1/* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21#include <linux/kvm_host.h> 22#include <linux/err.h> 23#include <linux/slab.h> 24#include <linux/preempt.h> 25#include <linux/sched.h> 26#include <linux/delay.h> 27#include <linux/export.h> 28#include <linux/fs.h> 29#include <linux/anon_inodes.h> 30#include <linux/cpumask.h> 31#include <linux/spinlock.h> 32#include <linux/page-flags.h> 33#include <linux/srcu.h> 34#include <linux/miscdevice.h> 35#include <linux/debugfs.h> 36 37#include <asm/reg.h> 38#include <asm/cputable.h> 39#include <asm/cache.h> 40#include <asm/cacheflush.h> 41#include <asm/tlbflush.h> 42#include <asm/uaccess.h> 43#include <asm/io.h> 44#include <asm/kvm_ppc.h> 45#include <asm/kvm_book3s.h> 46#include <asm/mmu_context.h> 47#include <asm/lppaca.h> 48#include <asm/processor.h> 49#include <asm/cputhreads.h> 50#include <asm/page.h> 51#include <asm/hvcall.h> 52#include <asm/switch_to.h> 53#include <asm/smp.h> 54#include <asm/dbell.h> 55#include <linux/gfp.h> 56#include <linux/vmalloc.h> 57#include <linux/highmem.h> 58#include <linux/hugetlb.h> 59#include <linux/module.h> 60 61#include "book3s.h" 62 63#define CREATE_TRACE_POINTS 64#include "trace_hv.h" 65 66/* #define EXIT_DEBUG */ 67/* #define EXIT_DEBUG_SIMPLE */ 68/* #define EXIT_DEBUG_INT */ 69 70/* Used to indicate that a guest page fault needs to be handled */ 71#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 72 73/* Used as a "null" value for timebase values */ 74#define TB_NIL (~(u64)0) 75 76static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 77 78#if defined(CONFIG_PPC_64K_PAGES) 79#define MPP_BUFFER_ORDER 0 80#elif defined(CONFIG_PPC_4K_PAGES) 81#define MPP_BUFFER_ORDER 3 82#endif 83 84 85static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 86static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 87 88static bool kvmppc_ipi_thread(int cpu) 89{ 90 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 91 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 92 preempt_disable(); 93 if (cpu_first_thread_sibling(cpu) == 94 cpu_first_thread_sibling(smp_processor_id())) { 95 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 96 msg |= cpu_thread_in_core(cpu); 97 smp_mb(); 98 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 99 preempt_enable(); 100 return true; 101 } 102 preempt_enable(); 103 } 104 105#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 106 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) { 107 xics_wake_cpu(cpu); 108 return true; 109 } 110#endif 111 112 return false; 113} 114 115static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 116{ 117 int cpu = vcpu->cpu; 118 wait_queue_head_t *wqp; 119 120 wqp = kvm_arch_vcpu_wq(vcpu); 121 if (waitqueue_active(wqp)) { 122 wake_up_interruptible(wqp); 123 ++vcpu->stat.halt_wakeup; 124 } 125 126 if (kvmppc_ipi_thread(cpu + vcpu->arch.ptid)) 127 return; 128 129 /* CPU points to the first thread of the core */ 130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 131 smp_send_reschedule(cpu); 132} 133 134/* 135 * We use the vcpu_load/put functions to measure stolen time. 136 * Stolen time is counted as time when either the vcpu is able to 137 * run as part of a virtual core, but the task running the vcore 138 * is preempted or sleeping, or when the vcpu needs something done 139 * in the kernel by the task running the vcpu, but that task is 140 * preempted or sleeping. Those two things have to be counted 141 * separately, since one of the vcpu tasks will take on the job 142 * of running the core, and the other vcpu tasks in the vcore will 143 * sleep waiting for it to do that, but that sleep shouldn't count 144 * as stolen time. 145 * 146 * Hence we accumulate stolen time when the vcpu can run as part of 147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 148 * needs its task to do other things in the kernel (for example, 149 * service a page fault) in busy_stolen. We don't accumulate 150 * stolen time for a vcore when it is inactive, or for a vcpu 151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 152 * a misnomer; it means that the vcpu task is not executing in 153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 154 * the kernel. We don't have any way of dividing up that time 155 * between time that the vcpu is genuinely stopped, time that 156 * the task is actively working on behalf of the vcpu, and time 157 * that the task is preempted, so we don't count any of it as 158 * stolen. 159 * 160 * Updates to busy_stolen are protected by arch.tbacct_lock; 161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 162 * lock. The stolen times are measured in units of timebase ticks. 163 * (Note that the != TB_NIL checks below are purely defensive; 164 * they should never fail.) 165 */ 166 167static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 168{ 169 struct kvmppc_vcore *vc = vcpu->arch.vcore; 170 unsigned long flags; 171 172 /* 173 * We can test vc->runner without taking the vcore lock, 174 * because only this task ever sets vc->runner to this 175 * vcpu, and once it is set to this vcpu, only this task 176 * ever sets it to NULL. 177 */ 178 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) { 179 spin_lock_irqsave(&vc->stoltb_lock, flags); 180 if (vc->preempt_tb != TB_NIL) { 181 vc->stolen_tb += mftb() - vc->preempt_tb; 182 vc->preempt_tb = TB_NIL; 183 } 184 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 185 } 186 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 187 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 188 vcpu->arch.busy_preempt != TB_NIL) { 189 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 190 vcpu->arch.busy_preempt = TB_NIL; 191 } 192 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 193} 194 195static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 196{ 197 struct kvmppc_vcore *vc = vcpu->arch.vcore; 198 unsigned long flags; 199 200 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) { 201 spin_lock_irqsave(&vc->stoltb_lock, flags); 202 vc->preempt_tb = mftb(); 203 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 204 } 205 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 206 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 207 vcpu->arch.busy_preempt = mftb(); 208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 209} 210 211static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 212{ 213 /* 214 * Check for illegal transactional state bit combination 215 * and if we find it, force the TS field to a safe state. 216 */ 217 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 218 msr &= ~MSR_TS_MASK; 219 vcpu->arch.shregs.msr = msr; 220 kvmppc_end_cede(vcpu); 221} 222 223void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 224{ 225 vcpu->arch.pvr = pvr; 226} 227 228int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 229{ 230 unsigned long pcr = 0; 231 struct kvmppc_vcore *vc = vcpu->arch.vcore; 232 233 if (arch_compat) { 234 switch (arch_compat) { 235 case PVR_ARCH_205: 236 /* 237 * If an arch bit is set in PCR, all the defined 238 * higher-order arch bits also have to be set. 239 */ 240 pcr = PCR_ARCH_206 | PCR_ARCH_205; 241 break; 242 case PVR_ARCH_206: 243 case PVR_ARCH_206p: 244 pcr = PCR_ARCH_206; 245 break; 246 case PVR_ARCH_207: 247 break; 248 default: 249 return -EINVAL; 250 } 251 252 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 253 /* POWER7 can't emulate POWER8 */ 254 if (!(pcr & PCR_ARCH_206)) 255 return -EINVAL; 256 pcr &= ~PCR_ARCH_206; 257 } 258 } 259 260 spin_lock(&vc->lock); 261 vc->arch_compat = arch_compat; 262 vc->pcr = pcr; 263 spin_unlock(&vc->lock); 264 265 return 0; 266} 267 268void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 269{ 270 int r; 271 272 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 273 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 274 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 275 for (r = 0; r < 16; ++r) 276 pr_err("r%2d = %.16lx r%d = %.16lx\n", 277 r, kvmppc_get_gpr(vcpu, r), 278 r+16, kvmppc_get_gpr(vcpu, r+16)); 279 pr_err("ctr = %.16lx lr = %.16lx\n", 280 vcpu->arch.ctr, vcpu->arch.lr); 281 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 282 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 283 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 284 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 285 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 286 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 287 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 288 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 289 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 290 pr_err("fault dar = %.16lx dsisr = %.8x\n", 291 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 292 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 293 for (r = 0; r < vcpu->arch.slb_max; ++r) 294 pr_err(" ESID = %.16llx VSID = %.16llx\n", 295 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 296 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 297 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 298 vcpu->arch.last_inst); 299} 300 301struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 302{ 303 int r; 304 struct kvm_vcpu *v, *ret = NULL; 305 306 mutex_lock(&kvm->lock); 307 kvm_for_each_vcpu(r, v, kvm) { 308 if (v->vcpu_id == id) { 309 ret = v; 310 break; 311 } 312 } 313 mutex_unlock(&kvm->lock); 314 return ret; 315} 316 317static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 318{ 319 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 320 vpa->yield_count = cpu_to_be32(1); 321} 322 323static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 324 unsigned long addr, unsigned long len) 325{ 326 /* check address is cacheline aligned */ 327 if (addr & (L1_CACHE_BYTES - 1)) 328 return -EINVAL; 329 spin_lock(&vcpu->arch.vpa_update_lock); 330 if (v->next_gpa != addr || v->len != len) { 331 v->next_gpa = addr; 332 v->len = addr ? len : 0; 333 v->update_pending = 1; 