1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras	August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 *    {engebret|bergner}@us.ibm.com
9 *
10 *      This program is free software; you can redistribute it and/or
11 *      modify it under the terms of the GNU General Public License
12 *      as published by the Free Software Foundation; either version
13 *      2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/kernel.h>
20#include <linux/string.h>
21#include <linux/init.h>
22#include <linux/threads.h>
23#include <linux/spinlock.h>
24#include <linux/types.h>
25#include <linux/pci.h>
26#include <linux/stringify.h>
27#include <linux/delay.h>
28#include <linux/initrd.h>
29#include <linux/bitops.h>
30#include <linux/export.h>
31#include <linux/kexec.h>
32#include <linux/irq.h>
33#include <linux/memblock.h>
34#include <linux/of.h>
35#include <linux/of_fdt.h>
36#include <linux/libfdt.h>
37
38#include <asm/prom.h>
39#include <asm/rtas.h>
40#include <asm/page.h>
41#include <asm/processor.h>
42#include <asm/irq.h>
43#include <asm/io.h>
44#include <asm/kdump.h>
45#include <asm/smp.h>
46#include <asm/mmu.h>
47#include <asm/paca.h>
48#include <asm/pgtable.h>
49#include <asm/pci.h>
50#include <asm/iommu.h>
51#include <asm/btext.h>
52#include <asm/sections.h>
53#include <asm/machdep.h>
54#include <asm/pci-bridge.h>
55#include <asm/kexec.h>
56#include <asm/opal.h>
57#include <asm/fadump.h>
58#include <asm/debug.h>
59
60#include <mm/mmu_decl.h>
61
62#ifdef DEBUG
63#define DBG(fmt...) printk(KERN_ERR fmt)
64#else
65#define DBG(fmt...)
66#endif
67
68#ifdef CONFIG_PPC64
69int __initdata iommu_is_off;
70int __initdata iommu_force_on;
71unsigned long tce_alloc_start, tce_alloc_end;
72u64 ppc64_rma_size;
73#endif
74static phys_addr_t first_memblock_size;
75static int __initdata boot_cpu_count;
76
77static int __init early_parse_mem(char *p)
78{
79	if (!p)
80		return 1;
81
82	memory_limit = PAGE_ALIGN(memparse(p, &p));
83	DBG("memory limit = 0x%llx\n", memory_limit);
84
85	return 0;
86}
87early_param("mem", early_parse_mem);
88
89/*
90 * overlaps_initrd - check for overlap with page aligned extension of
91 * initrd.
92 */
93static inline int overlaps_initrd(unsigned long start, unsigned long size)
94{
95#ifdef CONFIG_BLK_DEV_INITRD
96	if (!initrd_start)
97		return 0;
98
99	return	(start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
100			start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
101#else
102	return 0;
103#endif
104}
105
106/**
107 * move_device_tree - move tree to an unused area, if needed.
108 *
109 * The device tree may be allocated beyond our memory limit, or inside the
110 * crash kernel region for kdump, or within the page aligned range of initrd.
111 * If so, move it out of the way.
112 */
113static void __init move_device_tree(void)
114{
115	unsigned long start, size;
116	void *p;
117
118	DBG("-> move_device_tree\n");
119
120	start = __pa(initial_boot_params);
121	size = fdt_totalsize(initial_boot_params);
122
123	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
124			overlaps_crashkernel(start, size) ||
125			overlaps_initrd(start, size)) {
126		p = __va(memblock_alloc(size, PAGE_SIZE));
127		memcpy(p, initial_boot_params, size);
128		initial_boot_params = p;
129		DBG("Moved device tree to 0x%p\n", p);
130	}
131
132	DBG("<- move_device_tree\n");
133}
134
135/*
136 * ibm,pa-features is a per-cpu property that contains a string of
137 * attribute descriptors, each of which has a 2 byte header plus up
138 * to 254 bytes worth of processor attribute bits.  First header
139 * byte specifies the number of bytes following the header.
140 * Second header byte is an "attribute-specifier" type, of which
141 * zero is the only currently-defined value.
142 * Implementation:  Pass in the byte and bit offset for the feature
143 * that we are interested in.  The function will return -1 if the
144 * pa-features property is missing, or a 1/0 to indicate if the feature
145 * is supported/not supported.  Note that the bit numbers are
146 * big-endian to match the definition in PAPR.
