1/*
2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 *         Scott Wood, scottwood@freescale.com
6 *         Ashish Kalra, ashish.kalra@freescale.com
7 *         Varun Sethi, varun.sethi@freescale.com
8 *         Alexander Graf, agraf@suse.de
9 *
10 * Description:
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/slab.h>
22#include <linux/string.h>
23#include <linux/kvm.h>
24#include <linux/kvm_host.h>
25#include <linux/highmem.h>
26#include <linux/log2.h>
27#include <linux/uaccess.h>
28#include <linux/sched.h>
29#include <linux/rwsem.h>
30#include <linux/vmalloc.h>
31#include <linux/hugetlb.h>
32#include <asm/kvm_ppc.h>
33
34#include "e500.h"
35#include "timing.h"
36#include "e500_mmu_host.h"
37
38#include "trace_booke.h"
39
40#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
41
42static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
43
44static inline unsigned int tlb1_max_shadow_size(void)
45{
46	/* reserve one entry for magic page */
47	return host_tlb_params[1].entries - tlbcam_index - 1;
48}
49
50static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
51{
52	/* Mask off reserved bits. */
53	mas3 &= MAS3_ATTRIB_MASK;
54
55#ifndef CONFIG_KVM_BOOKE_HV
56	if (!usermode) {
57		/* Guest is in supervisor mode,
58		 * so we need to translate guest
59		 * supervisor permissions into user permissions. */
60		mas3 &= ~E500_TLB_USER_PERM_MASK;
61		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
62	}
63	mas3 |= E500_TLB_SUPER_PERM_MASK;
64#endif
65	return mas3;
66}
67
68/*
69 * writing shadow tlb entry to host TLB
70 */
71static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
72				     uint32_t mas0,
73				     uint32_t lpid)
74{
75	unsigned long flags;
76
77	local_irq_save(flags);
78	mtspr(SPRN_MAS0, mas0);
79	mtspr(SPRN_MAS1, stlbe->mas1);
80	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
81	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
82	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
83#ifdef CONFIG_KVM_BOOKE_HV
84	mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
85#endif
86	asm volatile("isync; tlbwe" : : : "memory");
87
88#ifdef CONFIG_KVM_BOOKE_HV
89	/* Must clear mas8 for other host tlbwe's */
90	mtspr(SPRN_MAS8, 0);
91	isync();
92#endif
93	local_irq_restore(flags);
94
95	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
96	                              stlbe->mas2, stlbe->mas7_3);
97}
98
99/*
100 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
101 *
102 * We don't care about the address we're searching for, other than that it's
103 * in the right set and is not present in the TLB.  Using a zero PID and a
104 * userspace address means we don't have to set and then restore MAS5, or
105 * calculate a proper MAS6 value.
106 */
107static u32 get_host_mas0(unsigned long eaddr)
108{
109	unsigned long flags;
110	u32 mas0;
111	u32 mas4;
112
113	local_irq_save(flags);
114	mtspr(SPRN_MAS6, 0);
115	mas4 = mfspr(SPRN_MAS4);
116	mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
117	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
118	mas0 = mfspr(SPRN_MAS0);
119	mtspr(SPRN_MAS4, mas4);
120	local_irq_restore(flags);
121
122	return mas0;
123}
124
125/* sesel is for tlb1 only */
126static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
127		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
128{
129	u32 mas0;
130
131	if (tlbsel == 0) {
132		mas0 = get_host_mas0(stlbe->mas2);
133		__write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
134	} else {
135		__write_host_tlbe(stlbe,
136				  MAS0_TLBSEL(1) |
137				  MAS0_ESEL(to_htlb1_esel(sesel)),
138				  vcpu_e500->vcpu.kvm->arch.lpid);
139	}
140}
141
142/* sesel is for tlb1 only */
143static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
144			struct kvm_book3e_206_tlb_entry *gtlbe,
145			struct kvm_book3e_206_tlb_entry *stlbe,
146			int stlbsel, int sesel)
147{
148	int stid;
149
150	preempt_disable();
151	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
152
153	stlbe->mas1 |= MAS1_TID(stid);
154	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
155	preempt_enable();
156}
157
158#ifdef CONFIG_KVM_E500V2
159/* XXX should be a hook in the gva2hpa translation */
160void kvmppc_map_magic(struct kvm_vcpu *vcpu)
161{
162	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
163	struct kvm_book3e_206_tlb_entry magic;
164	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
165	unsigned int stid;
166	pfn_t pfn;
167
168	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
169	get_page(pfn_to_page(pfn));
170
171	preempt_disable();
172	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
173
174	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
175		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
176	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
177	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
178		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
179	magic.mas8 = 0;
180
181	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
182	preempt_enable();
183}
184#endif
185
186void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
