = 1;
306
307	regs->result = use_siar;
308}
309
310/*
311 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
312 * it as an NMI.
313 */
314static inline int perf_intr_is_nmi(struct pt_regs *regs)
315{
316	return !regs->softe;
317}
318
319/*
320 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
321 * must be sampled only if the SIAR-valid bit is set.
322 *
323 * For unmarked instructions and for processors that don't have the SIAR-Valid
324 * bit, assume that SIAR is valid.
325 */
326static inline int siar_valid(struct pt_regs *regs)
327{
328	unsigned long mmcra = regs->dsisr;
329	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
330
331	if (marked) {
332		if (ppmu->flags & PPMU_HAS_SIER)
333			return regs->dar & SIER_SIAR_VALID;
334
335		if (ppmu->flags & PPMU_SIAR_VALID)
336			return mmcra & POWER7P_MMCRA_SIAR_VALID;
337	}
338
339	return 1;
340}
341
342
343/* Reset all possible BHRB entries */
344static void power_pmu_bhrb_reset(void)
345{
346	asm volatile(PPC_CLRBHRB);
347}
348
349static void power_pmu_bhrb_enable(struct perf_event *event)
350{
351	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
352
353	if (!ppmu->bhrb_nr)
354		return;
355
356	/* Clear BHRB if we changed task context to avoid data leaks */
357	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
358		power_pmu_bhrb_reset();
359		cpuhw->bhrb_context = event->ctx;
360	}
361	cpuhw->bhrb_users++;
362	perf_sched_cb_inc(event->ctx->pmu);
363}
364
365static void power_pmu_bhrb_disable(struct perf_event *event)
366{
367	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
368
369	if (!ppmu->bhrb_nr)
370		return;
371
372	cpuhw->bhrb_users--;
373	WARN_ON_ONCE(cpuhw->bhrb_users < 0);
374	perf_sched_cb_dec(event->ctx->pmu);
375
376	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
377		/* BHRB cannot be turned off when other
378		 * events are active on the PMU.
379		 */
380
381		/* avoid stale pointer */
382		cpuhw->bhrb_context = NULL;
383	}
384}
385
386/* Called from ctxsw to prevent one process's branch entries to
387 * mingle with the other process's entries during context switch.
388 */
389static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
390{
391	if (!ppmu->bhrb_nr)
392		return;
393
394	if (sched_in)
395		power_pmu_bhrb_reset();
396}
397/* Calculate the to address for a branch */
398static __u64 power_pmu_bhrb_to(u64 addr)
399{
400	unsigned int instr;
401	int ret;
402	__u64 target;
403
404	if (is_kernel_addr(addr))
405		return branch_target((unsigned int *)addr);
406
407	/* Userspace: need copy instruction here then translate it */
408	pagefault_disable();
409	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
410	if (ret) {
411		pagefault_enable();
412		return 0;
413	}
414	pagefault_enable();
415
416	target = branch_target(&instr);
417	if ((!target) || (instr & BRANCH_ABSOLUTE))
418		return target;
419
420	/* Translate relative branch target from kernel to user address */
421	return target - (unsigned long)&instr + addr;
422}
423
424/* Processing BHRB entries */
425static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
426{
427	u64 val;
428	u64 addr;
429	int r_index, u_index, pred;
430
431	r_index = 0;
432	u_index = 0;
433	while (r_index < ppmu->bhrb_nr) {
434		/* Assembly read function */
435		val = read_bhrb(r_index++);
436		if (!val)
437			/* Terminal marker: End of valid BHRB entries */
438			break;
439		else {
440			addr = val & BHRB_EA;
441			pred = val & BHRB_PREDICTION;
442
443			if (!addr)
444				/* invalid entry */
445				continue;
446
447			/* Branches are read most recent first (ie. mfbhrb 0 is
448			 * the most recent branch).
449			 * There are two types of valid entries:
450			 * 1) a target entry which is the to address of a
451			 *    computed goto like a blr,bctr,btar.  The next
452			 *    entry read from the bhrb will be branch
453			 *    corresponding to this target (ie. the actual
454			 *    blr/bctr/btar instruction).
455			 * 2) a from address which is an actual branch.  If a
456			 *    target entry proceeds this, then this is the
457			 *    matching branch for that target.  If this is not
458			 *    following a target entry, then this is a branch
459			 *    where the target is given as an immediate field
460			 *    in the instruction (ie. an i or b form branch).
461			 *    In this case we need to read the instruction from
462			 *    memory to determine the target/to address.
463			 */
464
465			if (val & BHRB_TARGET) {
466				/* Target branches use two entries
467				 * (ie. computed gotos/XL form)
468				 */
469				cpuhw->bhrb_entries[u_index].to = addr;
470				cpuhw->bhrb_entries[u_index].mispred = pred;
471				cpuhw->bhrb_entries[u_index].predicted = ~pred;
472
473				/* Get from address in next entry */
474				val = read_bhrb(r_index++);
475				addr = val & BHRB_EA;
476				if (val & BHRB_TARGET) {
477					/* Shouldn't have two targets in a
478					   row.. Reset index and try again */
479					r_index--;
480					addr = 0;
481				}
482				cpuhw->bhrb_entries[u_index].from = addr;
483			} else {
484				/* Branches to immediate field
485				   (ie I or B form) */
486				cpuhw->bhrb_entries[u_index].from = addr;
487				cpuhw->bhrb_entries[u_index].to =
488					power_pmu_bhrb_to(addr);
489				cpuhw->bhrb_entries[u_index].mispred = pred;
490				cpuhw->bhrb_entries[u_index].predicted = ~pred;
491			}
492			u_index++;
493
494		}
495	}
496	cpuhw->bhrb_stack.nr = u_index;
497	return;
498}
499
500static bool is_ebb_event(struct perf_event *event)
501{
502	/*
503	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
504	 * check that the PMU supports EBB, meaning those that don't can still
505	 * use bit 63 of the event code for something else if they wish.
506	 */
507	return (ppmu->flags & PPMU_ARCH_207S) &&
508	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
509}
510
511static int ebb_event_check(struct perf_event *event)
512{
513	struct perf_event *leader = event->group_leader;
514
515	/* Event and group leader must agree on EBB */
516	if (is_ebb_event(leader) != is_ebb_event(event))
517		return -EINVAL;
518
519	if (is_ebb_event(event)) {
520		if (!(event->attach_state & PERF_ATTACH_TASK))
521			return -EINVAL;
522
523		if (!leader->attr.pinned || !leader->attr.exclusive)
524			return -EINVAL;
525
526		if (event->attr.freq ||
527		    event->attr.inherit ||
528		    event->attr.sample_type ||
529		    event->attr.sample_period ||
530		    event->attr.enable_on_exec)
531			return -EINVAL;
532	}
533
534	return 0;
535}
536
537static void ebb_event_add(struct perf_event *event)
538{
539	if (!is_ebb_event(event) || current->thread.used_ebb)
540		return;
541
542	/*
543	 * IFF this is the first time we've added an EBB event, set
544	 * PMXE in the user MMCR0 so we can detect when it's cleared by
545	 * userspace. We need this so that we can context switch while
546	 * userspace is in the EBB handler (where PMXE is 0).