147 */
148static struct ibm_pa_feature {
149	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
150	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
151	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
152	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
153	unsigned char	pabyte;		/* byte number in ibm,pa-features */
154	unsigned char	pabit;		/* bit number (big-endian) */
155	unsigned char	invert;		/* if 1, pa bit set => clear feature */
156} ibm_pa_features[] __initdata = {
157	{0, 0, PPC_FEATURE_HAS_MMU, 0,		0, 0, 0},
158	{0, 0, PPC_FEATURE_HAS_FPU, 0,		0, 1, 0},
159	{CPU_FTR_CTRL, 0, 0, 0,			0, 3, 0},
160	{CPU_FTR_NOEXECUTE, 0, 0, 0,		0, 6, 0},
161	{CPU_FTR_NODSISRALIGN, 0, 0, 0,		1, 1, 1},
162	{0, MMU_FTR_CI_LARGE_PAGE, 0, 0,		1, 2, 0},
163	{CPU_FTR_REAL_LE, 0, PPC_FEATURE_TRUE_LE, 0, 5, 0, 0},
164	/*
165	 * If the kernel doesn't support TM (ie. CONFIG_PPC_TRANSACTIONAL_MEM=n),
166	 * we don't want to turn on CPU_FTR_TM here, so we use CPU_FTR_TM_COMP
167	 * which is 0 if the kernel doesn't support TM.
168	 */
169	{CPU_FTR_TM_COMP, 0, 0, 0,		22, 0, 0},
170};
171
172static void __init scan_features(unsigned long node, const unsigned char *ftrs,
173				 unsigned long tablelen,
174				 struct ibm_pa_feature *fp,
175				 unsigned long ft_size)
176{
177	unsigned long i, len, bit;
178
179	/* find descriptor with type == 0 */
180	for (;;) {
181		if (tablelen < 3)
182			return;
183		len = 2 + ftrs[0];
184		if (tablelen < len)
185			return;		/* descriptor 0 not found */
186		if (ftrs[1] == 0)
187			break;
188		tablelen -= len;
189		ftrs += len;
190	}
191
192	/* loop over bits we know about */
193	for (i = 0; i < ft_size; ++i, ++fp) {
194		if (fp->pabyte >= ftrs[0])
195			continue;
196		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
197		if (bit ^ fp->invert) {
198			cur_cpu_spec->cpu_features |= fp->cpu_features;
199			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
200			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
201			cur_cpu_spec->mmu_features |= fp->mmu_features;
202		} else {
203			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
204			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
205			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
206			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
207		}
208	}
209}
210
211static void __init check_cpu_pa_features(unsigned long node)
212{
213	const unsigned char *pa_ftrs;
214	int tablelen;
215
216	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
217	if (pa_ftrs == NULL)
218		return;
219
220	scan_features(node, pa_ftrs, tablelen,
221		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
222}
223
224#ifdef CONFIG_PPC_STD_MMU_64
225static void __init check_cpu_slb_size(unsigned long node)
226{
227	const __be32 *slb_size_ptr;
228
229	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
230	if (slb_size_ptr != NULL) {
231		mmu_slb_size = be32_to_cpup(slb_size_ptr);
232		return;
233	}
234	slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
235	if (slb_size_ptr != NULL) {
236		mmu_slb_size = be32_to_cpup(slb_size_ptr);
237	}
238}
239#else
240#define check_cpu_slb_size(node) do { } while(0)
241#endif
242
243static struct feature_property {
244	const char *name;
245	u32 min_value;
246	unsigned long cpu_feature;
247	unsigned long cpu_user_ftr;
248} feature_properties[] __initdata = {
249#ifdef CONFIG_ALTIVEC
250	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
251	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
252#endif /* CONFIG_ALTIVEC */
253#ifdef CONFIG_VSX
254	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
255	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
256#endif /* CONFIG_VSX */
257#ifdef CONFIG_PPC64
258	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
259	{"ibm,purr", 1, CPU_FTR_PURR, 0},
260	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
261#endif /* CONFIG_PPC64 */
262};
263
264#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
265static inline void identical_pvr_fixup(unsigned long node)
266{
267	unsigned int pvr;
268	const char *model = of_get_flat_dt_prop(node, "model", NULL);
269
270	/*
271	 * Since 440GR(x)/440EP(x) processors have the same pvr,
272	 * we check the node path and set bit 28 in the cur_cpu_spec
273	 * pvr for EP(x) processor version. This bit is always 0 in
274	 * the "real" pvr. Then we call identify_cpu again with
275	 * the new logical pvr to enable FPU support.