334 } 335 spin_unlock(&vcpu->arch.vpa_update_lock); 336 return 0; 337} 338 339/* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 340struct reg_vpa { 341 u32 dummy; 342 union { 343 __be16 hword; 344 __be32 word; 345 } length; 346}; 347 348static int vpa_is_registered(struct kvmppc_vpa *vpap) 349{ 350 if (vpap->update_pending) 351 return vpap->next_gpa != 0; 352 return vpap->pinned_addr != NULL; 353} 354 355static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 356 unsigned long flags, 357 unsigned long vcpuid, unsigned long vpa) 358{ 359 struct kvm *kvm = vcpu->kvm; 360 unsigned long len, nb; 361 void *va; 362 struct kvm_vcpu *tvcpu; 363 int err; 364 int subfunc; 365 struct kvmppc_vpa *vpap; 366 367 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 368 if (!tvcpu) 369 return H_PARAMETER; 370 371 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 372 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 373 subfunc == H_VPA_REG_SLB) { 374 /* Registering new area - address must be cache-line aligned */ 375 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 376 return H_PARAMETER; 377 378 /* convert logical addr to kernel addr and read length */ 379 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 380 if (va == NULL) 381 return H_PARAMETER; 382 if (subfunc == H_VPA_REG_VPA) 383 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 384 else 385 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 386 kvmppc_unpin_guest_page(kvm, va, vpa, false); 387 388 /* Check length */ 389 if (len > nb || len < sizeof(struct reg_vpa)) 390 return H_PARAMETER; 391 } else { 392 vpa = 0; 393 len = 0; 394 } 395 396 err = H_PARAMETER; 397 vpap = NULL; 398 spin_lock(&tvcpu->arch.vpa_update_lock); 399 400 switch (subfunc) { 401 case H_VPA_REG_VPA: /* register VPA */ 402 if (len < sizeof(struct lppaca)) 403 break; 404 vpap = &tvcpu->arch.vpa; 405 err = 0; 406 break; 407 408 case H_VPA_REG_DTL: /* register DTL */ 409 if (len < sizeof(struct dtl_entry)) 410 break; 411 len -= len % sizeof(struct dtl_entry); 412 413 /* Check that they have previously registered a VPA */ 414 err = H_RESOURCE; 415 if (!vpa_is_registered(&tvcpu->arch.vpa)) 416 break; 417 418 vpap = &tvcpu->arch.dtl; 419 err = 0; 420 break; 421 422 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 423 /* Check that they have previously registered a VPA */ 424 err = H_RESOURCE; 425 if (!vpa_is_registered(&tvcpu->arch.vpa)) 426 break; 427 428 vpap = &tvcpu->arch.slb_shadow; 429 err = 0; 430 break; 431 432 case H_VPA_DEREG_VPA: /* deregister VPA */ 433 /* Check they don't still have a DTL or SLB buf registered */ 434 err = H_RESOURCE; 435 if (vpa_is_registered(&tvcpu->arch.dtl) || 436 vpa_is_registered(&tvcpu->arch.slb_shadow)) 437 break; 438 439 vpap = &tvcpu->arch.vpa; 440 err = 0; 441 break; 442 443 case H_VPA_DEREG_DTL: /* deregister DTL */ 444 vpap = &tvcpu->arch.dtl; 445 err = 0; 446 break; 447 448 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 449 vpap = &tvcpu->arch.slb_shadow; 450 err = 0; 451 break; 452 } 453 454 if (vpap) { 455 vpap->next_gpa = vpa; 456 vpap->len = len; 457 vpap->update_pending = 1; 458 } 459 460 spin_unlock(&tvcpu->arch.vpa_update_lock); 461 462 return err; 463} 464 465static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 466{ 467 struct kvm *kvm = vcpu->kvm; 468 void *va; 469 unsigned long nb; 470 unsigned long gpa; 471 472 /* 473 * We need to pin the page pointed to by vpap->next_gpa, 474 * but we can't call kvmppc_pin_guest_page under the lock 475 * as it does get_user_pages() and down_read(). So we 476 * have to drop the lock, pin the page, then get the lock 477 * again and check that a new area didn't get registered 478 * in the meantime. 479 */ 480 for (;;) { 481 gpa = vpap->next_gpa; 482 spin_unlock(&vcpu->arch.vpa_update_lock); 483 va = NULL; 484 nb = 0; 485 if (gpa) 486 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 487 spin_lock(&vcpu->arch.vpa_update_lock); 488 if (gpa == vpap->next_gpa) 489 break; 490 /* sigh... unpin that one and try again */ 491 if (va) 492 kvmppc_unpin_guest_page(kvm, va, gpa, false); 493 } 494 495 vpap->update_pending = 0; 496 if (va && nb < vpap->len) { 497 /* 498 * If it's now too short, it must be that userspace 499 * has changed the mappings underlying guest memory, 500 * so unregister the region. 501 */ 502 kvmppc_unpin_guest_page(kvm, va, gpa, false); 503 va = NULL; 504 } 505 if (vpap->pinned_addr) 506 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 507 vpap->dirty); 508 vpap->gpa = gpa; 509 vpap->pinned_addr = va; 510 vpap->dirty = false; 511 if (va) 512 vpap->pinned_end = va + vpap->len; 513} 514 515static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 516{ 517 if (!(vcpu->arch.vpa.update_pending || 518 vcpu->arch.slb_shadow.update_pending || 519 vcpu->arch.dtl.update_pending)) 520 return; 521 522 spin_lock(&vcpu->arch.vpa_update_lock); 523 if (vcpu->arch.vpa.update_pending) { 524 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 525 if (vcpu->arch.vpa.pinned_addr) 526 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 527 } 528 if (vcpu->arch.dtl.update_pending) { 529 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 530 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 531 vcpu->arch.dtl_index = 0; 532 } 533 if (vcpu->arch.slb_shadow.update_pending) 534 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 535 spin_unlock(&vcpu->arch.vpa_update_lock); 536} 537 538/* 539 * Return the accumulated stolen time for the vcore up until `now'. 540 * The caller should hold the vcore lock. 541 */ 542static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 543{ 544 u64 p; 545 unsigned long flags; 546 547 spin_lock_irqsave(&vc->stoltb_lock, flags); 548 p = vc->stolen_tb; 549 if (vc->vcore_state != VCORE_INACTIVE && 550 vc->preempt_tb != TB_NIL) 551 p += now - vc->preempt_tb; 552 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 553 return p; 554} 555 556static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 557 struct kvmppc_vcore *vc) 558{ 559 struct dtl_entry *dt; 560 struct lppaca *vpa; 561 unsigned long stolen; 562 unsigned long core_stolen; 563 u64 now; 564 565 dt = vcpu->arch.dtl_ptr; 566 vpa = vcpu->arch.vpa.pinned_addr; 567 now = mftb(); 568 core_stolen = vcore_stolen_time(vc, now); 569 stolen = core_stolen - vcpu->arch.stolen_logged; 570 vcpu->arch.stolen_logged = core_stolen; 571 spin_lock_irq(&vcpu->arch.tbacct_lock); 572 stolen += vcpu->arch.busy_stolen; 573 vcpu->arch.busy_stolen = 0; 574 spin_unlock_irq(&vcpu->arch.tbacct_lock); 575 if (!dt || !vpa) 576 return; 577 memset(dt, 0, sizeof(struct dtl_entry)); 578 dt->dispatch_reason = 7; 579 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 580 dt->timebase = cpu_to_be64(now + vc->tb_offset); 581 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 582 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 583 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 584 ++dt; 585 if (dt == vcpu->arch.dtl.pinned_end) 586 dt = vcpu->arch.dtl.pinned_addr; 587 vcpu->arch.dtl_ptr = dt; 588 /* order writing *dt vs. writing vpa->dtl_idx */ 589 smp_wmb(); 590 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 591 vcpu->arch.dtl.dirty = true; 592} 593 594static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 595{ 596 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 597 return true; 598 if ((!vcpu->arch.vcore->arch_compat) && 599 cpu_has_feature(CPU_FTR_ARCH_207S)) 600 return true; 601 return false; 602} 603 604static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 605 unsigned long resource, unsigned long value1, 606 unsigned long value2) 607{ 608 switch (resource) { 609 case H_SET_MODE_RESOURCE_SET_CIABR: 610 if (!kvmppc_power8_compatible(vcpu)) 611 return H_P2; 612 if (value2) 613 return H_P4; 614 if (mflags) 615 return H_UNSUPPORTED_FLAG_START; 616 /* Guests can't breakpoint the hypervisor */ 617 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 618 return H_P3; 619 vcpu->arch.ciabr = value1; 620 return H_SUCCESS; 621 case H_SET_MODE_RESOURCE_SET_DAWR: 622 if (!kvmppc_power8_compatible(vcpu)) 623 return H_P2; 624 if (mflags) 625 return H_UNSUPPORTED_FLAG_START; 626 if (value2 & DABRX_HYP) 627 return H_P4; 628 vcpu->arch.dawr = value1; 629 vcpu->arch.dawrx = value2; 630 return H_SUCCESS; 631 default: 632 return H_TOO_HARD; 633 } 634} 635 636static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 637{ 638 struct kvmppc_vcore *vcore = target->arch.vcore; 639 640 /* 641 * We expect to have been called by the real mode handler 642 * (kvmppc_rm_h_confer()) which would have directly returned 643 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 644 * have useful work to do and should not confer) so we don't 645 * recheck that here. 646 */ 647 648 spin_lock(&vcore->lock); 649 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 650 vcore->vcore_state != VCORE_INACTIVE) 651 target = vcore->runner; 652 spin_unlock(&vcore->lock); 653 654 return kvm_vcpu_yield_to(target); 655} 656 657static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 658{ 659 int yield_count = 0; 660 struct lppaca *lppaca; 661 662 spin_lock(&vcpu->arch.vpa_update_lock); 663 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 664 if (lppaca) 665 yield_count = be32_to_cpu(lppaca->yield_count); 666 spin_unlock(&vcpu->arch.vpa_update_lock); 667 return yield_count; 668} 669 670int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 671{ 672 unsigned long req = kvmppc_get_gpr(vcpu, 3); 673 unsigned long target, ret = H_SUCCESS; 674 int yield_count; 675 struct kvm_vcpu *tvcpu; 676 int idx, rc; 677 678 if (req <= MAX_HCALL_OPCODE && 679 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 680 return RESUME_HOST; 681 682 switch (req) { 683 case H_CEDE: 684 break; 685 case H_PROD: 686 target = kvmppc_get_gpr(vcpu, 4); 687 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 688 if (!tvcpu) { 689 ret = H_PARAMETER; 690 break; 691 } 692 tvcpu->arch.prodded = 1; 693 smp_mb(); 694 if (vcpu->arch.ceded) { 695 if (waitqueue_active(&vcpu->wq)) { 696 wake_up_interruptible(&vcpu->wq); 697 vcpu->stat.halt_wakeup++; 698 } 699 } 700 break; 701 case H_CONFER: 702 target = kvmppc_get_gpr(vcpu, 4); 703 if (target == -1) 704 break; 705 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 706 if (!tvcpu) { 707 ret = H_PARAMETER; 708 break; 709 } 710 yield_count = kvmppc_get_gpr(vcpu, 5); 711 if (kvmppc_get_yield_count(tvcpu) != yield_count) 712 break; 713 kvm_arch_vcpu_yield_to(tvcpu); 714 break; 715 case H_REGISTER_VPA: 716 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 717 kvmppc_get_gpr(vcpu, 5), 718 kvmppc_get_gpr(vcpu, 6)); 719 break; 720 case H_RTAS: 721 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 722 return RESUME_HOST; 723 724 idx = srcu_read_lock(&vcpu->kvm->srcu); 725 rc = kvmppc_rtas_hcall(vcpu); 726 srcu_read_unlock(&vcpu->kvm->srcu, idx); 727 728 if (rc == -ENOENT) 729 return RESUME_HOST; 730 else if (rc == 0) 731 break; 732 733 /* Send the error out to userspace via KVM_RUN */ 734 return rc; 735 case H_LOGICAL_CI_LOAD: 736 ret = kvmppc_h_logical_ci_load(vcpu); 737 if (ret == H_TOO_HARD) 738 return RESUME_HOST; 739 break; 740 case H_LOGICAL_CI_STORE: 741 ret = kvmppc_h_logical_ci_store(vcpu); 742 if (ret == H_TOO_HARD) 743 return RESUME_HOST; 744 break; 745 case H_SET_MODE: 746 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 747 kvmppc_get_gpr(vcpu, 5), 748 kvmppc_get_gpr(vcpu, 6), 749 kvmppc_get_gpr(vcpu, 7)); 750 if (ret == H_TOO_HARD) 751 return RESUME_HOST; 752 break; 753 case H_XIRR: 754 case H_CPPR: 755 case H_EOI: 756 case H_IPI: 757 case H_IPOLL: 758 case H_XIRR_X: 759 if (kvmppc_xics_enabled(vcpu)) { 760 ret = kvmppc_xics_hcall(vcpu, req); 761 break; 762 } /* fallthrough */ 763 default: 764 return RESUME_HOST; 765 } 766 kvmppc_set_gpr(vcpu, 3, ret); 767 vcpu->arch.hcall_needed = 0; 768 return RESUME_GUEST; 769} 770 771static int kvmppc_hcall_impl_hv(unsigned long cmd) 772{ 773 switch (cmd) { 774 case H_CEDE: 775 case H_PROD: 776 case H_CONFER: 777 case H_REGISTER_VPA: 778 case H_SET_MODE: 779 case H_LOGICAL_CI_LOAD: 780 case H_LOGICAL_CI_STORE: 781#ifdef CONFIG_KVM_XICS 782 case H_XIRR: 783 case H_CPPR: 784 case H_EOI: 785 case H_IPI: 786 case H_IPOLL: 787 case H_XIRR_X: 788#endif 789 return 1; 790 } 791 792 /* See if it's in the real-mode table */ 793 return kvmppc_hcall_impl_hv_realmode(cmd); 794} 795 796static int kvmppc_emulate_debug_inst(struct kvm_run *run, 797 struct kvm_vcpu *vcpu) 798{ 799 u32 last_inst; 800 801 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 802 EMULATE_DONE) { 803 /* 804 * Fetch failed, so return to guest and 805 * try executing it again. 806 */ 807 return RESUME_GUEST; 808 } 809 810 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 811 run->exit_reason = KVM_EXIT_DEBUG; 812 run->debug.arch.address = kvmppc_get_pc(vcpu); 813 return RESUME_HOST; 814 } else { 815 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 816 return RESUME_GUEST; 817 } 818} 819 820static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 821 struct task_struct *tsk) 822{ 823 int r = RESUME_HOST; 824 825 vcpu->stat.sum_exits++; 826 827 run->exit_reason = KVM_EXIT_UNKNOWN; 828 run->ready_for_interrupt_injection = 1; 829 switch (vcpu->arch.trap) { 830 /* We're good on these - the host merely wanted to get our attention */ 831 case BOOK3S_INTERRUPT_HV_DECREMENTER: 832 vcpu->stat.dec_exits++; 833 r = RESUME_GUEST; 834 break; 835 case BOOK3S_INTERRUPT_EXTERNAL: 836 case BOOK3S_INTERRUPT_H_DOORBELL: 837 vcpu->stat.ext_intr_exits++; 838 r = RESUME_GUEST; 839 break; 840 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 841 case BOOK3S_INTERRUPT_HMI: 842 case BOOK3S_INTERRUPT_PERFMON: 843 r = RESUME_GUEST; 844 break; 845 case BOOK3S_INTERRUPT_MACHINE_CHECK: 846 /* 847 * Deliver a machine check interrupt to the guest. 848 * We have to do this, even if the host has handled the 849 * machine check, because machine checks use SRR0/1 and 850 * the interrupt might have trashed guest state in them. 851 */ 852 kvmppc_book3s_queue_irqprio(vcpu, 853 BOOK3S_INTERRUPT_MACHINE_CHECK); 854 r = RESUME_GUEST; 855 break; 856 case BOOK3S_INTERRUPT_PROGRAM: 857 { 858 ulong flags; 859 /* 860 * Normally program interrupts are delivered directly 861 * to the guest by the hardware, but we can get here 862 * as a result of a hypervisor emulation interrupt 863 * (e40) getting turned into a 700 by BML RTAS. 864 */ 865 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 866 kvmppc_core_queue_program(vcpu, flags); 867 r = RESUME_GUEST; 868 break; 869 } 870 case BOOK3S_INTERRUPT_SYSCALL: 871 { 872 /* hcall - punt to userspace */ 873 int i; 874 875 /* hypercall with MSR_PR has already been handled in rmode, 876 * and never reaches here. 877 */ 878 879 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 880 for (i = 0; i < 9; ++i) 881 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 882 run->exit_reason = KVM_EXIT_PAPR_HCALL; 883 vcpu->arch.hcall_needed = 1; 884 r = RESUME_HOST; 885 break; 886 } 887 /* 888 * We get these next two if the guest accesses a page which it thinks 889 * it has mapped but which is not actually present, either because 890 * it is for an emulated I/O device or because the corresonding 891 * host page has been paged out. Any other HDSI/HISI interrupts 892 * have been handled already. 893 */ 894 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 895 r = RESUME_PAGE_FAULT; 896 break; 897 case BOOK3S_INTERRUPT_H_INST_STORAGE: 898 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 899 vcpu->arch.fault_dsisr = 0; 900 r = RESUME_PAGE_FAULT; 901 break; 902 /* 903 * This occurs if the guest executes an illegal instruction. 904 * If the guest debug is disabled, generate a program interrupt 905 * to the guest. If guest debug is enabled, we need to check 906 * whether the instruction is a software breakpoint instruction. 907 * Accordingly return to Guest or Host. 908 */ 909 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 910 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 911 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 912 swab32(vcpu->arch.emul_inst) : 913 vcpu->arch.emul_inst; 914 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 915 r = kvmppc_emulate_debug_inst(run, vcpu); 916 } else { 917 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 918 r = RESUME_GUEST; 919 } 920 break; 921 /* 922 * This occurs if the guest (kernel or userspace), does something that 923 * is prohibited by HFSCR. We just generate a program interrupt to 924 * the guest. 925 */ 926 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 927 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 928 r = RESUME_GUEST; 929 break; 930 default: 931 kvmppc_dump_regs(vcpu); 932 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 933 vcpu->arch.trap, kvmppc_get_pc(vcpu), 934 vcpu->arch.shregs.msr); 935 run->hw.hardware_exit_reason = vcpu->arch.trap; 936 r = RESUME_HOST; 937 break; 938 } 939 940 return r; 941} 942 943static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 944 struct kvm_sregs *sregs) 945{ 946 int i; 947 948 memset(sregs, 0, sizeof(struct kvm_sregs)); 949 sregs->pvr = vcpu->arch.pvr; 950 for (i = 0; i < vcpu->arch.slb_max; i++) { 951 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 952 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 953 } 954 955 return 0; 956} 957 958static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 959 struct kvm_sregs *sregs) 960{ 961 int i, j; 962 963 /* Only accept the same PVR as the host's, since we can't spoof it */ 964 if (sregs->pvr != vcpu->arch.pvr) 965 return -EINVAL; 966 967 j = 0; 968 for (i = 0; i < vcpu->arch.slb_nr; i++) { 969 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 970 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 971 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 972 ++j; 973 } 974 } 975 vcpu->arch.slb_max = j; 976 977 return 0; 978} 979 980static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 981 bool preserve_top32) 982{ 983 struct kvm *kvm = vcpu->kvm; 984 struct kvmppc_vcore *vc = vcpu->arch.vcore; 985 u64 mask; 986 987 mutex_lock(&kvm->lock); 988 spin_lock(&vc->lock); 989 /* 990 * If ILE (interrupt little-endian) has changed, update the 991 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 992 */ 993 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 994 struct kvm_vcpu *vcpu; 995 int i; 996 997 kvm_for_each_vcpu(i, vcpu, kvm) { 998 if (vcpu->arch.vcore != vc) 999 continue; 1000 if (new_lpcr & LPCR_ILE) 1001 vcpu->arch.intr_msr |= MSR_LE; 1002 else 1003 vcpu->arch.intr_msr &= ~MSR_LE; 1004 } 1005 } 1006 1007 /* 1008 * Userspace can only modify DPFD (default prefetch depth), 1009 * ILE (interrupt little-endian) and TC (translation control). 