547	 */
548	current->thread.used_ebb = 1;
549	current->thread.mmcr0 |= MMCR0_PMXE;
550}
551
552static void ebb_switch_out(unsigned long mmcr0)
553{
554	if (!(mmcr0 & MMCR0_EBE))
555		return;
556
557	current->thread.siar  = mfspr(SPRN_SIAR);
558	current->thread.sier  = mfspr(SPRN_SIER);
559	current->thread.sdar  = mfspr(SPRN_SDAR);
560	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
561	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
562}
563
564static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
565{
566	unsigned long mmcr0 = cpuhw->mmcr[0];
567
568	if (!ebb)
569		goto out;
570
571	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
572	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
573
574	/*
575	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
576	 * with pmao_restore_workaround() because we may add PMAO but we never
577	 * clear it here.
578	 */
579	mmcr0 |= current->thread.mmcr0;
580
581	/*
582	 * Be careful not to set PMXE if userspace had it cleared. This is also
583	 * compatible with pmao_restore_workaround() because it has already
584	 * cleared PMXE and we leave PMAO alone.
585	 */
586	if (!(current->thread.mmcr0 & MMCR0_PMXE))
587		mmcr0 &= ~MMCR0_PMXE;
588
589	mtspr(SPRN_SIAR, current->thread.siar);
590	mtspr(SPRN_SIER, current->thread.sier);
591	mtspr(SPRN_SDAR, current->thread.sdar);
592
593	/*
594	 * Merge the kernel & user values of MMCR2. The semantics we implement
595	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
596	 * but not clear bits. If a task wants to be able to clear bits, ie.
597	 * unfreeze counters, it should not set exclude_xxx in its events and
598	 * instead manage the MMCR2 entirely by itself.
599	 */
600	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
601out:
602	return mmcr0;
603}
604
605static void pmao_restore_workaround(bool ebb)
606{
607	unsigned pmcs[6];
608
609	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
610		return;
611
612	/*
613	 * On POWER8E there is a hardware defect which affects the PMU context
614	 * switch logic, ie. power_pmu_disable/enable().
615	 *
616	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
617	 * by the hardware. Sometime later the actual PMU exception is
618	 * delivered.
619	 *
620	 * If we context switch, or simply disable/enable, the PMU prior to the
621	 * exception arriving, the exception will be lost when we clear PMAO.
622	 *
623	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
624	 * set, and this _should_ generate an exception. However because of the
625	 * defect no exception is generated when we write PMAO, and we get
626	 * stuck with no counters counting but no exception delivered.
627	 *
628	 * The workaround is to detect this case and tweak the hardware to
629	 * create another pending PMU exception.
630	 *
631	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
632	 * enabling the PMU. That causes a new exception to be generated in the
633	 * chip, but we don't take it yet because we have interrupts hard
634	 * disabled. We then write back the PMU state as we want it to be seen
635	 * by the exception handler. When we reenable interrupts the exception
636	 * handler will be called and see the correct state.
637	 *
638	 * The logic is the same for EBB, except that the exception is gated by
639	 * us having interrupts hard disabled as well as the fact that we are
640	 * not in userspace. The exception is finally delivered when we return
641	 * to userspace.
642	 */
643
644	/* Only if PMAO is set and PMAO_SYNC is clear */
645	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
646		return;
647
648	/* If we're doing EBB, only if BESCR[GE] is set */
649	if (ebb && !(current->thread.bescr & BESCR_GE))
650		return;
651
652	/*
653	 * We are already soft-disabled in power_pmu_enable(). We need to hard
654	 * enable to actually prevent the PMU exception from firing.
655	 */
656	hard_irq_disable();
657
658	/*
659	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
660	 * Using read/write_pmc() in a for loop adds 12 function calls and
661	 * almost doubles our code size.
662	 */
663	pmcs[0] = mfspr(SPRN_PMC1);
664	pmcs[1] = mfspr(SPRN_PMC2);
665	pmcs[2] = mfspr(SPRN_PMC3);
666	pmcs[3] = mfspr(SPRN_PMC4);
667	pmcs[4] = mfspr(SPRN_PMC5);
668	pmcs[5] = mfspr(SPRN_PMC6);
669
670	/* Ensure all freeze bits are unset */
671	mtspr(SPRN_MMCR2, 0);
672
673	/* Set up PMC6 to overflow in one cycle */
674	mtspr(SPRN_PMC6, 0x7FFFFFFE);
675
676	/* Enable exceptions and unfreeze PMC6 */
677	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
678
679	/* Now we need to refreeze and restore the PMCs */
680	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
681
682	mtspr(SPRN_PMC1, pmcs[0]);
683	mtspr(SPRN_PMC2, pmcs[1]);
684	mtspr(SPRN_PMC3, pmcs[2]);
685	mtspr(SPRN_PMC4, pmcs[3]);
686	mtspr(SPRN_PMC5, pmcs[4]);
687	mtspr(SPRN_PMC6, pmcs[5]);
688}
689#endif /* CONFIG_PPC64 */
690
691static void perf_event_interrupt(struct pt_regs *regs);
692
693/*
694 * Read one performance monitor counter (PMC).
695 */
696static unsigned long read_pmc(int idx)
697{
698	unsigned long val;
699
700	switch (idx) {
701	case 1:
702		val = mfspr(SPRN_PMC1);
703		break;
704	case 2:
705		val = mfspr(SPRN_PMC2);
706		break;
707	case 3:
708		val = mfspr(SPRN_PMC3);
709		break;
710	case 4:
711		val = mfspr(SPRN_PMC4);
712		break;
713	case 5:
714		val = mfspr(SPRN_PMC5);
715		break;
716	case 6:
717		val = mfspr(SPRN_PMC6);
718		break;
719#ifdef CONFIG_PPC64
720	case 7:
721		val = mfspr(SPRN_PMC7);
722		break;
723	case 8:
724		val = mfspr(SPRN_PMC8);
725		break;
726#endif /* CONFIG_PPC64 */
727	default:
728		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
729		val = 0;
730	}
731	return val;
732}
733
734/*
735 * Write one PMC.
736 */
737static void write_pmc(int idx, unsigned long val)
738{
739	switch (idx) {
740	case 1:
741		mtspr(SPRN_PMC1, val);
742		break;
743	case 2:
744		mtspr(SPRN_PMC2, val);
745		break;
746	case 3:
747		mtspr(SPRN_PMC3, val);
748		break;
749	case 4:
750		mtspr(SPRN_PMC4, val);
751		break;
752	case 5:
753		mtspr(SPRN_PMC5, val);
754		break;
755	case 6:
756		mtspr(SPRN_PMC6, val);
757		break;
758#ifdef CONFIG_PPC64
759	case 7:
760		mtspr(SPRN_PMC7, val);
761		break;
762	case 8:
763		mtspr(SPRN_PMC8, val);
764		break;
765#endif /* CONFIG_PPC64 */
766	default:
767		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
768	}
769}
770
771/* Called from sysrq_handle_showregs() */
772void perf_event_print_debug(void)
773{
774	unsigned long sdar, sier, flags;
775	u32 pmcs[MAX_HWEVENTS];
776	int i;
777
778	if (!ppmu->n_counter)
779		return;
780
781	local_irq_save(flags);
782
783	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
784		 smp_processor_id(), ppmu->name, ppmu->n_counter);
785
786	for (i = 0; i < ppmu->n_counter; i++)
787		pmcs[i] = read_pmc(i + 1);
788
789	for (; i < MAX_HWEVENTS; i++)
790		pmcs[i] = 0xdeadbeef;
791
792	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
793		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
794
795	if (ppmu->n_counter > 4)
796		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
797			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
798
799	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
800		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
801
802	sdar = sier = 0;
803#ifdef CONFIG_PPC64
804	sdar = mfspr(SPRN_SDAR);
805
806	if (ppmu->flags & PPMU_HAS_SIER)
807		sier = mfspr(SPRN_SIER);
808
809	if (ppmu->flags & PPMU_ARCH_207S) {
810		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
811			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
812		pr_info("EBBRR: %016lx BESCR: %016lx\n",
813			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
814	}
815#endif
816	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
817		mfspr(SPRN_SIAR), sdar, sier);
818
819	local_irq_restore(flags);
820}
821
822/*
823 * Check if a set of events can all go on the PMU at once.