276	 */
277	if (model && strstr(model, "440EP")) {
278		pvr = cur_cpu_spec->pvr_value | 0x8;
279		identify_cpu(0, pvr);
280		DBG("Using logical pvr %x for %s\n", pvr, model);
281	}
282}
283#else
284#define identical_pvr_fixup(node) do { } while(0)
285#endif
286
287static void __init check_cpu_feature_properties(unsigned long node)
288{
289	unsigned long i;
290	struct feature_property *fp = feature_properties;
291	const __be32 *prop;
292
293	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
294		prop = of_get_flat_dt_prop(node, fp->name, NULL);
295		if (prop && be32_to_cpup(prop) >= fp->min_value) {
296			cur_cpu_spec->cpu_features |= fp->cpu_feature;
297			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
298		}
299	}
300}
301
302static int __init early_init_dt_scan_cpus(unsigned long node,
303					  const char *uname, int depth,
304					  void *data)
305{
306	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
307	const __be32 *prop;
308	const __be32 *intserv;
309	int i, nthreads;
310	int len;
311	int found = -1;
312	int found_thread = 0;
313
314	/* We are scanning "cpu" nodes only */
315	if (type == NULL || strcmp(type, "cpu") != 0)
316		return 0;
317
318	/* Get physical cpuid */
319	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
320	if (!intserv)
321		intserv = of_get_flat_dt_prop(node, "reg", &len);
322
323	nthreads = len / sizeof(int);
324
325	/*
326	 * Now see if any of these threads match our boot cpu.
327	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
328	 */
329	for (i = 0; i < nthreads; i++) {
330		/*
331		 * version 2 of the kexec param format adds the phys cpuid of
332		 * booted proc.
333		 */
334		if (fdt_version(initial_boot_params) >= 2) {
335			if (be32_to_cpu(intserv[i]) ==
336			    fdt_boot_cpuid_phys(initial_boot_params)) {
337				found = boot_cpu_count;
338				found_thread = i;
339			}
340		} else {
341			/*
342			 * Check if it's the boot-cpu, set it's hw index now,
343			 * unfortunately this format did not support booting
344			 * off secondary threads.
345			 */
346			if (of_get_flat_dt_prop(node,
347					"linux,boot-cpu", NULL) != NULL)
348				found = boot_cpu_count;
349		}
350#ifdef CONFIG_SMP
351		/* logical cpu id is always 0 on UP kernels */
352		boot_cpu_count++;
353#endif
354	}
355
356	/* Not the boot CPU */
357	if (found < 0)
358		return 0;
359
360	DBG("boot cpu: logical %d physical %d\n", found,
361	    be32_to_cpu(intserv[found_thread]));
362	boot_cpuid = found;
363	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
364
365	/*
366	 * PAPR defines "logical" PVR values for cpus that
367	 * meet various levels of the architecture:
368	 * 0x0f000001	Architecture version 2.04
369	 * 0x0f000002	Architecture version 2.05
370	 * If the cpu-version property in the cpu node contains
371	 * such a value, we call identify_cpu again with the
372	 * logical PVR value in order to use the cpu feature
373	 * bits appropriate for the architecture level.
374	 *
375	 * A POWER6 partition in "POWER6 architected" mode
376	 * uses the 0x0f000002 PVR value; in POWER5+ mode
377	 * it uses 0x0f000001.