187			 int esel)
188{
189	struct kvm_book3e_206_tlb_entry *gtlbe =
190		get_entry(vcpu_e500, tlbsel, esel);
191	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
192
193	/* Don't bother with unmapped entries */
194	if (!(ref->flags & E500_TLB_VALID)) {
195		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
196		     "%s: flags %x\n", __func__, ref->flags);
197		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
198	}
199
200	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
201		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
202		int hw_tlb_indx;
203		unsigned long flags;
204
205		local_irq_save(flags);
206		while (tmp) {
207			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
208			mtspr(SPRN_MAS0,
209			      MAS0_TLBSEL(1) |
210			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
211			mtspr(SPRN_MAS1, 0);
212			asm volatile("tlbwe");
213			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
214			tmp &= tmp - 1;
215		}
216		mb();
217		vcpu_e500->g2h_tlb1_map[esel] = 0;
218		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
219		local_irq_restore(flags);
220	}
221
222	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
223		/*
224		 * TLB1 entry is backed by 4k pages. This should happen
225		 * rarely and is not worth optimizing. Invalidate everything.
226		 */
227		kvmppc_e500_tlbil_all(vcpu_e500);
228		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
229	}
230
231	/*
232	 * If TLB entry is still valid then it's a TLB0 entry, and thus
233	 * backed by at most one host tlbe per shadow pid
234	 */
235	if (ref->flags & E500_TLB_VALID)
236		kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
237
238	/* Mark the TLB as not backed by the host anymore */
239	ref->flags = 0;
240}
241
242static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
243{
244	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
245}
246
247static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
248					 struct kvm_book3e_206_tlb_entry *gtlbe,
249					 pfn_t pfn, unsigned int wimg)
250{
251	ref->pfn = pfn;
252	ref->flags = E500_TLB_VALID;
253
254	/* Use guest supplied MAS2_G and MAS2_E */
255	ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
256
257	/* Mark the page accessed */
258	kvm_set_pfn_accessed(pfn);
259
260	if (tlbe_is_writable(gtlbe))
261		kvm_set_pfn_dirty(pfn);
262}
263
264static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
265{
266	if (ref->flags & E500_TLB_VALID) {
267		/* FIXME: don't log bogus pfn for TLB1 */
268		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
269		ref->flags = 0;
270	}
271}
272
273static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
274{
275	if (vcpu_e500->g2h_tlb1_map)
276		memset(vcpu_e500->g2h_tlb1_map, 0,
277		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
278	if (vcpu_e500->h2g_tlb1_rmap)
279		memset(vcpu_e500->h2g_tlb1_rmap, 0,
280		       sizeof(unsigned int) * host_tlb_params[1].entries);
281}
282
283static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
284{
285	int tlbsel;
286	int i;
287
288	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
289		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
290			struct tlbe_ref *ref =
291				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
292			kvmppc_e500_ref_release(ref);
293		}
294	}
295}
296
297void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
298{
299	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
300	kvmppc_e500_tlbil_all(vcpu_e500);
301	clear_tlb_privs(vcpu_e500);
302	clear_tlb1_bitmap(vcpu_e500);
303}
304
305/* TID must be supplied by the caller */
306static void kvmppc_e500_setup_stlbe(
307	struct kvm_vcpu *vcpu,
308	struct kvm_book3e_206_tlb_entry *gtlbe,
309	int tsize, struct tlbe_ref *ref, u64 gvaddr,
310	struct kvm_book3e_206_tlb_entry *stlbe)
311{
312	pfn_t pfn = ref->pfn;
313	u32 pr = vcpu->arch.shared->msr & MSR_PR;
314
315	BUG_ON(!(ref->flags & E500_TLB_VALID));
316
317	/* Force IPROT=0 for all guest mappings. */
318	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
319	stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
320	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
321			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
322}
323
324static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
325	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
326	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
327	struct tlbe_ref *ref)
328{
329	struct kvm_memory_slot *slot;
330	unsigned long pfn = 0; /* silence GCC warning */
331	unsigned long hva;
332	int pfnmap = 0;
333	int tsize = BOOK3E_PAGESZ_4K;
334	int ret = 0;
335	unsigned long mmu_seq;
336	struct kvm *kvm = vcpu_e500->vcpu.kvm;
337	unsigned long tsize_pages = 0;
338	pte_t *ptep;
339	unsigned int wimg = 0;
340	pgd_t *pgdir;
341	unsigned long flags;
342
343	/* used to check for invalidations in progress */
344	mmu_seq = kvm->mmu_notifier_seq;
345	smp_rmb();
346
347	/*
348	 * Translate guest physical to true physical, acquiring
349	 * a page reference if it is normal, non-reserved memory.