1010 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 1011 */ 1012 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1013 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1014 mask |= LPCR_AIL; 1015 1016 /* Broken 32-bit version of LPCR must not clear top bits */ 1017 if (preserve_top32) 1018 mask &= 0xFFFFFFFF; 1019 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1020 spin_unlock(&vc->lock); 1021 mutex_unlock(&kvm->lock); 1022} 1023 1024static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1025 union kvmppc_one_reg *val) 1026{ 1027 int r = 0; 1028 long int i; 1029 1030 switch (id) { 1031 case KVM_REG_PPC_DEBUG_INST: 1032 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1033 break; 1034 case KVM_REG_PPC_HIOR: 1035 *val = get_reg_val(id, 0); 1036 break; 1037 case KVM_REG_PPC_DABR: 1038 *val = get_reg_val(id, vcpu->arch.dabr); 1039 break; 1040 case KVM_REG_PPC_DABRX: 1041 *val = get_reg_val(id, vcpu->arch.dabrx); 1042 break; 1043 case KVM_REG_PPC_DSCR: 1044 *val = get_reg_val(id, vcpu->arch.dscr); 1045 break; 1046 case KVM_REG_PPC_PURR: 1047 *val = get_reg_val(id, vcpu->arch.purr); 1048 break; 1049 case KVM_REG_PPC_SPURR: 1050 *val = get_reg_val(id, vcpu->arch.spurr); 1051 break; 1052 case KVM_REG_PPC_AMR: 1053 *val = get_reg_val(id, vcpu->arch.amr); 1054 break; 1055 case KVM_REG_PPC_UAMOR: 1056 *val = get_reg_val(id, vcpu->arch.uamor); 1057 break; 1058 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1059 i = id - KVM_REG_PPC_MMCR0; 1060 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1061 break; 1062 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1063 i = id - KVM_REG_PPC_PMC1; 1064 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1065 break; 1066 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1067 i = id - KVM_REG_PPC_SPMC1; 1068 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1069 break; 1070 case KVM_REG_PPC_SIAR: 1071 *val = get_reg_val(id, vcpu->arch.siar); 1072 break; 1073 case KVM_REG_PPC_SDAR: 1074 *val = get_reg_val(id, vcpu->arch.sdar); 1075 break; 1076 case KVM_REG_PPC_SIER: 1077 *val = get_reg_val(id, vcpu->arch.sier); 1078 break; 1079 case KVM_REG_PPC_IAMR: 1080 *val = get_reg_val(id, vcpu->arch.iamr); 1081 break; 1082 case KVM_REG_PPC_PSPB: 1083 *val = get_reg_val(id, vcpu->arch.pspb); 1084 break; 1085 case KVM_REG_PPC_DPDES: 1086 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1087 break; 1088 case KVM_REG_PPC_DAWR: 1089 *val = get_reg_val(id, vcpu->arch.dawr); 1090 break; 1091 case KVM_REG_PPC_DAWRX: 1092 *val = get_reg_val(id, vcpu->arch.dawrx); 1093 break; 1094 case KVM_REG_PPC_CIABR: 1095 *val = get_reg_val(id, vcpu->arch.ciabr); 1096 break; 1097 case KVM_REG_PPC_CSIGR: 1098 *val = get_reg_val(id, vcpu->arch.csigr); 1099 break; 1100 case KVM_REG_PPC_TACR: 1101 *val = get_reg_val(id, vcpu->arch.tacr); 1102 break; 1103 case KVM_REG_PPC_TCSCR: 1104 *val = get_reg_val(id, vcpu->arch.tcscr); 1105 break; 1106 case KVM_REG_PPC_PID: 1107 *val = get_reg_val(id, vcpu->arch.pid); 1108 break; 1109 case KVM_REG_PPC_ACOP: 1110 *val = get_reg_val(id, vcpu->arch.acop); 1111 break; 1112 case KVM_REG_PPC_WORT: 1113 *val = get_reg_val(id, vcpu->arch.wort); 1114 break; 1115 case KVM_REG_PPC_VPA_ADDR: 1116 spin_lock(&vcpu->arch.vpa_update_lock); 1117 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1118 spin_unlock(&vcpu->arch.vpa_update_lock); 1119 break; 1120 case KVM_REG_PPC_VPA_SLB: 1121 spin_lock(&vcpu->arch.vpa_update_lock); 1122 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1123 val->vpaval.length = vcpu->arch.slb_shadow.len; 1124 spin_unlock(&vcpu->arch.vpa_update_lock); 1125 break; 1126 case KVM_REG_PPC_VPA_DTL: 1127 spin_lock(&vcpu->arch.vpa_update_lock); 1128 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1129 val->vpaval.length = vcpu->arch.dtl.len; 1130 spin_unlock(&vcpu->arch.vpa_update_lock); 1131 break; 1132 case KVM_REG_PPC_TB_OFFSET: 1133 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1134 break; 1135 case KVM_REG_PPC_LPCR: 1136 case KVM_REG_PPC_LPCR_64: 1137 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1138 break; 1139 case KVM_REG_PPC_PPR: 1140 *val = get_reg_val(id, vcpu->arch.ppr); 1141 break; 1142#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1143 case KVM_REG_PPC_TFHAR: 1144 *val = get_reg_val(id, vcpu->arch.tfhar); 1145 break; 1146 case KVM_REG_PPC_TFIAR: 1147 *val = get_reg_val(id, vcpu->arch.tfiar); 1148 break; 1149 case KVM_REG_PPC_TEXASR: 1150 *val = get_reg_val(id, vcpu->arch.texasr); 1151 break; 1152 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1153 i = id - KVM_REG_PPC_TM_GPR0; 1154 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1155 break; 1156 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1157 { 1158 int j; 1159 i = id - KVM_REG_PPC_TM_VSR0; 1160 if (i < 32) 1161 for (j = 0; j < TS_FPRWIDTH; j++) 1162 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1163 else { 1164 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1165 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1166 else 1167 r = -ENXIO; 1168 } 1169 break; 1170 } 1171 case KVM_REG_PPC_TM_CR: 1172 *val = get_reg_val(id, vcpu->arch.cr_tm); 1173 break; 1174 case KVM_REG_PPC_TM_LR: 1175 *val = get_reg_val(id, vcpu->arch.lr_tm); 1176 break; 1177 case KVM_REG_PPC_TM_CTR: 1178 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1179 break; 1180 case KVM_REG_PPC_TM_FPSCR: 1181 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1182 break; 1183 case KVM_REG_PPC_TM_AMR: 1184 *val = get_reg_val(id, vcpu->arch.amr_tm); 1185 break; 1186 case KVM_REG_PPC_TM_PPR: 1187 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1188 break; 1189 case KVM_REG_PPC_TM_VRSAVE: 1190 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1191 break; 1192 case KVM_REG_PPC_TM_VSCR: 1193 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1194 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1195 else 1196 r = -ENXIO; 1197 break; 1198 case KVM_REG_PPC_TM_DSCR: 1199 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1200 break; 1201 case KVM_REG_PPC_TM_TAR: 1202 *val = get_reg_val(id, vcpu->arch.tar_tm); 1203 break; 1204#endif 1205 case KVM_REG_PPC_ARCH_COMPAT: 1206 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1207 break; 1208 default: 1209 r = -EINVAL; 1210 break; 1211 } 1212 1213 return r; 1214} 1215 1216static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1217 union kvmppc_one_reg *val) 1218{ 1219 int r = 0; 1220 long int i; 1221 unsigned long addr, len; 1222 1223 switch (id) { 1224 case KVM_REG_PPC_HIOR: 1225 /* Only allow this to be set to zero */ 1226 if (set_reg_val(id, *val)) 1227 r = -EINVAL; 1228 break; 1229 case KVM_REG_PPC_DABR: 1230 vcpu->arch.dabr = set_reg_val(id, *val); 1231 break; 1232 case KVM_REG_PPC_DABRX: 1233 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1234 break; 1235 case KVM_REG_PPC_DSCR: 1236 vcpu->arch.dscr = set_reg_val(id, *val); 1237 break; 1238 case KVM_REG_PPC_PURR: 1239 vcpu->arch.purr = set_reg_val(id, *val); 1240 break; 1241 case KVM_REG_PPC_SPURR: 1242 vcpu->arch.spurr = set_reg_val(id, *val); 1243 break; 1244 case KVM_REG_PPC_AMR: 1245 vcpu->arch.amr = set_reg_val(id, *val); 1246 break; 1247 case KVM_REG_PPC_UAMOR: 1248 vcpu->arch.uamor = set_reg_val(id, *val); 1249 break; 1250 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1251 i = id - KVM_REG_PPC_MMCR0; 1252 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1253 break; 1254 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1255 i = id - KVM_REG_PPC_PMC1; 1256 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1257 break; 1258 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1259 i = id - KVM_REG_PPC_SPMC1; 1260 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1261 break; 1262 case KVM_REG_PPC_SIAR: 1263 vcpu->arch.siar = set_reg_val(id, *val); 1264 break; 1265 case KVM_REG_PPC_SDAR: 1266 vcpu->arch.sdar = set_reg_val(id, *val); 1267 break; 1268 case KVM_REG_PPC_SIER: 1269 vcpu->arch.sier = set_reg_val(id, *val); 1270 break; 1271 case KVM_REG_PPC_IAMR: 1272 vcpu->arch.iamr = set_reg_val(id, *val); 1273 break; 1274 case KVM_REG_PPC_PSPB: 1275 vcpu->arch.pspb = set_reg_val(id, *val); 1276 break; 1277 case KVM_REG_PPC_DPDES: 1278 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1279 break; 1280 case KVM_REG_PPC_DAWR: 1281 vcpu->arch.dawr = set_reg_val(id, *val); 1282 break; 1283 case KVM_REG_PPC_DAWRX: 1284 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1285 break; 1286 case KVM_REG_PPC_CIABR: 1287 vcpu->arch.ciabr = set_reg_val(id, *val); 1288 /* Don't allow setting breakpoints in hypervisor code */ 1289 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1290 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1291 break; 1292 case KVM_REG_PPC_CSIGR: 1293 vcpu->arch.csigr = set_reg_val(id, *val); 1294 break; 1295 case KVM_REG_PPC_TACR: 1296 vcpu->arch.tacr = set_reg_val(id, *val); 1297 break; 1298 case KVM_REG_PPC_TCSCR: 1299 vcpu->arch.tcscr = set_reg_val(id, *val); 1300 break; 1301 case KVM_REG_PPC_PID: 1302 vcpu->arch.pid = set_reg_val(id, *val); 1303 break; 1304 case KVM_REG_PPC_ACOP: 1305 vcpu->arch.acop = set_reg_val(id, *val); 1306 break; 1307 case KVM_REG_PPC_WORT: 1308 vcpu->arch.wort = set_reg_val(id, *val); 1309 break; 1310 case KVM_REG_PPC_VPA_ADDR: 1311 addr = set_reg_val(id, *val); 1312 r = -EINVAL; 1313 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1314 vcpu->arch.dtl.next_gpa)) 1315 break; 1316 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1317 break; 1318 case KVM_REG_PPC_VPA_SLB: 1319 addr = val->vpaval.addr; 1320 len = val->vpaval.length; 1321 r = -EINVAL; 1322 if (addr && !vcpu->arch.vpa.next_gpa) 1323 break; 1324 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1325 break; 1326 case KVM_REG_PPC_VPA_DTL: 1327 addr = val->vpaval.addr; 1328 len = val->vpaval.length; 1329 r = -EINVAL; 1330 if (addr && (len < sizeof(struct dtl_entry) || 1331 !vcpu->arch.vpa.next_gpa)) 1332 break; 1333 len -= len % sizeof(struct dtl_entry); 1334 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1335 break; 1336 case KVM_REG_PPC_TB_OFFSET: 1337 /* round up to multiple of 2^24 */ 1338 vcpu->arch.vcore->tb_offset = 1339 ALIGN(set_reg_val(id, *val), 1UL << 24); 1340 break; 1341 case KVM_REG_PPC_LPCR: 1342 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1343 break; 1344 case KVM_REG_PPC_LPCR_64: 1345 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1346 break; 1347 case KVM_REG_PPC_PPR: 1348 vcpu->arch.ppr = set_reg_val(id, *val); 1349 break; 1350#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1351 case KVM_REG_PPC_TFHAR: 1352 vcpu->arch.tfhar = set_reg_val(id, *val); 1353 break; 1354 case KVM_REG_PPC_TFIAR: 1355 vcpu->arch.tfiar = set_reg_val(id, *val); 1356 break; 1357 case KVM_REG_PPC_TEXASR: 1358 vcpu->arch.texasr = set_reg_val(id, *val); 1359 break; 1360 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1361 i = id - KVM_REG_PPC_TM_GPR0; 1362 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1363 break; 1364 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1365 { 1366 int j; 1367 i = id - KVM_REG_PPC_TM_VSR0; 