824 * If they can't, this will look at alternative codes for the events
825 * and see if any combination of alternative codes is feasible.
826 * The feasible set is returned in event_id[].
827 */
828static int power_check_constraints(struct cpu_hw_events *cpuhw,
829				   u64 event_id[], unsigned int cflags[],
830				   int n_ev)
831{
832	unsigned long mask, value, nv;
833	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
834	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
835	int i, j;
836	unsigned long addf = ppmu->add_fields;
837	unsigned long tadd = ppmu->test_adder;
838
839	if (n_ev > ppmu->n_counter)
840		return -1;
841
842	/* First see if the events will go on as-is */
843	for (i = 0; i < n_ev; ++i) {
844		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
845		    && !ppmu->limited_pmc_event(event_id[i])) {
846			ppmu->get_alternatives(event_id[i], cflags[i],
847					       cpuhw->alternatives[i]);
848			event_id[i] = cpuhw->alternatives[i][0];
849		}
850		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
851					 &cpuhw->avalues[i][0]))
852			return -1;
853	}
854	value = mask = 0;
855	for (i = 0; i < n_ev; ++i) {
856		nv = (value | cpuhw->avalues[i][0]) +
857			(value & cpuhw->avalues[i][0] & addf);
858		if ((((nv + tadd) ^ value) & mask) != 0 ||
859		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
860		     cpuhw->amasks[i][0]) != 0)
861			break;
862		value = nv;
863		mask |= cpuhw->amasks[i][0];
864	}
865	if (i == n_ev)
866		return 0;	/* all OK */
867
868	/* doesn't work, gather alternatives... */
869	if (!ppmu->get_alternatives)
870		return -1;
871	for (i = 0; i < n_ev; ++i) {
872		choice[i] = 0;
873		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
874						  cpuhw->alternatives[i]);
875		for (j = 1; j < n_alt[i]; ++j)
876			ppmu->get_constraint(cpuhw->alternatives[i][j],
877					     &cpuhw->amasks[i][j],
878					     &cpuhw->avalues[i][j]);
879	}
880
881	/* enumerate all possibilities and see if any will work */
882	i = 0;
883	j = -1;
884	value = mask = nv = 0;
885	while (i < n_ev) {
886		if (j >= 0) {
887			/* we're backtracking, restore context */
888			value = svalues[i];
889			mask = smasks[i];
890			j = choice[i];
891		}
892		/*
893		 * See if any alternative k for event_id i,
894		 * where k > j, will satisfy the constraints.
895		 */
896		while (++j < n_alt[i]) {
897			nv = (value | cpuhw->avalues[i][j]) +
898				(value & cpuhw->avalues[i][j] & addf);
899			if ((((nv + tadd) ^ value) & mask) == 0 &&
900			    (((nv + tadd) ^ cpuhw->avalues[i][j])
901			     & cpuhw->amasks[i][j]) == 0)
902				break;
903		}
904		if (j >= n_alt[i]) {
905			/*
906			 * No feasible alternative, backtrack
907			 * to event_id i-1 and continue enumerating its
908			 * alternatives from where we got up to.
909			 */
910			if (--i < 0)
911				return -1;
912		} else {
913			/*
914			 * Found a feasible alternative for event_id i,
915			 * remember where we got up to with this event_id,
916			 * go on to the next event_id, and start with
917			 * the first alternative for it.
918			 */
919			choice[i] = j;
920			svalues[i] = value;
921			smasks[i] = mask;
922			value = nv;
923			mask |= cpuhw->amasks[i][j];
924			++i;
925			j = -1;
926		}
927	}
928
929	/* OK, we have a feasible combination, tell the caller the solution */
930	for (i = 0; i < n_ev; ++i)
931		event_id[i] = cpuhw->alternatives[i][choice[i]];
932	return 0;
933}
934
935/*
936 * Check if newly-added events have consistent settings for
937 * exclude_{user,kernel,hv} with each other and any previously
938 * added events.
939 */
940static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
941			  int n_prev, int n_new)
942{
943	int eu = 0, ek = 0, eh = 0;
944	int i, n, first;
945	struct perf_event *event;
946
947	/*
948	 * If the PMU we're on supports per event exclude settings then we
949	 * don't need to do any of this logic. NB. This assumes no PMU has both
950	 * per event exclude and limited PMCs.
951	 */
952	if (ppmu->flags & PPMU_ARCH_207S)
953		return 0;
954
955	n = n_prev + n_new;
956	if (n <= 1)
957		return 0;
958
959	first = 1;
960	for (i = 0; i < n; ++i) {
961		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
962			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
963			continue;
964		}
965		event = ctrs[i];
966		if (first) {
967			eu = event->attr.exclude_user;
968			ek = event->attr.exclude_kernel;
969			eh = event->attr.exclude_hv;
970			first = 0;
971		} else if (event->attr.exclude_user != eu ||
972			   event->attr.exclude_kernel != ek ||
973			   event->attr.exclude_hv != eh) {
974			return -EAGAIN;
975		}
976	}
977
978	if (eu || ek || eh)
979		for (i = 0; i < n; ++i)
980			if (cflags[i] & PPMU_LIMITED_PMC_OK)
981				cflags[i] |= PPMU_LIMITED_PMC_REQD;
982
983	return 0;
984}
985
986static u64 check_and_compute_delta(u64 prev, u64 val)
987{
988	u64 delta = (val - prev) & 0xfffffffful;
989
990	/*
991	 * POWER7 can roll back counter values, if the new value is smaller
992	 * than the previous value it will cause the delta and the counter to
993	 * have bogus values unless we rolled a counter over.  If a coutner is
994	 * rolled back, it will be smaller, but within 256, which is the maximum
995	 * number of events to rollback at once.  If we dectect a rollback
996	 * return 0.  This can lead to a small lack of precision in the
997	 * counters.
998	 */
999	if (prev > val && (prev - val) < 256)
1000		delta = 0;
1001
1002	return delta;
1003}
1004
1005static void power_pmu_read(struct perf_event *event)
1006{
1007	s64 val, delta, prev;
1008
1009	if (event->hw.state & PERF_HES_STOPPED)
1010		return;
1011
1012	if (!event->hw.idx)
1013		return;
1014
1015	if (is_ebb_event(event)) {
1016		val = read_pmc(event->hw.idx);
1017		local64_set(&event->hw.prev_count, val);
1018		return;
1019	}
1020
1021	/*
1022	 * Performance monitor interrupts come even when interrupts
1023	 * are soft-disabled, as long as interrupts are hard-enabled.