350	 *
351	 * gfn_to_memslot() must succeed because otherwise we wouldn't
352	 * have gotten this far.  Eventually we should just pass the slot
353	 * pointer through from the first lookup.
354	 */
355	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
356	hva = gfn_to_hva_memslot(slot, gfn);
357
358	if (tlbsel == 1) {
359		struct vm_area_struct *vma;
360		down_read(&current->mm->mmap_sem);
361
362		vma = find_vma(current->mm, hva);
363		if (vma && hva >= vma->vm_start &&
364		    (vma->vm_flags & VM_PFNMAP)) {
365			/*
366			 * This VMA is a physically contiguous region (e.g.
367			 * /dev/mem) that bypasses normal Linux page
368			 * management.  Find the overlap between the
369			 * vma and the memslot.
370			 */
371
372			unsigned long start, end;
373			unsigned long slot_start, slot_end;
374
375			pfnmap = 1;
376
377			start = vma->vm_pgoff;
378			end = start +
379			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
380
381			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
382
383			slot_start = pfn - (gfn - slot->base_gfn);
384			slot_end = slot_start + slot->npages;
385
386			if (start < slot_start)
387				start = slot_start;
388			if (end > slot_end)
389				end = slot_end;
390
391			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
392				MAS1_TSIZE_SHIFT;
393
394			/*
395			 * e500 doesn't implement the lowest tsize bit,
396			 * or 1K pages.
397			 */
398			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
399
400			/*
401			 * Now find the largest tsize (up to what the guest
402			 * requested) that will cover gfn, stay within the
403			 * range, and for which gfn and pfn are mutually
404			 * aligned.
405			 */
406
407			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
408				unsigned long gfn_start, gfn_end;
409				tsize_pages = 1 << (tsize - 2);
410
411				gfn_start = gfn & ~(tsize_pages - 1);
412				gfn_end = gfn_start + tsize_pages;
413
414				if (gfn_start + pfn - gfn < start)
415					continue;
416				if (gfn_end + pfn - gfn > end)
417					continue;
418				if ((gfn & (tsize_pages - 1)) !=
419				    (pfn & (tsize_pages - 1)))
420					continue;
421
422				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
423				pfn &= ~(tsize_pages - 1);
424				break;
425			}
426		} else if (vma && hva >= vma->vm_start &&
427			   (vma->vm_flags & VM_HUGETLB)) {
428			unsigned long psize = vma_kernel_pagesize(vma);
429
430			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
431				MAS1_TSIZE_SHIFT;
432
433			/*
434			 * Take the largest page size that satisfies both host
435			 * and guest mapping
436			 */
437			tsize = min(__ilog2(psize) - 10, tsize);
438
439			/*
440			 * e500 doesn't implement the lowest tsize bit,
441			 * or 1K pages.
442			 */
443			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
444		}
445
446		up_read(&current->mm->mmap_sem);
447	}
448
449	if (likely(!pfnmap)) {
450		tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
451		pfn = gfn_to_pfn_memslot(slot, gfn);
452		if (is_error_noslot_pfn(pfn)) {
453			if (printk_ratelimit())
454				pr_err("%s: real page not found for gfn %lx\n",
455				       __func__, (long)gfn);
456			return -EINVAL;
457		}
458
459		/* Align guest and physical address to page map boundaries */
460		pfn &= ~(tsize_pages - 1);
461		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
462	}
463
464	spin_lock(&kvm->mmu_lock);
465	if (mmu_notifier_retry(kvm, mmu_seq)) {
466		ret = -EAGAIN;
467		goto out;
468	}
469
470
471	pgdir = vcpu_e500->vcpu.arch.pgdir;
472	/*
473	 * We are just looking at the wimg bits, so we don't
474	 * care much about the trans splitting bit.