1368 if (i < 32) 1369 for (j = 0; j < TS_FPRWIDTH; j++) 1370 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1371 else 1372 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1373 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1374 else 1375 r = -ENXIO; 1376 break; 1377 } 1378 case KVM_REG_PPC_TM_CR: 1379 vcpu->arch.cr_tm = set_reg_val(id, *val); 1380 break; 1381 case KVM_REG_PPC_TM_LR: 1382 vcpu->arch.lr_tm = set_reg_val(id, *val); 1383 break; 1384 case KVM_REG_PPC_TM_CTR: 1385 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1386 break; 1387 case KVM_REG_PPC_TM_FPSCR: 1388 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1389 break; 1390 case KVM_REG_PPC_TM_AMR: 1391 vcpu->arch.amr_tm = set_reg_val(id, *val); 1392 break; 1393 case KVM_REG_PPC_TM_PPR: 1394 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1395 break; 1396 case KVM_REG_PPC_TM_VRSAVE: 1397 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1398 break; 1399 case KVM_REG_PPC_TM_VSCR: 1400 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1401 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1402 else 1403 r = - ENXIO; 1404 break; 1405 case KVM_REG_PPC_TM_DSCR: 1406 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1407 break; 1408 case KVM_REG_PPC_TM_TAR: 1409 vcpu->arch.tar_tm = set_reg_val(id, *val); 1410 break; 1411#endif 1412 case KVM_REG_PPC_ARCH_COMPAT: 1413 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1414 break; 1415 default: 1416 r = -EINVAL; 1417 break; 1418 } 1419 1420 return r; 1421} 1422 1423static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1424{ 1425 struct kvmppc_vcore *vcore; 1426 1427 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1428 1429 if (vcore == NULL) 1430 return NULL; 1431 1432 INIT_LIST_HEAD(&vcore->runnable_threads); 1433 spin_lock_init(&vcore->lock); 1434 spin_lock_init(&vcore->stoltb_lock); 1435 init_waitqueue_head(&vcore->wq); 1436 vcore->preempt_tb = TB_NIL; 1437 vcore->lpcr = kvm->arch.lpcr; 1438 vcore->first_vcpuid = core * threads_per_subcore; 1439 vcore->kvm = kvm; 1440 1441 vcore->mpp_buffer_is_valid = false; 1442 1443 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1444 vcore->mpp_buffer = (void *)__get_free_pages( 1445 GFP_KERNEL|__GFP_ZERO, 1446 MPP_BUFFER_ORDER); 1447 1448 return vcore; 1449} 1450 1451#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1452static struct debugfs_timings_element { 1453 const char *name; 1454 size_t offset; 1455} timings[] = { 1456 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1457 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1458 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1459 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1460 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1461}; 1462 1463#define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1464 1465struct debugfs_timings_state { 1466 struct kvm_vcpu *vcpu; 1467 unsigned int buflen; 1468 char buf[N_TIMINGS * 100]; 1469}; 1470 1471static int debugfs_timings_open(struct inode *inode, struct file *file) 1472{ 1473 struct kvm_vcpu *vcpu = inode->i_private; 1474 struct debugfs_timings_state *p; 1475 1476 p = kzalloc(sizeof(*p), GFP_KERNEL); 1477 if (!p) 1478 return -ENOMEM; 1479 1480 kvm_get_kvm(vcpu->kvm); 1481 p->vcpu = vcpu; 1482 file->private_data = p; 1483 1484 return nonseekable_open(inode, file); 1485} 1486 1487static int debugfs_timings_release(struct inode *inode, struct file *file) 1488{ 1489 struct debugfs_timings_state *p = file->private_data; 1490 1491 kvm_put_kvm(p->vcpu->kvm); 1492 kfree(p); 1493 return 0; 1494} 1495 1496static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1497 size_t len, loff_t *ppos) 1498{ 1499 struct debugfs_timings_state *p = file->private_data; 1500 struct kvm_vcpu *vcpu = p->vcpu; 1501 char *s, *buf_end; 1502 struct kvmhv_tb_accumulator tb; 1503 u64 count; 1504 loff_t pos; 1505 ssize_t n; 1506 int i, loops; 1507 bool ok; 1508 1509 if (!p->buflen) { 1510 s = p->buf; 1511 buf_end = s + sizeof(p->buf); 1512 for (i = 0; i < N_TIMINGS; ++i) { 1513 struct kvmhv_tb_accumulator *acc; 1514 1515 acc = (struct kvmhv_tb_accumulator *) 1516 ((unsigned long)vcpu + timings[i].offset); 1517 ok = false; 1518 for (loops = 0; loops < 1000; ++loops) { 1519 count = acc->seqcount; 1520 if (!(count & 1)) { 1521 smp_rmb(); 1522 tb = *acc; 1523 smp_rmb(); 1524 if (count == acc->seqcount) { 1525 ok = true; 1526 break; 1527 } 1528 } 1529 udelay(1); 1530 } 1531 if (!ok) 1532 snprintf(s, buf_end - s, "%s: stuck\n", 1533 timings[i].name); 1534 else 1535 snprintf(s, buf_end - s, 1536 "%s: %llu %llu %llu %llu\n", 1537 timings[i].name, count / 2, 1538 tb_to_ns(tb.tb_total), 1539 tb_to_ns(tb.tb_min), 1540 tb_to_ns(tb.tb_max)); 1541 s += strlen(s); 1542 } 1543 p->buflen = s - p->buf; 1544 } 1545 1546 pos = *ppos; 1547 if (pos >= p->buflen) 1548 return 0; 1549 if (len > p->buflen - pos) 1550 len = p->buflen - pos; 1551 n = copy_to_user(buf, p->buf + pos, len); 1552 if (n) { 1553 if (n == len) 1554 return -EFAULT; 1555 len -= n; 1556 } 1557 *ppos = pos + len; 1558 return len; 1559} 1560 1561static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1562 size_t len, loff_t *ppos) 1563{ 1564 return -EACCES; 1565} 1566 1567static const struct file_operations debugfs_timings_ops = { 1568 .owner = THIS_MODULE, 1569 .open = debugfs_timings_open, 1570 .release = debugfs_timings_release, 1571 .read = debugfs_timings_read, 1572 .write = debugfs_timings_write, 1573 .llseek = generic_file_llseek, 1574}; 1575 1576/* Create a debugfs directory for the vcpu */ 1577static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1578{ 1579 char buf[16]; 1580 struct kvm *kvm = vcpu->kvm; 1581 1582 snprintf(buf, sizeof(buf), "vcpu%u", id); 1583 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1584 return; 1585 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1586 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1587 return; 1588 vcpu->arch.debugfs_timings = 1589 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1590 vcpu, &debugfs_timings_ops); 1591} 1592 1593#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1594static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1595{ 1596} 1597#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1598 1599static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1600 unsigned int id) 1601{ 1602 struct kvm_vcpu *vcpu; 1603 int err = -EINVAL; 1604 int core; 1605 struct kvmppc_vcore *vcore; 1606 1607 core = id / threads_per_subcore; 1608 if (core >= KVM_MAX_VCORES) 1609 goto out; 1610 1611 err = -ENOMEM; 1612 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1613 if (!vcpu) 1614 goto out; 1615 1616 err = kvm_vcpu_init(vcpu, kvm, id); 1617 if (err) 1618 goto free_vcpu; 1619 1620 vcpu->arch.shared = &vcpu->arch.shregs; 1621#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1622 /* 1623 * The shared struct is never shared on HV, 1624 * so we can always use host endianness 1625 */ 1626#ifdef __BIG_ENDIAN__ 1627 vcpu->arch.shared_big_endian = true; 1628#else 1629 vcpu->arch.shared_big_endian = false; 1630#endif 1631#endif 1632 vcpu->arch.mmcr[0] = MMCR0_FC; 1633 vcpu->arch.ctrl = CTRL_RUNLATCH; 1634 /* default to host PVR, since we can't spoof it */ 1635 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1636 spin_lock_init(&vcpu->arch.vpa_update_lock); 1637 spin_lock_init(&vcpu->arch.tbacct_lock); 1638 vcpu->arch.busy_preempt = TB_NIL; 1639 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1640 1641 kvmppc_mmu_book3s_hv_init(vcpu); 1642 1643 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1644 1645 init_waitqueue_head(&vcpu->arch.cpu_run); 1646 1647 mutex_lock(&kvm->lock); 1648 vcore = kvm->arch.vcores[core]; 1649 if (!vcore) { 1650 vcore = kvmppc_vcore_create(kvm, core); 1651 kvm->arch.vcores[core] = vcore; 1652 kvm->arch.online_vcores++; 1653 } 1654 mutex_unlock(&kvm->lock); 1655 1656 if (!vcore) 1657 goto free_vcpu; 1658 1659 spin_lock(&vcore->lock); 1660 ++vcore->num_threads; 1661 spin_unlock(&vcore->lock); 1662 vcpu->arch.vcore = vcore; 1663 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1664 1665 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1666 kvmppc_sanity_check(vcpu); 1667 1668 debugfs_vcpu_init(vcpu, id); 1669 1670 return vcpu; 1671 1672free_vcpu: 1673 kmem_cache_free(kvm_vcpu_cache, vcpu); 1674out: 1675 return ERR_PTR(err); 1676} 1677 1678static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1679{ 1680 if (vpa->pinned_addr) 1681 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1682 vpa->dirty); 1683} 1684 1685static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1686{ 1687 spin_lock(&vcpu->arch.vpa_update_lock); 1688 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1689 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1690 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1691 spin_unlock(&vcpu->arch.vpa_update_lock); 1692 kvm_vcpu_uninit(vcpu); 1693 kmem_cache_free(kvm_vcpu_cache, vcpu); 1694} 1695 1696static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1697{ 1698 /* Indicate we want to get back into the guest */ 1699 return 1; 1700} 1701 1702static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1703{ 1704 unsigned long dec_nsec, now; 1705 1706 now = get_tb(); 1707 if (now > vcpu->arch.dec_expires) { 1708 /* decrementer has already gone negative */ 1709 kvmppc_core_queue_dec(vcpu); 1710 kvmppc_core_prepare_to_enter(vcpu); 1711 return; 1712 } 1713 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1714 / tb_ticks_per_sec; 1715 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1716 HRTIMER_MODE_REL); 1717 vcpu->arch.timer_running = 1; 1718} 1719 1720static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1721{ 1722 vcpu->arch.ceded = 0; 1723 if (vcpu->arch.timer_running) { 1724 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1725 vcpu->arch.timer_running = 0; 1726 } 1727} 1728 1729extern void __kvmppc_vcore_entry(void); 1730 1731static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1732 struct kvm_vcpu *vcpu) 1733{ 1734 u64 now; 1735 1736 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1737 return; 1738 spin_lock_irq(&vcpu->arch.tbacct_lock); 1739 now = mftb(); 1740 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1741 vcpu->arch.stolen_logged; 1742 vcpu->arch.busy_preempt = now; 1743 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1744 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1745 --vc->n_runnable; 1746 list_del(&vcpu->arch.run_list); 1747} 1748 1749static int kvmppc_grab_hwthread(int cpu) 1750{ 1751 struct paca_struct *tpaca; 1752 long timeout = 10000; 1753 1754 tpaca = &paca[cpu]; 1755 1756 /* Ensure the thread won't go into the kernel if it wakes */ 1757 tpaca->kvm_hstate.kvm_vcpu = NULL; 1758 tpaca->kvm_hstate.napping = 0; 1759 smp_wmb(); 1760 tpaca->kvm_hstate.hwthread_req = 1; 1761 1762 /* 1763 * If the thread is already executing in the kernel (e.g. handling 1764 * a stray interrupt), wait for it to get back to nap mode. 1765 * The smp_mb() is to ensure that our setting of hwthread_req 1766 * is visible before we look at hwthread_state, so if this 1767 * races with the code at system_reset_pSeries and the thread 1768 * misses our setting of hwthread_req, we are sure to see its 1769 * setting of hwthread_state, and vice versa. 