1024	 * Therefore we treat them like NMIs.
1025	 */
1026	do {
1027		prev = local64_read(&event->hw.prev_count);
1028		barrier();
1029		val = read_pmc(event->hw.idx);
1030		delta = check_and_compute_delta(prev, val);
1031		if (!delta)
1032			return;
1033	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1034
1035	local64_add(delta, &event->count);
1036
1037	/*
1038	 * A number of places program the PMC with (0x80000000 - period_left).
1039	 * We never want period_left to be less than 1 because we will program
1040	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1041	 * roll around to 0 before taking an exception. We have seen this
1042	 * on POWER8.
1043	 *
1044	 * To fix this, clamp the minimum value of period_left to 1.
1045	 */
1046	do {
1047		prev = local64_read(&event->hw.period_left);
1048		val = prev - delta;
1049		if (val < 1)
1050			val = 1;
1051	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1052}
1053
1054/*
1055 * On some machines, PMC5 and PMC6 can't be written, don't respect
1056 * the freeze conditions, and don't generate interrupts.  This tells
1057 * us if `event' is using such a PMC.
1058 */
1059static int is_limited_pmc(int pmcnum)
1060{
1061	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1062		&& (pmcnum == 5 || pmcnum == 6);
1063}
1064
1065static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1066				    unsigned long pmc5, unsigned long pmc6)
1067{
1068	struct perf_event *event;
1069	u64 val, prev, delta;
1070	int i;
1071
1072	for (i = 0; i < cpuhw->n_limited; ++i) {
1073		event = cpuhw->limited_counter[i];
1074		if (!event->hw.idx)
1075			continue;
1076		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1077		prev = local64_read(&event->hw.prev_count);
1078		event->hw.idx = 0;
1079		delta = check_and_compute_delta(prev, val);
1080		if (delta)
1081			local64_add(delta, &event->count);
1082	}
1083}
1084
1085static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1086				  unsigned long pmc5, unsigned long pmc6)
1087{
1088	struct perf_event *event;
1089	u64 val, prev;
1090	int i;
1091
1092	for (i = 0; i < cpuhw->n_limited; ++i) {
1093		event = cpuhw->limited_counter[i];
1094		event->hw.idx = cpuhw->limited_hwidx[i];
1095		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1096		prev = local64_read(&event->hw.prev_count);
1097		if (check_and_compute_delta(prev, val))
1098			local64_set(&event->hw.prev_count, val);
1099		perf_event_update_userpage(event);
1100	}
1101}
1102
1103/*
1104 * Since limited events don't respect the freeze conditions, we
1105 * have to read them immediately after freezing or unfreezing the
1106 * other events.  We try to keep the values from the limited
1107 * events as consistent as possible by keeping the delay (in
1108 * cycles and instructions) between freezing/unfreezing and reading
1109 * the limited events as small and consistent as possible.
1110 * Therefore, if any limited events are in use, we read them
1111 * both, and always in the same order, to minimize variability,
1112 * and do it inside the same asm that writes MMCR0.
1113 */
1114static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1115{
1116	unsigned long pmc5, pmc6;
1117
1118	if (!cpuhw->n_limited) {
1119		mtspr(SPRN_MMCR0, mmcr0);
1120		return;
1121	}
1122
1123	/*
1124	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1125	 * To ensure we don't get a performance monitor interrupt
1126	 * between writing MMCR0 and freezing/thawing the limited
1127	 * events, we first write MMCR0 with the event overflow
1128	 * interrupt enable bits turned off.
1129	 */
1130	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1131		     : "=&r" (pmc5), "=&r" (pmc6)
1132		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1133		       "i" (SPRN_MMCR0),
1134		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1135
1136	if (mmcr0 & MMCR0_FC)
1137		freeze_limited_counters(cpuhw, pmc5, pmc6);
1138	else
1139		thaw_limited_counters(cpuhw, pmc5, pmc6);
1140
1141	/*
1142	 * Write the full MMCR0 including the event overflow interrupt
1143	 * enable bits, if necessary.
1144	 */
1145	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1146		mtspr(SPRN_MMCR0, mmcr0);
1147}
1148
1149/*
1150 * Disable all events to prevent PMU interrupts and to allow
1151 * events to be added or removed.
1152 */
1153static void power_pmu_disable(struct pmu *pmu)
1154{
1155	struct cpu_hw_events *cpuhw;
1156	unsigned long flags, mmcr0, val;
1157
1158	if (!ppmu)
1159		return;
1160	local_irq_save(flags);
1161	cpuhw = this_cpu_ptr(&cpu_hw_events);
1162
1163	if (!cpuhw->disabled) {
1164		/*
1165		 * Check if we ever enabled the PMU on this cpu.
1166		 */
1167		if (!cpuhw->pmcs_enabled) {
1168			ppc_enable_pmcs();
1169			cpuhw->pmcs_enabled = 1;
1170		}
1171
1172		/*
1173		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1174		 */
1175		val  = mmcr0 = mfspr(SPRN_MMCR0);
1176		val |= MMCR0_FC;
1177		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1178			 MMCR0_FC56);
1179
1180		/*
1181		 * The barrier is to make sure the mtspr has been
1182		 * executed and the PMU has frozen the events etc.
1183		 * before we return.
1184		 */
1185		write_mmcr0(cpuhw, val);
1186		mb();
1187
1188		/*
1189		 * Disable instruction sampling if it was enabled
1190		 */
1191		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1192			mtspr(SPRN_MMCRA,
1193			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1194			mb();
1195		}
1196
1197		cpuhw->disabled = 1;
1198		cpuhw->n_added = 0;
1199
1200		ebb_switch_out(mmcr0);
1201	}
1202
1203	local_irq_restore(flags);
1204}
1205
1206/*
1207 * Re-enable all events if disable == 0.
1208 * If we were previously disabled and events were added, then
1209 * put the new config on the PMU.
1210 */
1211static void power_pmu_enable(struct pmu *pmu)
1212{
1213	struct perf_event *event;
1214	struct cpu_hw_events *cpuhw;
1215	unsigned long flags;
1216	long i;
1217	unsigned long val, mmcr0;
1218	s64 left;
1219	unsigned int hwc_index[MAX_HWEVENTS];
1220	int n_lim;
1221	int idx;
1222	bool ebb;
1223
1224	if (!ppmu)
1225		return;
1226	local_irq_save(flags);
1227
1228	cpuhw = this_cpu_ptr(&cpu_hw_events);
1229	if (!cpuhw->disabled)
1230		goto out;
1231
1232	if (cpuhw->n_events == 0) {
1233		ppc_set_pmu_inuse(0);
1234		goto out;
1235	}
1236
1237	cpuhw->disabled = 0;
1238
1239	/*
1240	 * EBB requires an exclusive group and all events must have the EBB
1241	 * flag set, or not set, so we can just check a single event. Also we
1242	 * know we have at least one event.
1243	 */
1244	ebb = is_ebb_event(cpuhw->event[0]);
1245
1246	/*
1247	 * If we didn't change anything, or only removed events,
1248	 * no need to recalculate MMCR* settings and reset the PMCs.
1249	 * Just reenable the PMU with the current MMCR* settings
1250	 * (possibly updated for removal of events).