475	 * We are holding kvm->mmu_lock so a notifier invalidate
476	 * can't run hence pfn won't change.
477	 */
478	local_irq_save(flags);
479	ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL);
480	if (ptep) {
481		pte_t pte = READ_ONCE(*ptep);
482
483		if (pte_present(pte)) {
484			wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
485				MAS2_WIMGE_MASK;
486			local_irq_restore(flags);
487		} else {
488			local_irq_restore(flags);
489			pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
490					   __func__, (long)gfn, pfn);
491			ret = -EINVAL;
492			goto out;
493		}
494	}
495	kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
496
497	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
498				ref, gvaddr, stlbe);
499
500	/* Clear i-cache for new pages */
501	kvmppc_mmu_flush_icache(pfn);
502
503out:
504	spin_unlock(&kvm->mmu_lock);
505
506	/* Drop refcount on page, so that mmu notifiers can clear it */
507	kvm_release_pfn_clean(pfn);
508
509	return ret;
510}
511
512/* XXX only map the one-one case, for now use TLB0 */
513static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
514				struct kvm_book3e_206_tlb_entry *stlbe)
515{
516	struct kvm_book3e_206_tlb_entry *gtlbe;
517	struct tlbe_ref *ref;
518	int stlbsel = 0;
519	int sesel = 0;
520	int r;
521
522	gtlbe = get_entry(vcpu_e500, 0, esel);
523	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
524
525	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
526			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
527			gtlbe, 0, stlbe, ref);
528	if (r)
529		return r;
530
531	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
532
533	return 0;
534}
535
536static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
537				     struct tlbe_ref *ref,
538				     int esel)
539{
540	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
541
542	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
543		vcpu_e500->host_tlb1_nv = 0;
544
545	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
546		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
547		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
548	}
549
550	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
551	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
552	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
553	WARN_ON(!(ref->flags & E500_TLB_VALID));
554
555	return sesel;
556}
557
558/* Caller must ensure that the specified guest TLB entry is safe to insert into
559 * the shadow TLB. */
560/* For both one-one and one-to-many */
561static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
562		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
563		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
564{
565	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
566	int sesel;
567	int r;
568
569	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
570				   ref);
571	if (r)
572		return r;
573
574	/* Use TLB0 when we can only map a page with 4k */
575	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
576		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
577		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
578		return 0;
579	}
580
581	/* Otherwise map into TLB1 */
582	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
583	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
584
585	return 0;
586}
587
588void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
589		    unsigned int index)
590{
591	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
592	struct tlbe_priv *priv;
593	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
594	int tlbsel = tlbsel_of(index);
595	int esel = esel_of(index);
596
597	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
598
599	switch (tlbsel) {
600	case 0:
601		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
602
603		/* Triggers after clear_tlb_privs or on initial mapping */
604		if (!(priv->ref.flags & E500_TLB_VALID)) {
605			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
606		} else {
607			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
608						&priv->ref, eaddr, &stlbe);
609			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
610		}
611		break;
612
613	case 1: {
614		gfn_t gfn = gpaddr >> PAGE_SHIFT;
615		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
616				     esel);
617		break;
618	}
619
620	default:
621		BUG();
622		break;
623	}
624}
625
626#ifdef CONFIG_KVM_BOOKE_HV
627int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
628			  u32 *instr)
629{
630	gva_t geaddr;
631	hpa_t addr;
632	hfn_t pfn;
633	hva_t eaddr;
634	u32 mas1, mas2, mas3;
635	u64 mas7_mas3;
636	struct page *page;
637	unsigned int addr_space, psize_shift;
638	bool pr;
639	unsigned long flags;
640
641	/* Search TLB for guest pc to get the real address */
642	geaddr = kvmppc_get_pc(vcpu);
643
644	addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
645
646	local_irq_save(flags);
647	mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
648	mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
649	asm volatile("tlbsx 0, %[geaddr]\n" : :
650		     [geaddr] "r" (geaddr));
651	mtspr(SPRN_MAS5, 0);
652	mtspr(SPRN_MAS8, 0);
653	mas1 = mfspr(SPRN_MAS1);
654	mas2 = mfspr(SPRN_MAS2);
655	mas3 = mfspr(SPRN_MAS3);
656#ifdef CONFIG_64BIT
657	mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
658#else
659	mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
660#endif
661	local_irq_restore(flags);
662
663	/*
664	 * If the TLB entry for guest pc was evicted, return to the guest.