378	 */
379	prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
380	if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
381		identify_cpu(0, be32_to_cpup(prop));
382
383	identical_pvr_fixup(node);
384
385	check_cpu_feature_properties(node);
386	check_cpu_pa_features(node);
387	check_cpu_slb_size(node);
388
389#ifdef CONFIG_PPC64
390	if (nthreads > 1)
391		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
392	else
393		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
394#endif
395	return 0;
396}
397
398static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
399						const char *uname,
400						int depth, void *data)
401{
402	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
403
404	/* Use common scan routine to determine if this is the chosen node */
405	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
406		return 0;
407
408#ifdef CONFIG_PPC64
409	/* check if iommu is forced on or off */
410	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
411		iommu_is_off = 1;
412	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
413		iommu_force_on = 1;
414#endif
415
416	/* mem=x on the command line is the preferred mechanism */
417	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
418	if (lprop)
419		memory_limit = *lprop;
420
421#ifdef CONFIG_PPC64
422	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
423	if (lprop)
424		tce_alloc_start = *lprop;
425	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
426	if (lprop)
427		tce_alloc_end = *lprop;
428#endif
429
430#ifdef CONFIG_KEXEC
431	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
432	if (lprop)
433		crashk_res.start = *lprop;
434
435	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
436	if (lprop)
437		crashk_res.end = crashk_res.start + *lprop - 1;
438#endif
439
440	/* break now */
441	return 1;
442}
443
444#ifdef CONFIG_PPC_PSERIES
445/*
446 * Interpret the ibm,dynamic-memory property in the
447 * /ibm,dynamic-reconfiguration-memory node.
448 * This contains a list of memory blocks along with NUMA affinity
449 * information.
450 */
451static int __init early_init_dt_scan_drconf_memory(unsigned long node)
452{
453	const __be32 *dm, *ls, *usm;
454	int l;
455	unsigned long n, flags;
456	u64 base, size, memblock_size;
457	unsigned int is_kexec_kdump = 0, rngs;
458
459	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
460	if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
461		return 0;
462	memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
463
464	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
465	if (dm == NULL || l < sizeof(__be32))
466		return 0;
467
468	n = of_read_number(dm++, 1);	/* number of entries */
469	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
470		return 0;
471
472	/* check if this is a kexec/kdump kernel. */
473	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
474						 &l);
475	if (usm != NULL)
476		is_kexec_kdump = 1;
477
478	for (; n != 0; --n) {
479		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
480		flags = of_read_number(&dm[3], 1);
481		/* skip DRC index, pad, assoc. list index, flags */
482		dm += 4;
483		/* skip this block if the reserved bit is set in flags (0x80)
484		   or if the block is not assigned to this partition (0x8) */
485		if ((flags & 0x80) || !(flags & 0x8))
486			continue;
487		size = memblock_size;
488		rngs = 1;
489		if (is_kexec_kdump) {
490			/*
491			 * For each memblock in ibm,dynamic-memory, a corresponding
492			 * entry in linux,drconf-usable-memory property contains
493			 * a counter 'p' followed by 'p' (base, size) duple.
494			 * Now read the counter from
495			 * linux,drconf-usable-memory property
496			 */
497			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
498			if (!rngs) /* there are no (base, size) duple */
499				continue;
500		}
501		do {
502			if (is_kexec_kdump) {
503				base = dt_mem_next_cell(dt_root_addr_cells,
504							 &usm);
505				size = dt_mem_next_cell(dt_root_size_cells,
506							 &usm);
507			}
508			if (iommu_is_off) {
509				if (base >= 0x80000000ul)
510					continue;
511				if ((base + size) > 0x80000000ul)
512					size = 0x80000000ul - base;
513			}
514			memblock_add(base, size);
515		} while (--rngs);
516	}
517	memblock_dump_all();
518	return 0;
519}
520#else
521#define early_init_dt_scan_drconf_memory(node)	0
522#endif /* CONFIG_PPC_PSERIES */
523
524static int __init early_init_dt_scan_memory_ppc(unsigned long node,
525						const char *uname,
526						int depth, void *data)
527{
528	if (depth == 1 &&
529	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
530		return early_init_dt_scan_drconf_memory(node);
531
532	return early_init_dt_scan_memory(node, uname, depth, data);
533}
534
535/*
536 * For a relocatable kernel, we need to get the memstart_addr first,
537 * then use it to calculate the virtual kernel start address. This has
538 * to happen at a very early stage (before machine_init). In this case,
539 * we just want to get the memstart_address and would not like to mess the
540 * memblock at this stage. So introduce a variable to skip the memblock_add()
541 * for this reason.