1251	 */
1252	if (!cpuhw->n_added) {
1253		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1254		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1255		goto out_enable;
1256	}
1257
1258	/*
1259	 * Clear all MMCR settings and recompute them for the new set of events.
1260	 */
1261	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1262
1263	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1264			       cpuhw->mmcr, cpuhw->event)) {
1265		/* shouldn't ever get here */
1266		printk(KERN_ERR "oops compute_mmcr failed\n");
1267		goto out;
1268	}
1269
1270	if (!(ppmu->flags & PPMU_ARCH_207S)) {
1271		/*
1272		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1273		 * bits for the first event. We have already checked that all
1274		 * events have the same value for these bits as the first event.
1275		 */
1276		event = cpuhw->event[0];
1277		if (event->attr.exclude_user)
1278			cpuhw->mmcr[0] |= MMCR0_FCP;
1279		if (event->attr.exclude_kernel)
1280			cpuhw->mmcr[0] |= freeze_events_kernel;
1281		if (event->attr.exclude_hv)
1282			cpuhw->mmcr[0] |= MMCR0_FCHV;
1283	}
1284
1285	/*
1286	 * Write the new configuration to MMCR* with the freeze
1287	 * bit set and set the hardware events to their initial values.
1288	 * Then unfreeze the events.
1289	 */
1290	ppc_set_pmu_inuse(1);
1291	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1292	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1293	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1294				| MMCR0_FC);
1295	if (ppmu->flags & PPMU_ARCH_207S)
1296		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1297
1298	/*
1299	 * Read off any pre-existing events that need to move
1300	 * to another PMC.
1301	 */
1302	for (i = 0; i < cpuhw->n_events; ++i) {
1303		event = cpuhw->event[i];
1304		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1305			power_pmu_read(event);
1306			write_pmc(event->hw.idx, 0);
1307			event->hw.idx = 0;
1308		}
1309	}
1310
1311	/*
1312	 * Initialize the PMCs for all the new and moved events.
1313	 */
1314	cpuhw->n_limited = n_lim = 0;
1315	for (i = 0; i < cpuhw->n_events; ++i) {
1316		event = cpuhw->event[i];
1317		if (event->hw.idx)
1318			continue;
1319		idx = hwc_index[i] + 1;
1320		if (is_limited_pmc(idx)) {
1321			cpuhw->limited_counter[n_lim] = event;
1322			cpuhw->limited_hwidx[n_lim] = idx;
1323			++n_lim;
1324			continue;
1325		}
1326
1327		if (ebb)
1328			val = local64_read(&event->hw.prev_count);
1329		else {
1330			val = 0;
1331			if (event->hw.sample_period) {
1332				left = local64_read(&event->hw.period_left);
1333				if (left < 0x80000000L)
1334					val = 0x80000000L - left;
1335			}
1336			local64_set(&event->hw.prev_count, val);
1337		}
1338
1339		event->hw.idx = idx;
1340		if (event->hw.state & PERF_HES_STOPPED)
1341			val = 0;
1342		write_pmc(idx, val);
1343
1344		perf_event_update_userpage(event);
1345	}
1346	cpuhw->n_limited = n_lim;
1347	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1348
1349 out_enable:
1350	pmao_restore_workaround(ebb);
1351
1352	mmcr0 = ebb_switch_in(ebb, cpuhw);
1353
1354	mb();
1355	if (cpuhw->bhrb_users)
1356		ppmu->config_bhrb(cpuhw->bhrb_filter);
1357
1358	write_mmcr0(cpuhw, mmcr0);
1359
1360	/*
1361	 * Enable instruction sampling if necessary
1362	 */
1363	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1364		mb();
1365		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1366	}
1367
1368 out:
1369
1370	local_irq_restore(flags);
1371}
1372
1373static int collect_events(struct perf_event *group, int max_count,
1374			  struct perf_event *ctrs[], u64 *events,
1375			  unsigned int *flags)
1376{
1377	int n = 0;
1378	struct perf_event *event;
1379
1380	if (!is_software_event(group)) {
1381		if (n >= max_count)
1382			return -1;
1383		ctrs[n] = group;
1384		flags[n] = group->hw.event_base;
1385		events[n++] = group->hw.config;
1386	}
1387	list_for_each_entry(event, &group->sibling_list, group_entry) {
1388		if (!is_software_event(event) &&
1389		    event->state != PERF_EVENT_STATE_OFF) {
1390			if (n >= max_count)
1391				return -1;
1392			ctrs[n] = event;
1393			flags[n] = event->hw.event_base;
1394			events[n++] = event->hw.config;
1395		}
1396	}
1397	return n;
1398}
1399
1400/*
1401 * Add a event to the PMU.
1402 * If all events are not already frozen, then we disable and
1403 * re-enable the PMU in order to get hw_perf_enable to do the
1404 * actual work of reconfiguring the PMU.
1405 */
1406static int power_pmu_add(struct perf_event *event, int ef_flags)
1407{
1408	struct cpu_hw_events *cpuhw;
1409	unsigned long flags;
1410	int n0;
1411	int ret = -EAGAIN;
1412
1413	local_irq_save(flags);
1414	perf_pmu_disable(event->pmu);
1415
1416	/*
1417	 * Add the event to the list (if there is room)
1418	 * and check whether the total set is still feasible.
1419	 */
1420	cpuhw = this_cpu_ptr(&cpu_hw_events);
1421	n0 = cpuhw->n_events;
1422	if (n0 >= ppmu->n_counter)
1423		goto out;
1424	cpuhw->event[n0] = event;
1425	cpuhw->events[n0] = event->hw.config;
1426	cpuhw->flags[n0] = event->hw.event_base;
1427
1428	/*
1429	 * This event may have been disabled/stopped in record_and_restart()
1430	 * because we exceeded the ->event_limit. If re-starting the event,
1431	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1432	 * notification is re-enabled.
1433	 */
1434	if (!(ef_flags & PERF_EF_START))
1435		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1436	else
1437		event->hw.state = 0;
1438
1439	/*
1440	 * If group events scheduling transaction was started,
1441	 * skip the schedulability test here, it will be performed
1442	 * at commit time(->commit_txn) as a whole
1443	 */
1444	if (cpuhw->group_flag & PERF_EVENT_TXN)
1445		goto nocheck;
1446
1447	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1448		goto out;
1449	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1450		goto out;
1451	event->hw.config = cpuhw->events[n0];
1452
1453nocheck:
1454	ebb_event_add(event);
1455
1456	++cpuhw->n_events;
1457	++cpuhw->n_added;
1458
1459	ret = 0;
1460 out:
1461	if (has_branch_stack(event)) {
1462		power_pmu_bhrb_enable(event);
1463		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1464					event->attr.branch_sample_type);
1465	}
1466
1467	perf_pmu_enable(event->pmu);
1468	local_irq_restore(flags);
1469	return ret;
1470}
1471
1472/*
1473 * Remove a event from the PMU.