665	 * There are high chances to find a valid TLB entry next time.
666	 */
667	if (!(mas1 & MAS1_VALID))
668		return EMULATE_AGAIN;
669
670	/*
671	 * Another thread may rewrite the TLB entry in parallel, don't
672	 * execute from the address if the execute permission is not set
673	 */
674	pr = vcpu->arch.shared->msr & MSR_PR;
675	if (unlikely((pr && !(mas3 & MAS3_UX)) ||
676		     (!pr && !(mas3 & MAS3_SX)))) {
677		pr_err_ratelimited(
678			"%s: Instruction emulation from guest address %08lx without execute permission\n",
679			__func__, geaddr);
680		return EMULATE_AGAIN;
681	}
682
683	/*
684	 * The real address will be mapped by a cacheable, memory coherent,
685	 * write-back page. Check for mismatches when LRAT is used.
686	 */
687	if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
688	    unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
689		pr_err_ratelimited(
690			"%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
691			__func__, geaddr);
692		return EMULATE_AGAIN;
693	}
694
695	/* Get pfn */
696	psize_shift = MAS1_GET_TSIZE(mas1) + 10;
697	addr = (mas7_mas3 & (~0ULL << psize_shift)) |
698	       (geaddr & ((1ULL << psize_shift) - 1ULL));
699	pfn = addr >> PAGE_SHIFT;
700
701	/* Guard against emulation from devices area */
702	if (unlikely(!page_is_ram(pfn))) {
703		pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
704			 __func__, addr);
705		return EMULATE_AGAIN;
706	}
707
708	/* Map a page and get guest's instruction */
709	page = pfn_to_page(pfn);
710	eaddr = (unsigned long)kmap_atomic(page);
711	*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
712	kunmap_atomic((u32 *)eaddr);
713
714	return EMULATE_DONE;
715}
716#else
717int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
718			  u32 *instr)
719{
720	return EMULATE_AGAIN;
721}
722#endif
723
724/************* MMU Notifiers *************/
725
726int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
727{
728	trace_kvm_unmap_hva(hva);
729
730	/*
731	 * Flush all shadow tlb entries everywhere. This is slow, but
732	 * we are 100% sure that we catch the to be unmapped page
733	 */
734	kvm_flush_remote_tlbs(kvm);
735
736	return 0;
737}
738
739int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
740{
741	/* kvm_unmap_hva flushes everything anyways */
742	kvm_unmap_hva(kvm, start);
743
744	return 0;
745}
746
747int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
748{
749	/* XXX could be more clever ;) */
750	return 0;
751}
752
753int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
754{
755	/* XXX could be more clever ;) */
756	return 0;
757}
758
759void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
760{
761	/* The page will get remapped properly on its next fault */
762	kvm_unmap_hva(kvm, hva);
763}
764
765/*****************************************/
766
767int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
768{
769	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
770	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
771
772	/*
773	 * This should never happen on real e500 hardware, but is
774	 * architecturally possible -- e.g. in some weird nested
775	 * virtualization case.
776	 */
777	if (host_tlb_params[0].entries == 0 ||
778	    host_tlb_params[1].entries == 0) {
779		pr_err("%s: need to know host tlb size\n", __func__);
780		return -ENODEV;
781	}
782
783	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
784				  TLBnCFG_ASSOC_SHIFT;
785	host_tlb_params[1].ways = host_tlb_params[1].entries;
786
787	if (!is_power_of_2(host_tlb_params[0].entries) ||
788	    !is_power_of_2(host_tlb_params[0].ways) ||
789	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
790	    host_tlb_params[0].ways == 0) {
791		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
792		       __func__, host_tlb_params[0].entries,
793		       host_tlb_params[0].ways);
794		return -ENODEV;
795	}
796
797	host_tlb_params[0].sets =
798		host_tlb_params[0].entries / host_tlb_params[0].ways;
799	host_tlb_params[1].sets = 1;
800
801	vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
802					   host_tlb_params[1].entries,
803					   GFP_KERNEL);
804	if (!vcpu_e500->h2g_tlb1_rmap)
805		return -EINVAL;
806
807	return 0;
808}
809
810void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
811{
812	kfree(vcpu_e500->h2g_tlb1_rmap);
813}
814