1770 */ 1771 smp_mb(); 1772 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1773 if (--timeout <= 0) { 1774 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1775 return -EBUSY; 1776 } 1777 udelay(1); 1778 } 1779 return 0; 1780} 1781 1782static void kvmppc_release_hwthread(int cpu) 1783{ 1784 struct paca_struct *tpaca; 1785 1786 tpaca = &paca[cpu]; 1787 tpaca->kvm_hstate.hwthread_req = 0; 1788 tpaca->kvm_hstate.kvm_vcpu = NULL; 1789} 1790 1791static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1792{ 1793 int cpu; 1794 struct paca_struct *tpaca; 1795 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1796 1797 if (vcpu->arch.timer_running) { 1798 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1799 vcpu->arch.timer_running = 0; 1800 } 1801 cpu = vc->pcpu + vcpu->arch.ptid; 1802 tpaca = &paca[cpu]; 1803 tpaca->kvm_hstate.kvm_vcore = vc; 1804 tpaca->kvm_hstate.ptid = vcpu->arch.ptid; 1805 vcpu->cpu = vc->pcpu; 1806 /* Order stores to hstate.kvm_vcore etc. before store to kvm_vcpu */ 1807 smp_wmb(); 1808 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1809 if (cpu != smp_processor_id()) 1810 kvmppc_ipi_thread(cpu); 1811} 1812 1813static void kvmppc_wait_for_nap(void) 1814{ 1815 int cpu = smp_processor_id(); 1816 int i, loops; 1817 1818 for (loops = 0; loops < 1000000; ++loops) { 1819 /* 1820 * Check if all threads are finished. 1821 * We set the vcpu pointer when starting a thread 1822 * and the thread clears it when finished, so we look 1823 * for any threads that still have a non-NULL vcpu ptr. 1824 */ 1825 for (i = 1; i < threads_per_subcore; ++i) 1826 if (paca[cpu + i].kvm_hstate.kvm_vcpu) 1827 break; 1828 if (i == threads_per_subcore) { 1829 HMT_medium(); 1830 return; 1831 } 1832 HMT_low(); 1833 } 1834 HMT_medium(); 1835 for (i = 1; i < threads_per_subcore; ++i) 1836 if (paca[cpu + i].kvm_hstate.kvm_vcpu) 1837 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 1838} 1839 1840/* 1841 * Check that we are on thread 0 and that any other threads in 1842 * this core are off-line. Then grab the threads so they can't 1843 * enter the kernel. 1844 */ 1845static int on_primary_thread(void) 1846{ 1847 int cpu = smp_processor_id(); 1848 int thr; 1849 1850 /* Are we on a primary subcore? */ 1851 if (cpu_thread_in_subcore(cpu)) 1852 return 0; 1853 1854 thr = 0; 1855 while (++thr < threads_per_subcore) 1856 if (cpu_online(cpu + thr)) 1857 return 0; 1858 1859 /* Grab all hw threads so they can't go into the kernel */ 1860 for (thr = 1; thr < threads_per_subcore; ++thr) { 1861 if (kvmppc_grab_hwthread(cpu + thr)) { 1862 /* Couldn't grab one; let the others go */ 1863 do { 1864 kvmppc_release_hwthread(cpu + thr); 1865 } while (--thr > 0); 1866 return 0; 1867 } 1868 } 1869 return 1; 1870} 1871 1872static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc) 1873{ 1874 phys_addr_t phy_addr, mpp_addr; 1875 1876 phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer); 1877 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1878 1879 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT); 1880 logmpp(mpp_addr | PPC_LOGMPP_LOG_L2); 1881 1882 vc->mpp_buffer_is_valid = true; 1883} 1884 1885static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc) 1886{ 1887 phys_addr_t phy_addr, mpp_addr; 1888 1889 phy_addr = virt_to_phys(vc->mpp_buffer); 1890 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1891 1892 /* We must abort any in-progress save operations to ensure 1893 * the table is valid so that prefetch engine knows when to 1894 * stop prefetching. */ 1895 logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT); 1896 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE); 1897} 1898 1899static void prepare_threads(struct kvmppc_vcore *vc) 1900{ 1901 struct kvm_vcpu *vcpu, *vnext; 1902 1903 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1904 arch.run_list) { 1905 if (signal_pending(vcpu->arch.run_task)) 1906 vcpu->arch.ret = -EINTR; 1907 else if (vcpu->arch.vpa.update_pending || 1908 vcpu->arch.slb_shadow.update_pending || 1909 vcpu->arch.dtl.update_pending) 1910 vcpu->arch.ret = RESUME_GUEST; 1911 else 1912 continue; 1913 kvmppc_remove_runnable(vc, vcpu); 1914 wake_up(&vcpu->arch.cpu_run); 1915 } 1916} 1917 1918static void post_guest_process(struct kvmppc_vcore *vc) 1919{ 1920 u64 now; 1921 long ret; 1922 struct kvm_vcpu *vcpu, *vnext; 1923 1924 now = get_tb(); 1925 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1926 arch.run_list) { 1927 /* cancel pending dec exception if dec is positive */ 1928 if (now < vcpu->arch.dec_expires && 1929 kvmppc_core_pending_dec(vcpu)) 1930 kvmppc_core_dequeue_dec(vcpu); 1931 1932 trace_kvm_guest_exit(vcpu); 1933 1934 ret = RESUME_GUEST; 1935 if (vcpu->arch.trap) 1936 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1937 vcpu->arch.run_task); 1938 1939 vcpu->arch.ret = ret; 1940 vcpu->arch.trap = 0; 1941 1942 if (vcpu->arch.ceded) { 1943 if (!is_kvmppc_resume_guest(ret)) 1944 kvmppc_end_cede(vcpu); 1945 else 1946 kvmppc_set_timer(vcpu); 1947 } 1948 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) { 1949 kvmppc_remove_runnable(vc, vcpu); 1950 wake_up(&vcpu->arch.cpu_run); 1951 } 1952 } 1953} 1954 1955/* 1956 * Run a set of guest threads on a physical core. 1957 * Called with vc->lock held. 1958 */ 1959static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 1960{ 1961 struct kvm_vcpu *vcpu, *vnext; 1962 int i; 1963 int srcu_idx; 1964 1965 /* 1966 * Remove from the list any threads that have a signal pending 1967 * or need a VPA update done 1968 */ 1969 prepare_threads(vc); 1970 1971 /* if the runner is no longer runnable, let the caller pick a new one */ 1972 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 1973 return; 1974 1975 /* 1976 * Initialize *vc. 1977 */ 1978 vc->entry_exit_map = 0; 1979 vc->preempt_tb = TB_NIL; 1980 vc->in_guest = 0; 1981 vc->napping_threads = 0; 1982 vc->conferring_threads = 0; 1983 1984 /* 1985 * Make sure we are running on primary threads, and that secondary 1986 * threads are offline. Also check if the number of threads in this 1987 * guest are greater than the current system threads per guest. 1988 */ 1989 if ((threads_per_core > 1) && 1990 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 1991 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1992 arch.run_list) { 1993 vcpu->arch.ret = -EBUSY; 1994 kvmppc_remove_runnable(vc, vcpu); 1995 wake_up(&vcpu->arch.cpu_run); 1996 } 1997 goto out; 1998 } 1999 2000 2001 vc->pcpu = smp_processor_id(); 2002 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2003 kvmppc_start_thread(vcpu); 2004 kvmppc_create_dtl_entry(vcpu, vc); 2005 trace_kvm_guest_enter(vcpu); 2006 } 2007 2008 /* Set this explicitly in case thread 0 doesn't have a vcpu */ 2009 get_paca()->kvm_hstate.kvm_vcore = vc; 2010 get_paca()->kvm_hstate.ptid = 0; 2011 2012 vc->vcore_state = VCORE_RUNNING; 2013 preempt_disable(); 2014 2015 trace_kvmppc_run_core(vc, 0); 2016 2017 spin_unlock(&vc->lock); 2018 2019 kvm_guest_enter(); 2020 2021 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2022 2023 if (vc->mpp_buffer_is_valid) 2024 kvmppc_start_restoring_l2_cache(vc); 2025 2026 __kvmppc_vcore_entry(); 2027 2028 spin_lock(&vc->lock); 2029 2030 if (vc->mpp_buffer) 2031 kvmppc_start_saving_l2_cache(vc); 2032 2033 /* disable sending of IPIs on virtual external irqs */ 2034 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 2035 vcpu->cpu = -1; 2036 /* wait for secondary threads to finish writing their state to memory */ 2037 kvmppc_wait_for_nap(); 2038 for (i = 0; i < threads_per_subcore; ++i) 2039 kvmppc_release_hwthread(vc->pcpu + i); 2040 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2041 vc->vcore_state = VCORE_EXITING; 2042 spin_unlock(&vc->lock); 2043 2044 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2045 2046 /* make sure updates to secondary vcpu structs are visible now */ 2047 smp_mb(); 2048 kvm_guest_exit(); 2049 2050 preempt_enable(); 2051 2052 spin_lock(&vc->lock); 2053 post_guest_process(vc); 2054 2055 out: 2056 vc->vcore_state = VCORE_INACTIVE; 2057 trace_kvmppc_run_core(vc, 1); 2058} 2059 2060/* 2061 * Wait for some other vcpu thread to execute us, and 2062 * wake us up when we need to handle something in the host. 2063 */ 2064static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 2065{ 2066 DEFINE_WAIT(wait); 2067 2068 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2069 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 2070 schedule(); 2071 finish_wait(&vcpu->arch.cpu_run, &wait); 2072} 2073 2074/* 2075 * All the vcpus in this vcore are idle, so wait for a decrementer 2076 * or external