1474 */
1475static void power_pmu_del(struct perf_event *event, int ef_flags)
1476{
1477	struct cpu_hw_events *cpuhw;
1478	long i;
1479	unsigned long flags;
1480
1481	local_irq_save(flags);
1482	perf_pmu_disable(event->pmu);
1483
1484	power_pmu_read(event);
1485
1486	cpuhw = this_cpu_ptr(&cpu_hw_events);
1487	for (i = 0; i < cpuhw->n_events; ++i) {
1488		if (event == cpuhw->event[i]) {
1489			while (++i < cpuhw->n_events) {
1490				cpuhw->event[i-1] = cpuhw->event[i];
1491				cpuhw->events[i-1] = cpuhw->events[i];
1492				cpuhw->flags[i-1] = cpuhw->flags[i];
1493			}
1494			--cpuhw->n_events;
1495			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1496			if (event->hw.idx) {
1497				write_pmc(event->hw.idx, 0);
1498				event->hw.idx = 0;
1499			}
1500			perf_event_update_userpage(event);
1501			break;
1502		}
1503	}
1504	for (i = 0; i < cpuhw->n_limited; ++i)
1505		if (event == cpuhw->limited_counter[i])
1506			break;
1507	if (i < cpuhw->n_limited) {
1508		while (++i < cpuhw->n_limited) {
1509			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1510			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1511		}
1512		--cpuhw->n_limited;
1513	}
1514	if (cpuhw->n_events == 0) {
1515		/* disable exceptions if no events are running */
1516		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1517	}
1518
1519	if (has_branch_stack(event))
1520		power_pmu_bhrb_disable(event);
1521
1522	perf_pmu_enable(event->pmu);
1523	local_irq_restore(flags);
1524}
1525
1526/*
1527 * POWER-PMU does not support disabling individual counters, hence
1528 * program their cycle counter to their max value and ignore the interrupts.
1529 */
1530
1531static void power_pmu_start(struct perf_event *event, int ef_flags)
1532{
1533	unsigned long flags;
1534	s64 left;
1535	unsigned long val;
1536
1537	if (!event->hw.idx || !event->hw.sample_period)
1538		return;
1539
1540	if (!(event->hw.state & PERF_HES_STOPPED))
1541		return;
1542
1543	if (ef_flags & PERF_EF_RELOAD)
1544		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1545
1546	local_irq_save(flags);
1547	perf_pmu_disable(event->pmu);
1548
1549	event->hw.state = 0;
1550	left = local64_read(&event->hw.period_left);
1551
1552	val = 0;
1553	if (left < 0x80000000L)
1554		val = 0x80000000L - left;
1555
1556	write_pmc(event->hw.idx, val);
1557
1558	perf_event_update_userpage(event);
1559	perf_pmu_enable(event->pmu);
1560	local_irq_restore(flags);
1561}
1562
1563static void power_pmu_stop(struct perf_event *event, int ef_flags)
1564{
1565	unsigned long flags;
1566
1567	if (!event->hw.idx || !event->hw.sample_period)
1568		return;
1569
1570	if (event->hw.state & PERF_HES_STOPPED)
1571		return;
1572
1573	local_irq_save(flags);
1574	perf_pmu_disable(event->pmu);
1575
1576	power_pmu_read(event);
1577	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1578	write_pmc(event->hw.idx, 0);
1579
1580	perf_event_update_userpage(event);
1581	perf_pmu_enable(event->pmu);
1582	local_irq_restore(flags);
1583}
1584
1585/*
1586 * Start group events scheduling transaction
1587 * Set the flag to make pmu::enable() not perform the
1588 * schedulability test, it will be performed at commit time
1589 */
1590static void power_pmu_start_txn(struct pmu *pmu)
1591{
1592	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1593
1594	perf_pmu_disable(pmu);
1595	cpuhw->group_flag |= PERF_EVENT_TXN;
1596	cpuhw->n_txn_start = cpuhw->n_events;
1597}
1598
1599/*
1600 * Stop group events scheduling transaction
1601 * Clear the flag and pmu::enable() will perform the
1602 * schedulability test.
1603 */
1604static void power_pmu_cancel_txn(struct pmu *pmu)
1605{
1606	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1607
1608	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1609	perf_pmu_enable(pmu);
1610}
1611
1612/*
1613 * Commit group events scheduling transaction
1614 * Perform the group schedulability test as a whole
1615 * Return 0 if success
1616 */
1617static int power_pmu_commit_txn(struct pmu *pmu)
1618{
1619	struct cpu_hw_events *cpuhw;
1620	long i, n;
1621
1622	if (!ppmu)
1623		return -EAGAIN;
1624	cpuhw = this_cpu_ptr(&cpu_hw_events);
1625	n = cpuhw->n_events;
1626	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1627		return -EAGAIN;
1628	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1629	if (i < 0)
1630		return -EAGAIN;
1631
1632	for (i = cpuhw->n_txn_start; i < n; ++i)
1633		cpuhw->event[i]->hw.config = cpuhw->events[i];
1634
1635	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1636	perf_pmu_enable(pmu);
1637	return 0;
1638}
1639
1640/*
1641 * Return 1 if we might be able to put event on a limited PMC,
1642 * or 0 if not.
1643 * A event can only go on a limited PMC if it counts something
1644 * that a limited PMC can count, doesn't require interrupts, and
1645 * doesn't exclude any processor mode.
1646 */
1647static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1648				 unsigned int flags)
1649{
1650	int n;
1651	u64 alt[MAX_EVENT_ALTERNATIVES];
1652
1653	if (event->attr.exclude_user
1654	    || event->attr.exclude_kernel
1655	    || event->attr.exclude_hv
1656	    || event->attr.sample_period)
1657		return 0;
1658
1659	if (ppmu->limited_pmc_event(ev))
1660		return 1;
1661
1662	/*
1663	 * The requested event_id isn't on a limited PMC already;
1664	 * see if any alternative code goes on a limited PMC.
1665	 */
1666	if (!ppmu->get_alternatives)
1667		return 0;
1668
1669	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1670	n = ppmu->get_alternatives(ev, flags, alt);
1671
1672	return n > 0;
1673}
1674
1675/*
1676 * Find an alternative event_id that goes on a normal PMC, if possible,
1677 * and return the event_id code, or 0 if there is no such alternative.
1678 * (Note: event_id code 0 is "don't count" on all machines.)
1679 */
1680static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1681{
1682	u64 alt[MAX_EVENT_ALTERNATIVES];
1683	int n;
1684
1685	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1686	n = ppmu->get_alternatives(ev, flags, alt);
1687	if (!n)
1688		return 0;
1689	return alt[0];
1690}
1691
1692/* Number of perf_events counting hardware events */
1693static atomic_t num_events;
1694/* Used to avoid races in calling reserve/release_pmc_hardware */
1695static DEFINE_MUTEX(pmc_reserve_mutex);
1696
1697/*
1698 * Release the PMU if this is the last perf_event.
1699 */
1700static void hw_perf_event_destroy(struct perf_event *event)
1701{
1702	if (!atomic_add_unless(&num_events, -1, 1)) {
1703		mutex_lock(&pmc_reserve_mutex);
1704		if (atomic_dec_return(&num_events) == 0)
1705			release_pmc_hardware();
1706		mutex_unlock(&pmc_reserve_mutex);
1707	}
1708}
1709
1710/*
1711 * Translate a generic cache event_id config to a raw event_id code.