542 */
543#ifdef CONFIG_RELOCATABLE
544static int add_mem_to_memblock = 1;
545#else
546#define add_mem_to_memblock 1
547#endif
548
549void __init early_init_dt_add_memory_arch(u64 base, u64 size)
550{
551#ifdef CONFIG_PPC64
552	if (iommu_is_off) {
553		if (base >= 0x80000000ul)
554			return;
555		if ((base + size) > 0x80000000ul)
556			size = 0x80000000ul - base;
557	}
558#endif
559	/* Keep track of the beginning of memory -and- the size of
560	 * the very first block in the device-tree as it represents
561	 * the RMA on ppc64 server
562	 */
563	if (base < memstart_addr) {
564		memstart_addr = base;
565		first_memblock_size = size;
566	}
567
568	/* Add the chunk to the MEMBLOCK list */
569	if (add_mem_to_memblock)
570		memblock_add(base, size);
571}
572
573static void __init early_reserve_mem_dt(void)
574{
575	unsigned long i, dt_root;
576	int len;
577	const __be32 *prop;
578
579	early_init_fdt_scan_reserved_mem();
580
581	dt_root = of_get_flat_dt_root();
582
583	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
584
585	if (!prop)
586		return;
587
588	DBG("Found new-style reserved-ranges\n");
589
590	/* Each reserved range is an (address,size) pair, 2 cells each,
591	 * totalling 4 cells per range. */
592	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
593		u64 base, size;
594
595		base = of_read_number(prop + (i * 4) + 0, 2);
596		size = of_read_number(prop + (i * 4) + 2, 2);
597
598		if (size) {
599			DBG("reserving: %llx -> %llx\n", base, size);
600			memblock_reserve(base, size);
601		}
602	}
603}
604
605static void __init early_reserve_mem(void)
606{
607	__be64 *reserve_map;
608
609	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
610			fdt_off_mem_rsvmap(initial_boot_params));
611
612	/* Look for the new "reserved-regions" property in the DT */
613	early_reserve_mem_dt();
614
615#ifdef CONFIG_BLK_DEV_INITRD
616	/* Then reserve the initrd, if any */
617	if (initrd_start && (initrd_end > initrd_start)) {
618		memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
619			_ALIGN_UP(initrd_end, PAGE_SIZE) -
620			_ALIGN_DOWN(initrd_start, PAGE_SIZE));
621	}
622#endif /* CONFIG_BLK_DEV_INITRD */
623
624#ifdef CONFIG_PPC32
625	/*
626	 * Handle the case where we might be booting from an old kexec
627	 * image that setup the mem_rsvmap as pairs of 32-bit values
628	 */
629	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
630		u32 base_32, size_32;
631		__be32 *reserve_map_32 = (__be32 *)reserve_map;
632
633		DBG("Found old 32-bit reserve map\n");
634
635		while (1) {
636			base_32 = be32_to_cpup(reserve_map_32++);
637			size_32 = be32_to_cpup(reserve_map_32++);
638			if (size_32 == 0)
639				break;
640			DBG("reserving: %x -> %x\n", base_32, size_32);
641			memblock_reserve(base_32, size_32);
642		}
643		return;
644	}
645#endif
646}
647
648void __init early_init_devtree(void *params)
649{
650	phys_addr_t limit;
651
652	DBG(" -> early_init_devtree(%p)\n", params);
653
654	/* Too early to BUG_ON(), do it by hand */
655	if (!early_init_dt_verify(params))
656		panic("BUG: Failed verifying flat device tree, bad version?");
657
658#ifdef CONFIG_PPC_RTAS
659	/* Some machines might need RTAS info for debugging, grab it now. */
660	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
661#endif
662
663#ifdef CONFIG_PPC_POWERNV
664	/* Some machines might need OPAL info for debugging, grab it now. */
665	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
666#endif
667
668#ifdef CONFIG_FA_DUMP
669	/* scan tree to see if dump is active during last boot */
670	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
671#endif
672
673	/* Retrieve various informations from the /chosen node of the
674	 * device-tree, including the platform type, initrd location and
675	 * size, TCE reserve, and more ...