interrupt to one of the vcpus. vc->lock is held. 2077 */ 2078static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2079{ 2080 struct kvm_vcpu *vcpu; 2081 int do_sleep = 1; 2082 2083 DEFINE_WAIT(wait); 2084 2085 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2086 2087 /* 2088 * Check one last time for pending exceptions and ceded state after 2089 * we put ourselves on the wait queue 2090 */ 2091 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2092 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) { 2093 do_sleep = 0; 2094 break; 2095 } 2096 } 2097 2098 if (!do_sleep) { 2099 finish_wait(&vc->wq, &wait); 2100 return; 2101 } 2102 2103 vc->vcore_state = VCORE_SLEEPING; 2104 trace_kvmppc_vcore_blocked(vc, 0); 2105 spin_unlock(&vc->lock); 2106 schedule(); 2107 finish_wait(&vc->wq, &wait); 2108 spin_lock(&vc->lock); 2109 vc->vcore_state = VCORE_INACTIVE; 2110 trace_kvmppc_vcore_blocked(vc, 1); 2111} 2112 2113static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2114{ 2115 int n_ceded; 2116 struct kvmppc_vcore *vc; 2117 struct kvm_vcpu *v, *vn; 2118 2119 trace_kvmppc_run_vcpu_enter(vcpu); 2120 2121 kvm_run->exit_reason = 0; 2122 vcpu->arch.ret = RESUME_GUEST; 2123 vcpu->arch.trap = 0; 2124 kvmppc_update_vpas(vcpu); 2125 2126 /* 2127 * Synchronize with other threads in this virtual core 2128 */ 2129 vc = vcpu->arch.vcore; 2130 spin_lock(&vc->lock); 2131 vcpu->arch.ceded = 0; 2132 vcpu->arch.run_task = current; 2133 vcpu->arch.kvm_run = kvm_run; 2134 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2135 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2136 vcpu->arch.busy_preempt = TB_NIL; 2137 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 2138 ++vc->n_runnable; 2139 2140 /* 2141 * This happens the first time this is called for a vcpu. 2142 * If the vcore is already running, we may be able to start 2143 * this thread straight away and have it join in. 2144 */ 2145 if (!signal_pending(current)) { 2146 if (vc->vcore_state == VCORE_RUNNING && !VCORE_IS_EXITING(vc)) { 2147 kvmppc_create_dtl_entry(vcpu, vc); 2148 kvmppc_start_thread(vcpu); 2149 trace_kvm_guest_enter(vcpu); 2150 } else if (vc->vcore_state == VCORE_SLEEPING) { 2151 wake_up(&vc->wq); 2152 } 2153 2154 } 2155 2156 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2157 !signal_pending(current)) { 2158 if (vc->vcore_state != VCORE_INACTIVE) { 2159 spin_unlock(&vc->lock); 2160 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 2161 spin_lock(&vc->lock); 2162 continue; 2163 } 2164 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 2165 arch.run_list) { 2166 kvmppc_core_prepare_to_enter(v); 2167 if (signal_pending(v->arch.run_task)) { 2168 kvmppc_remove_runnable(vc, v); 2169 v->stat.signal_exits++; 2170 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2171 v->arch.ret = -EINTR; 2172 wake_up(&v->arch.cpu_run); 2173 } 2174 } 2175 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2176 break; 2177 n_ceded = 0; 2178 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 2179 if (!v->arch.pending_exceptions) 2180 n_ceded += v->arch.ceded; 2181 else 2182 v->arch.ceded = 0; 2183 } 2184 vc->runner = vcpu; 2185 if (n_ceded == vc->n_runnable) { 2186 kvmppc_vcore_blocked(vc); 2187 } else if (need_resched()) { 2188 vc->vcore_state = VCORE_PREEMPT; 2189 /* Let something else run */ 2190 cond_resched_lock(&vc->lock); 2191 vc->vcore_state = VCORE_INACTIVE; 2192 } else { 2193 kvmppc_run_core(vc); 2194 } 2195 vc->runner = NULL; 2196 } 2197 2198 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2199 (vc->vcore_state == VCORE_RUNNING || 2200 vc->vcore_state == VCORE_EXITING)) { 2201 spin_unlock(&vc->lock); 2202 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 2203 spin_lock(&vc->lock); 2204 } 2205 2206 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2207 kvmppc_remove_runnable(vc, vcpu); 2208 vcpu->stat.signal_exits++; 2209 kvm_run->exit_reason = KVM_EXIT_INTR; 2210 vcpu->arch.ret = -EINTR; 2211 } 2212 2213 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2214 /* Wake up some vcpu to run the core */ 2215 v = list_first_entry(&vc->runnable_threads, 2216 struct kvm_vcpu, arch.run_list); 2217 wake_up(&v->arch.cpu_run); 2218 } 2219 2220 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2221 spin_unlock(&vc->lock); 2222 return vcpu->arch.ret; 2223} 2224 2225static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2226{ 2227 int r; 2228 int srcu_idx; 2229 2230 if (!vcpu->arch.sane) { 2231 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2232 return -EINVAL; 2233 } 2234 2235 kvmppc_core_prepare_to_enter(vcpu); 2236 2237 /* No need to go into the guest when all we'll do is come back out */ 2238 if (signal_pending(current)) { 2239 run->exit_reason = KVM_EXIT_INTR; 2240 return -EINTR; 2241 } 2242 2243 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2244 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2245 smp_mb(); 2246 2247 /* On the first time here, set up HTAB and VRMA */ 2248 if (!vcpu->kvm->arch.hpte_setup_done) { 2249 r = kvmppc_hv_setup_htab_rma(vcpu); 2250 if (r) 2251 goto out; 2252 } 2253 2254 flush_fp_to_thread(current); 2255 flush_altivec_to_thread(current); 2256 flush_vsx_to_thread(current); 2257 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2258 vcpu->arch.pgdir = current->mm->pgd; 2259 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2260 2261 do { 2262 r = kvmppc_run_vcpu(run, vcpu); 2263 2264 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2265 !(vcpu->arch.shregs.msr & MSR_PR)) { 2266 trace_kvm_hcall_enter(vcpu); 2267 r = kvmppc_pseries_do_hcall(vcpu); 2268 trace_kvm_hcall_exit(vcpu, r); 2269 kvmppc_core_prepare_to_enter(vcpu); 2270 } else if (r == RESUME_PAGE_FAULT) { 2271 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2272 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2273 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2274 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2275 } 2276 } while (is_kvmppc_resume_guest(r)); 2277 2278 out: 2279 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2280 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2281 return r; 2282} 2283 2284static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2285 int linux_psize) 2286{ 2287 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2288 2289 if (!def->shift) 2290 return; 2291 (*sps)->page_shift = def->shift; 2292 (*sps)->slb_enc = def->sllp; 2293 (*sps)->enc[0].page_shift = def->shift; 2294 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2295 /* 2296 * Add 16MB MPSS support if host supports it 2297 */ 2298 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2299 (*sps)->enc[1].page_shift = 24; 2300 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2301 } 2302 (*sps)++; 2303} 2304 2305static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2306 struct kvm_ppc_smmu_info *info) 2307{ 2308 struct kvm_ppc_one_seg_page_size *sps; 2309 2310 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2311 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2312 info->flags |= KVM_PPC_1T_SEGMENTS; 2313 info->slb_size = mmu_slb_size; 2314 2315 /* We only support these sizes for now, and no muti-size segments */ 2316 sps = &info->sps[0]; 2317 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2318 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2319 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2320 2321 return 0; 2322} 2323 2324/* 2325 * Get (and clear) the dirty memory log for a memory slot. 2326 */ 2327static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2328 struct kvm_dirty_log *log) 2329{ 2330 struct kvm_memory_slot *memslot; 2331 int r; 2332 unsigned long n; 2333 2334 mutex_lock(&kvm->slots_lock); 2335 2336 r = -EINVAL; 2337 if (log->slot >= KVM_USER_MEM_SLOTS) 2338 goto out; 2339 2340 memslot = id_to_memslot(kvm->memslots, log->slot); 2341 r = -ENOENT; 2342 if (!memslot->dirty_bitmap) 2343 goto out; 2344 2345 n = kvm_dirty_bitmap_bytes(memslot); 2346 memset(memslot->dirty_bitmap, 0, n); 2347 2348 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2349 if (r) 2350 goto out; 2351 2352 r = -EFAULT; 2353 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2354 goto out; 2355 2356 r = 0; 2357out: 2358 mutex_unlock(&kvm->slots_lock); 2359 return r; 2360} 2361 2362static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2363 struct kvm_memory_slot *dont) 2364{ 2365 if (!dont || free->arch.rmap != dont->arch.rmap) { 2366 vfree(free->arch.rmap); 2367 free->arch.rmap = NULL; 2368 } 2369} 2370 2371static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2372 unsigned long npages) 2373{ 2374 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2375 if (!slot->arch.rmap) 2376 return -ENOMEM; 2377 2378 return 0; 2379} 2380 2381static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2382 struct kvm_memory_slot *memslot, 2383 struct kvm_userspace_memory_region *mem) 2384{ 2385 return 0; 2386} 2387 2388static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2389 struct kvm_userspace_memory_region *mem, 2390 const struct kvm_memory_slot *old) 2391{ 2392 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2393 struct kvm_memory_slot *memslot; 2394 2395 if (npages && old->npages) { 2396 /* 2397 * If modifying a memslot, reset all the rmap dirty bits. 2398 * If this is a new memslot, we don't need to do anything 2399 * since the rmap array starts out as all zeroes, 2400 * i.e. no pages are dirty. 2401 */ 2402 memslot = id_to_memslot(kvm->memslots, mem->slot); 2403 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2404 } 2405} 2406 2407/* 2408 * Update LPCR values in kvm->arch and in vcores. 