1712 */
1713static int hw_perf_cache_event(u64 config, u64 *eventp)
1714{
1715	unsigned long type, op, result;
1716	int ev;
1717
1718	if (!ppmu->cache_events)
1719		return -EINVAL;
1720
1721	/* unpack config */
1722	type = config & 0xff;
1723	op = (config >> 8) & 0xff;
1724	result = (config >> 16) & 0xff;
1725
1726	if (type >= PERF_COUNT_HW_CACHE_MAX ||
1727	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1728	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1729		return -EINVAL;
1730
1731	ev = (*ppmu->cache_events)[type][op][result];
1732	if (ev == 0)
1733		return -EOPNOTSUPP;
1734	if (ev == -1)
1735		return -EINVAL;
1736	*eventp = ev;
1737	return 0;
1738}
1739
1740static int power_pmu_event_init(struct perf_event *event)
1741{
1742	u64 ev;
1743	unsigned long flags;
1744	struct perf_event *ctrs[MAX_HWEVENTS];
1745	u64 events[MAX_HWEVENTS];
1746	unsigned int cflags[MAX_HWEVENTS];
1747	int n;
1748	int err;
1749	struct cpu_hw_events *cpuhw;
1750
1751	if (!ppmu)
1752		return -ENOENT;
1753
1754	if (has_branch_stack(event)) {
1755	        /* PMU has BHRB enabled */
1756		if (!(ppmu->flags & PPMU_ARCH_207S))
1757			return -EOPNOTSUPP;
1758	}
1759
1760	switch (event->attr.type) {
1761	case PERF_TYPE_HARDWARE:
1762		ev = event->attr.config;
1763		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1764			return -EOPNOTSUPP;
1765		ev = ppmu->generic_events[ev];
1766		break;
1767	case PERF_TYPE_HW_CACHE:
1768		err = hw_perf_cache_event(event->attr.config, &ev);
1769		if (err)
1770			return err;
1771		break;
1772	case PERF_TYPE_RAW:
1773		ev = event->attr.config;
1774		break;
1775	default:
1776		return -ENOENT;
1777	}
1778
1779	event->hw.config_base = ev;
1780	event->hw.idx = 0;
1781
1782	/*
1783	 * If we are not running on a hypervisor, force the
1784	 * exclude_hv bit to 0 so that we don't care what
1785	 * the user set it to.
1786	 */
1787	if (!firmware_has_feature(FW_FEATURE_LPAR))
1788		event->attr.exclude_hv = 0;
1789
1790	/*
1791	 * If this is a per-task event, then we can use
1792	 * PM_RUN_* events interchangeably with their non RUN_*
1793	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1794	 * XXX we should check if the task is an idle task.
1795	 */
1796	flags = 0;
1797	if (event->attach_state & PERF_ATTACH_TASK)
1798		flags |= PPMU_ONLY_COUNT_RUN;
1799
1800	/*
1801	 * If this machine has limited events, check whether this
1802	 * event_id could go on a limited event.
1803	 */
1804	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1805		if (can_go_on_limited_pmc(event, ev, flags)) {
1806			flags |= PPMU_LIMITED_PMC_OK;
1807		} else if (ppmu->limited_pmc_event(ev)) {
1808			/*
1809			 * The requested event_id is on a limited PMC,
1810			 * but we can't use a limited PMC; see if any
1811			 * alternative goes on a normal PMC.
1812			 */
1813			ev = normal_pmc_alternative(ev, flags);
1814			if (!ev)
1815				return -EINVAL;
1816		}
1817	}
1818
1819	/* Extra checks for EBB */
1820	err = ebb_event_check(event);
1821	if (err)
1822		return err;
1823
1824	/*
1825	 * If this is in a group, check if it can go on with all the
1826	 * other hardware events in the group.  We assume the event
1827	 * hasn't been linked into its leader's sibling list at this point.
1828	 */
1829	n = 0;
1830	if (event->group_leader != event) {
1831		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1832				   ctrs, events, cflags);
1833		if (n < 0)
1834			return -EINVAL;
1835	}
1836	events[n] = ev;
1837	ctrs[n] = event;
1838	cflags[n] = flags;
1839	if (check_excludes(ctrs, cflags, n, 1))
1840		return -EINVAL;
1841
1842	cpuhw = &get_cpu_var(cpu_hw_events);
1843	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1844
1845	if (has_branch_stack(event)) {
1846		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1847					event->attr.branch_sample_type);
1848
1849		if (cpuhw->bhrb_filter == -1) {
1850			put_cpu_var(cpu_hw_events);
1851			return -EOPNOTSUPP;
1852		}
1853	}
1854
1855	put_cpu_var(cpu_hw_events);
1856	if (err)
1857		return -EINVAL;
1858
1859	event->hw.config = events[n];
1860	event->hw.event_base = cflags[n];
1861	event->hw.last_period = event->hw.sample_period;
1862	local64_set(&event->hw.period_left, event->hw.last_period);
1863
1864	/*
1865	 * For EBB events we just context switch the PMC value, we don't do any
1866	 * of the sample_period logic. We use hw.prev_count for this.
1867	 */
1868	if (is_ebb_event(event))
1869		local64_set(&event->hw.prev_count, 0);
1870
1871	/*
1872	 * See if we need to reserve the PMU.
1873	 * If no events are currently in use, then we have to take a
1874	 * mutex to ensure that we don't race with another task doing
1875	 * reserve_pmc_hardware or release_pmc_hardware.
1876	 */
1877	err = 0;
1878	if (!atomic_inc_not_zero(&num_events)) {
1879		mutex_lock(&pmc_reserve_mutex);
1880		if (atomic_read(&num_events) == 0 &&
1881		    reserve_pmc_hardware(perf_event_interrupt))
1882			err = -EBUSY;
1883		else
1884			atomic_inc(&num_events);
1885		mutex_unlock(&pmc_reserve_mutex);
1886	}
1887	event->destroy = hw_perf_event_destroy;
1888
1889	return err;
1890}
1891
1892static int power_pmu_event_idx(struct perf_event *event)
1893{
1894	return event->hw.idx;
1895}
1896
1897ssize_t power_events_sysfs_show(struct device *dev,
1898				struct device_attribute *attr, char *page)
1899{
1900	struct perf_pmu_events_attr *pmu_attr;
1901
1902	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1903
1904	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1905}
1906
1907static struct pmu power_pmu = {
1908	.pmu_enable	= power_pmu_enable,
1909	.pmu_disable	= power_pmu_disable,
1910	.event_init	= power_pmu_event_init,
1911	.add		= power_pmu_add,
1912	.del		= power_pmu_del,
1913	.start		= power_pmu_start,
1914	.stop		= power_pmu_stop,
1915	.read		= power_pmu_read,
1916	.start_txn	= power_pmu_start_txn,
1917	.cancel_txn	= power_pmu_cancel_txn,
1918	.commit_txn	= power_pmu_commit_txn,
1919	.event_idx	= power_pmu_event_idx,
1920	.sched_task	= power_pmu_sched_task,
1921};
1922
1923/*
1924 * A counter has overflowed; update its count and record
1925 * things if requested.  Note that interrupts are hard-disabled
1926 * here so there is no possibility of being interrupted.
1927 */
1928static void record_and_restart(struct perf_event *event, unsigned long val,
1929			       struct pt_regs *regs)
1930{
1931	u64 period = event->hw.sample_period;
1932	s64 prev, delta, left;
1933	int record = 0;
1934
1935	if (event->hw.state & PERF_HES_STOPPED) {
1936		write_pmc(event->hw.idx, 0);
1937		return;
1938	}
1939
1940	/* we don't have to worry about interrupts here */
1941	prev = local64_read(&event->hw.prev_count);
1942	delta = check_and_compute_delta(prev, val);
1943	local64_add(delta, &event->count);
1944
1945	/*
1946	 * See if the total period for this event has expired,
1947	 * and update for the next period.