676	 */
677	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
678
679	/* Scan memory nodes and rebuild MEMBLOCKs */
680	of_scan_flat_dt(early_init_dt_scan_root, NULL);
681	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
682
683	parse_early_param();
684
685	/* make sure we've parsed cmdline for mem= before this */
686	if (memory_limit)
687		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
688	setup_initial_memory_limit(memstart_addr, first_memblock_size);
689	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
690	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
691	/* If relocatable, reserve first 32k for interrupt vectors etc. */
692	if (PHYSICAL_START > MEMORY_START)
693		memblock_reserve(MEMORY_START, 0x8000);
694	reserve_kdump_trampoline();
695#ifdef CONFIG_FA_DUMP
696	/*
697	 * If we fail to reserve memory for firmware-assisted dump then
698	 * fallback to kexec based kdump.
699	 */
700	if (fadump_reserve_mem() == 0)
701#endif
702		reserve_crashkernel();
703	early_reserve_mem();
704
705	/* Ensure that total memory size is page-aligned. */
706	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
707	memblock_enforce_memory_limit(limit);
708
709	memblock_allow_resize();
710	memblock_dump_all();
711
712	DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
713
714	/* We may need to relocate the flat tree, do it now.
715	 * FIXME .. and the initrd too? */
716	move_device_tree();
717
718	allocate_pacas();
719
720	DBG("Scanning CPUs ...\n");
721
722	/* Retrieve CPU related informations from the flat tree
723	 * (altivec support, boot CPU ID, ...)
724	 */
725	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
726	if (boot_cpuid < 0) {
727		printk("Failed to identify boot CPU !\n");
728		BUG();
729	}
730
731#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
732	/* We'll later wait for secondaries to check in; there are
733	 * NCPUS-1 non-boot CPUs  :-)
734	 */
735	spinning_secondaries = boot_cpu_count - 1;
736#endif
737
738#ifdef CONFIG_PPC_POWERNV
739	/* Scan and build the list of machine check recoverable ranges */
740	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
741#endif
742
743	DBG(" <- early_init_devtree()\n");
744}
745
746#ifdef CONFIG_RELOCATABLE
747/*
748 * This function run before early_init_devtree, so we have to init
749 * initial_boot_params.
750 */
751void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
752{
753	/* Setup flat device-tree pointer */
754	initial_boot_params = params;
755
756	/*
757	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
758	 * mess the memblock.
759	 */
760	add_mem_to_memblock = 0;
761	of_scan_flat_dt(early_init_dt_scan_root, NULL);
762	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
763	add_mem_to_memblock = 1;
764
765	if (size)
766		*size = first_memblock_size;
767}
768#endif
769
770/*******
771 *
772 * New implementation of the OF "find" APIs, return a refcounted
773 * object, call of_node_put() when done.  The device tree and list
774 * are protected by a rw_lock.
775 *
776 * Note that property management will need some locking as well,
777 * this isn't dealt with yet.
778 *
779 *******/
780
781/**
782 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
783 * @np: device node of the device
784 *
785 * This looks for a property "ibm,chip-id" in the node or any
786 * of its parents and returns its content, or -1 if it cannot
787 * be found.
788 */
789int of_get_ibm_chip_id(struct device_node *np)
790{
791	of_node_get(np);
792	while(np) {
793		struct device_node *old = np;
794		const __be32 *prop;
795
796		prop = of_get_property(np, "ibm,chip-id", NULL);
797		if (prop) {
798			of_node_put(np);
799			return be32_to_cpup(prop);
800		}
801		np = of_get_parent(np);
802		of_node_put(old);
803	}
804	return -1;
805}
806
807/**
808 * cpu_to_chip_id - Return the cpus chip-id
809 * @cpu: The logical cpu number.
810 *
811 * Return the value of the ibm,chip-id property corresponding to the given
812 * logical cpu number. If the chip-id can not be found, returns -1.
813 */
814int cpu_to_chip_id(int cpu)
815{
816	struct device_node *np;
817
818	np = of_get_cpu_node(cpu, NULL);
819	if (!np)
820		return -1;
821
822	of_node_put(np);
823	return of_get_ibm_chip_id(np);
824}
825EXPORT_SYMBOL(cpu_to_chip_id);
826
827bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
828{
829	return (int)phys_id == get_hard_smp_processor_id(cpu);
830}
831