2409 * Caller must hold kvm->lock. 2410 */ 2411void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2412{ 2413 long int i; 2414 u32 cores_done = 0; 2415 2416 if ((kvm->arch.lpcr & mask) == lpcr) 2417 return; 2418 2419 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2420 2421 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2422 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2423 if (!vc) 2424 continue; 2425 spin_lock(&vc->lock); 2426 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2427 spin_unlock(&vc->lock); 2428 if (++cores_done >= kvm->arch.online_vcores) 2429 break; 2430 } 2431} 2432 2433static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2434{ 2435 return; 2436} 2437 2438static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2439{ 2440 int err = 0; 2441 struct kvm *kvm = vcpu->kvm; 2442 unsigned long hva; 2443 struct kvm_memory_slot *memslot; 2444 struct vm_area_struct *vma; 2445 unsigned long lpcr = 0, senc; 2446 unsigned long psize, porder; 2447 int srcu_idx; 2448 2449 mutex_lock(&kvm->lock); 2450 if (kvm->arch.hpte_setup_done) 2451 goto out; /* another vcpu beat us to it */ 2452 2453 /* Allocate hashed page table (if not done already) and reset it */ 2454 if (!kvm->arch.hpt_virt) { 2455 err = kvmppc_alloc_hpt(kvm, NULL); 2456 if (err) { 2457 pr_err("KVM: Couldn't alloc HPT\n"); 2458 goto out; 2459 } 2460 } 2461 2462 /* Look up the memslot for guest physical address 0 */ 2463 srcu_idx = srcu_read_lock(&kvm->srcu); 2464 memslot = gfn_to_memslot(kvm, 0); 2465 2466 /* We must have some memory at 0 by now */ 2467 err = -EINVAL; 2468 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2469 goto out_srcu; 2470 2471 /* Look up the VMA for the start of this memory slot */ 2472 hva = memslot->userspace_addr; 2473 down_read(¤t->mm->mmap_sem); 2474 vma = find_vma(current->mm, hva); 2475 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2476 goto up_out; 2477 2478 psize = vma_kernel_pagesize(vma); 2479 porder = __ilog2(psize); 2480 2481 up_read(¤t->mm->mmap_sem); 2482 2483 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2484 err = -EINVAL; 2485 if (!(psize == 0x1000 || psize == 0x10000 || 2486 psize == 0x1000000)) 2487 goto out_srcu; 2488 2489 /* Update VRMASD field in the LPCR */ 2490 senc = slb_pgsize_encoding(psize); 2491 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2492 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2493 /* the -4 is to account for senc values starting at 0x10 */ 2494 lpcr = senc << (LPCR_VRMASD_SH - 4); 2495 2496 /* Create HPTEs in the hash page table for the VRMA */ 2497 kvmppc_map_vrma(vcpu, memslot, porder); 2498 2499 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 2500 2501 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 2502 smp_wmb(); 2503 kvm->arch.hpte_setup_done = 1; 2504 err = 0; 2505 out_srcu: 2506 srcu_read_unlock(&kvm->srcu, srcu_idx); 2507 out: 2508 mutex_unlock(&kvm->lock); 2509 return err; 2510 2511 up_out: 2512 up_read(¤t->mm->mmap_sem); 2513 goto out_srcu; 2514} 2515 2516static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2517{ 2518 unsigned long lpcr, lpid; 2519 char buf[32]; 2520 2521 /* Allocate the guest's logical partition ID */ 2522 2523 lpid = kvmppc_alloc_lpid(); 2524 if ((long)lpid < 0) 2525 return -ENOMEM; 2526 kvm->arch.lpid = lpid; 2527 2528 /* 2529 * Since we don't flush the TLB when tearing down a VM, 2530 * and this lpid might have previously been used, 2531 * make sure we flush on each core before running the new VM. 2532 */ 2533 cpumask_setall(&kvm->arch.need_tlb_flush); 2534 2535 /* Start out with the default set of hcalls enabled */ 2536 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 2537 sizeof(kvm->arch.enabled_hcalls)); 2538 2539 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2540 2541 /* Init LPCR for virtual RMA mode */ 2542 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2543 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2544 lpcr &= LPCR_PECE | LPCR_LPES; 2545 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2546 LPCR_VPM0 | LPCR_VPM1; 2547 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2548 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2549 /* On POWER8 turn on online bit to enable PURR/SPURR */ 2550 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 2551 lpcr |= LPCR_ONL; 2552 kvm->arch.lpcr = lpcr; 2553 2554 /* 2555 * Track that we now have a HV mode VM active. This blocks secondary 2556 * CPU threads from coming online. 2557 */ 2558 kvm_hv_vm_activated(); 2559 2560 /* 2561 * Create a debugfs directory for the VM 2562 */ 2563 snprintf(buf, sizeof(buf), "vm%d", current->pid); 2564 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 2565 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2566 kvmppc_mmu_debugfs_init(kvm); 2567 2568 return 0; 2569} 2570 2571static void kvmppc_free_vcores(struct kvm *kvm) 2572{ 2573 long int i; 2574 2575 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2576 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) { 2577 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2578 free_pages((unsigned long)vc->mpp_buffer, 2579 MPP_BUFFER_ORDER); 2580 } 2581 kfree(kvm->arch.vcores[i]); 2582 } 2583 kvm->arch.online_vcores = 0; 2584} 2585 2586static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2587{ 2588 debugfs_remove_recursive(kvm->arch.debugfs_dir); 2589 2590 kvm_hv_vm_deactivated(); 2591 2592 kvmppc_free_vcores(kvm); 2593 2594 kvmppc_free_hpt(kvm); 2595} 2596 2597/* We don't need to emulate any privileged instructions or dcbz */ 2598static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2599 unsigned int inst, int *advance) 2600{ 2601 return EMULATE_FAIL; 2602} 2603 2604static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2605 ulong spr_val) 2606{ 2607 return EMULATE_FAIL; 2608} 2609 2610static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2611 ulong *spr_val) 2612{ 2613 return EMULATE_FAIL; 2614} 2615 2616static int kvmppc_core_check_processor_compat_hv(void) 2617{ 2618 if (!cpu_has_feature(CPU_FTR_HVMODE) || 2619 !cpu_has_feature(CPU_FTR_ARCH_206)) 2620 return -EIO; 2621 return 0; 2622} 2623 2624static long kvm_arch_vm_ioctl_hv(struct file *filp, 2625 unsigned int ioctl, unsigned long arg) 2626{ 2627 struct kvm *kvm __maybe_unused = filp->private_data; 2628 void __user *argp = (void __user *)arg; 2629 long r; 2630 2631 switch (ioctl) { 2632 2633 case KVM_PPC_ALLOCATE_HTAB: { 2634 u32 htab_order; 2635 2636 r = -EFAULT; 2637 if (get_user(htab_order, (u32 __user *)argp)) 2638 break; 2639 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2640 if (r) 2641 break; 2642 r = -EFAULT; 2643 if (put_user(htab_order, (u32 __user *)argp)) 2644 break; 2645 r = 0; 2646 break; 2647 } 2648 2649 case KVM_PPC_GET_HTAB_FD: { 2650 struct kvm_get_htab_fd ghf; 2651 2652 r = -EFAULT; 2653 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2654 break; 2655 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2656 break; 2657 } 2658 2659 default: 2660 r = -ENOTTY; 2661 } 2662 2663 return r; 2664} 2665 2666/* 2667 * List of hcall numbers to enable by default. 2668 * For compatibility with old userspace, we enable by default 2669 * all hcalls that were implemented before the hcall-enabling 2670 * facility was added. Note this list should not include H_RTAS. 2671 */ 2672static unsigned int default_hcall_list[] = { 2673 H_REMOVE, 2674 H_ENTER, 2675 H_READ, 2676 H_PROTECT, 2677 H_BULK_REMOVE, 2678 H_GET_TCE, 2679 H_PUT_TCE, 2680 H_SET_DABR, 2681 H_SET_XDABR, 2682 H_CEDE, 2683 H_PROD, 2684 H_CONFER, 2685 H_REGISTER_VPA, 2686#ifdef CONFIG_KVM_XICS 2687 H_EOI, 2688 H_CPPR, 2689 H_IPI, 2690 H_IPOLL, 2691 H_XIRR, 2692 H_XIRR_X, 2693#endif 2694 0 2695}; 2696 2697static void init_default_hcalls(void) 2698{ 2699 int i; 2700 unsigned int hcall; 2701 2702 for (i = 0; default_hcall_list[i]; ++i) { 2703 hcall = default_hcall_list[i]; 2704 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 2705 __set_bit(hcall / 4, default_enabled_hcalls); 2706 } 2707} 2708 2709static struct kvmppc_ops kvm_ops_hv = { 2710 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2711 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2712 .get_one_reg = kvmppc_get_one_reg_hv, 2713 .set_one_reg = kvmppc_set_one_reg_hv, 2714 .vcpu_load = kvmppc_core_vcpu_load_hv, 2715 .vcpu_put = kvmppc_core_vcpu_put_hv, 2716 .set_msr = kvmppc_set_msr_hv, 2717 .vcpu_run = kvmppc_vcpu_run_hv, 2718 .vcpu_create = kvmppc_core_vcpu_create_hv, 2719 .vcpu_free = kvmppc_core_vcpu_free_hv, 2720 .check_requests = kvmppc_core_check_requests_hv, 2721 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2722 .flush_memslot = kvmppc_core_flush_memslot_hv, 2723 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2724 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2725 .unmap_hva = kvm_unmap_hva_hv, 2726 .unmap_hva_range = kvm_unmap_hva_range_hv, 2727 .age_hva = kvm_age_hva_hv, 2728 .test_age_hva = kvm_test_age_hva_hv, 2729 .set_spte_hva = kvm_set_spte_hva_hv, 2730 .mmu_destroy = kvmppc_mmu_destroy_hv, 2731 .free_memslot = kvmppc_core_free_memslot_hv, 2732 .create_memslot = kvmppc_core_create_memslot_hv, 2733 .init_vm = kvmppc_core_init_vm_hv, 2734 .destroy_vm = kvmppc_core_destroy_vm_hv, 2735 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2736 .emulate_op = kvmppc_core_emulate_op_hv, 2737 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2738 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2739 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2740 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2741 .hcall_implemented = kvmppc_hcall_impl_hv, 2742}; 2743 2744static int kvmppc_book3s_init_hv(void) 2745{ 2746 int r; 2747 /* 2748 * FIXME!! Do we need to check on all cpus ? 2749 */ 2750 r = kvmppc_core_check_processor_compat_hv(); 2751 if (r < 0) 2752 return -ENODEV; 2753 2754 kvm_ops_hv.owner = THIS_MODULE; 2755 kvmppc_hv_ops = &kvm_ops_hv; 2756 2757 init_default_hcalls(); 2758 2759 r = kvmppc_mmu_hv_init(); 2760 return r; 2761} 2762 2763static void kvmppc_book3s_exit_hv(void) 2764{ 2765 kvmppc_hv_ops = NULL; 2766} 2767 2768module_init(kvmppc_book3s_init_hv); 2769module_exit(kvmppc_book3s_exit_hv); 2770MODULE_LICENSE("GPL"); 2771MODULE_ALIAS_MISCDEV(KVM_MINOR); 2772MODULE_ALIAS("devname:kvm"); 2773