1948	 */
1949	val = 0;
1950	left = local64_read(&event->hw.period_left) - delta;
1951	if (delta == 0)
1952		left++;
1953	if (period) {
1954		if (left <= 0) {
1955			left += period;
1956			if (left <= 0)
1957				left = period;
1958			record = siar_valid(regs);
1959			event->hw.last_period = event->hw.sample_period;
1960		}
1961		if (left < 0x80000000LL)
1962			val = 0x80000000LL - left;
1963	}
1964
1965	write_pmc(event->hw.idx, val);
1966	local64_set(&event->hw.prev_count, val);
1967	local64_set(&event->hw.period_left, left);
1968	perf_event_update_userpage(event);
1969
1970	/*
1971	 * Finally record data if requested.
1972	 */
1973	if (record) {
1974		struct perf_sample_data data;
1975
1976		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1977
1978		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1979			perf_get_data_addr(regs, &data.addr);
1980
1981		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1982			struct cpu_hw_events *cpuhw;
1983			cpuhw = this_cpu_ptr(&cpu_hw_events);
1984			power_pmu_bhrb_read(cpuhw);
1985			data.br_stack = &cpuhw->bhrb_stack;
1986		}
1987
1988		if (perf_event_overflow(event, &data, regs))
1989			power_pmu_stop(event, 0);
1990	}
1991}
1992
1993/*
1994 * Called from generic code to get the misc flags (i.e. processor mode)
1995 * for an event_id.
1996 */
1997unsigned long perf_misc_flags(struct pt_regs *regs)
1998{
1999	u32 flags = perf_get_misc_flags(regs);
2000
2001	if (flags)
2002		return flags;
2003	return user_mode(regs) ? PERF_RECORD_MISC_USER :
2004		PERF_RECORD_MISC_KERNEL;
2005}
2006
2007/*
2008 * Called from generic code to get the instruction pointer
2009 * for an event_id.
2010 */
2011unsigned long perf_instruction_pointer(struct pt_regs *regs)
2012{
2013	bool use_siar = regs_use_siar(regs);
2014
2015	if (use_siar && siar_valid(regs))
2016		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2017	else if (use_siar)
2018		return 0;		// no valid instruction pointer
2019	else
2020		return regs->nip;
2021}
2022
2023static bool pmc_overflow_power7(unsigned long val)
2024{
2025	/*
2026	 * Events on POWER7 can roll back if a speculative event doesn't
2027	 * eventually complete. Unfortunately in some rare cases they will
2028	 * raise a performance monitor exception. We need to catch this to
2029	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2030	 * cycles from overflow.
2031	 *
2032	 * We only do this if the first pass fails to find any overflowing
2033	 * PMCs because a user might set a period of less than 256 and we
2034	 * don't want to mistakenly reset them.
2035	 */
2036	if ((0x80000000 - val) <= 256)
2037		return true;
2038
2039	return false;
2040}
2041
2042static bool pmc_overflow(unsigned long val)
2043{
2044	if ((int)val < 0)
2045		return true;
2046
2047	return false;
2048}
2049
2050/*
2051 * Performance monitor interrupt stuff
2052 */
2053static void perf_event_interrupt(struct pt_regs *regs)
2054{
2055	int i, j;
2056	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2057	struct perf_event *event;
2058	unsigned long val[8];
2059	int found, active;
2060	int nmi;
2061
2062	if (cpuhw->n_limited)
2063		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2064					mfspr(SPRN_PMC6));
2065
2066	perf_read_regs(regs);
2067
2068	nmi = perf_intr_is_nmi(regs);
2069	if (nmi)
2070		nmi_enter();
2071	else
2072		irq_enter();
2073
2074	/* Read all the PMCs since we'll need them a bunch of times */
2075	for (i = 0; i < ppmu->n_counter; ++i)
2076		val[i] = read_pmc(i + 1);
2077
2078	/* Try to find what caused the IRQ */
2079	found = 0;
2080	for (i = 0; i < ppmu->n_counter; ++i) {
2081		if (!pmc_overflow(val[i]))
2082			continue;
2083		if (is_limited_pmc(i + 1))
2084			continue; /* these won't generate IRQs */
2085		/*
2086		 * We've found one that's overflowed.  For active
2087		 * counters we need to log this.  For inactive
2088		 * counters, we need to reset it anyway
2089		 */
2090		found = 1;
2091		active = 0;
2092		for (j = 0; j < cpuhw->n_events; ++j) {
2093			event = cpuhw->event[j];
2094			if (event->hw.idx == (i + 1)) {
2095				active = 1;
2096				record_and_restart(event, val[i], regs);
2097				break;
2098			}
2099		}
2100		if (!active)
2101			/* reset non active counters that have overflowed */
2102			write_pmc(i + 1, 0);
2103	}
2104	if (!found && pvr_version_is(PVR_POWER7)) {
2105		/* check active counters for special buggy p7 overflow */
2106		for (i = 0; i < cpuhw->n_events; ++i) {
2107			event = cpuhw->event[i];
2108			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2109				continue;
2110			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2111				/* event has overflowed in a buggy way*/
2112				found = 1;
2113				record_and_restart(event,
2114						   val[event->hw.idx - 1],
2115						   regs);
2116			}
2117		}
2118	}
2119	if (!found && !nmi && printk_ratelimit())
2120		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2121
2122	/*
2123	 * Reset MMCR0 to its normal value.  This will set PMXE and
2124	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2125	 * and thus allow interrupts to occur again.
2126	 * XXX might want to use MSR.PM to keep the events frozen until
2127	 * we get back out of this interrupt.
2128	 */
2129	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2130
2131	if (nmi)
2132		nmi_exit();
2133	else
2134		irq_exit();
2135}
2136
2137static void power_pmu_setup(int cpu)
2138{
2139	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2140
2141	if (!ppmu)
2142		return;
2143	memset(cpuhw, 0, sizeof(*cpuhw));
2144	cpuhw->mmcr[0] = MMCR0_FC;
2145}
2146
2147static int
2148power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2149{
2150	unsigned int cpu = (long)hcpu;
2151
2152	switch (action & ~CPU_TASKS_FROZEN) {
2153	case CPU_UP_PREPARE:
2154		power_pmu_setup(cpu);
2155		break;
2156
2157	default:
2158		break;
2159	}
2160
2161	return NOTIFY_OK;
2162}
2163
2164int register_power_pmu(struct power_pmu *pmu)
2165{
2166	if (ppmu)
2167		return -EBUSY;		/* something's already registered */
2168
2169	ppmu = pmu;
2170	pr_info("%s performance monitor hardware support registered\n",
2171		pmu->name);
2172
2173	power_pmu.attr_groups = ppmu->attr_groups;
2174
2175#ifdef MSR_HV
2176	/*
2177	 * Use FCHV to ignore kernel events if MSR.HV is set.
2178	 */
2179	if (mfmsr() & MSR_HV)
2180		freeze_events_kernel = MMCR0_FCHV;
2181#endif /* CONFIG_PPC64 */
2182
2183	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2184	perf_cpu_notifier(power_pmu_notifier);
2185
2186	return 0;
2187}
2188