1#ifndef _PARISC_PGTABLE_H
2#define _PARISC_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6#include <asm/fixmap.h>
7
8#ifndef __ASSEMBLY__
9/*
10 * we simulate an x86-style page table for the linux mm code
11 */
12
13#include <linux/bitops.h>
14#include <linux/spinlock.h>
15#include <linux/mm_types.h>
16#include <asm/processor.h>
17#include <asm/cache.h>
18
19extern spinlock_t pa_tlb_lock;
20
21/*
22 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
23 * memory.  For the return value to be meaningful, ADDR must be >=
24 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
25 * require a hash-, or multi-level tree-lookup or something of that
26 * sort) but it guarantees to return TRUE only if accessing the page
27 * at that address does not cause an error.  Note that there may be
28 * addresses for which kern_addr_valid() returns FALSE even though an
29 * access would not cause an error (e.g., this is typically true for
30 * memory mapped I/O regions.
31 *
32 * XXX Need to implement this for parisc.
33 */
34#define kern_addr_valid(addr)	(1)
35
36/* Purge data and instruction TLB entries.  Must be called holding
37 * the pa_tlb_lock.  The TLB purge instructions are slow on SMP
38 * machines since the purge must be broadcast to all CPUs.
39 */
40
41static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
42{
43	mtsp(mm->context, 1);
44	pdtlb(addr);
45	if (unlikely(split_tlb))
46		pitlb(addr);
47}
48
49/* Certain architectures need to do special things when PTEs
50 * within a page table are directly modified.  Thus, the following
51 * hook is made available.
52 */
53#define set_pte(pteptr, pteval)                                 \
54        do{                                                     \
55                *(pteptr) = (pteval);                           \
56        } while(0)
57
58#define pte_inserted(x)						\
59	((pte_val(x) & (_PAGE_PRESENT|_PAGE_ACCESSED))		\
60	 == (_PAGE_PRESENT|_PAGE_ACCESSED))
61
62#define set_pte_at(mm, addr, ptep, pteval)			\
63	do {							\
64		pte_t old_pte;					\
65		unsigned long flags;				\
66		spin_lock_irqsave(&pa_tlb_lock, flags);		\
67		old_pte = *ptep;				\
68		set_pte(ptep, pteval);				\
69		if (pte_inserted(old_pte))			\
70			purge_tlb_entries(mm, addr);		\
71		spin_unlock_irqrestore(&pa_tlb_lock, flags);	\
72	} while (0)
73
74#endif /* !__ASSEMBLY__ */
75
76#include <asm/page.h>
77
78#define pte_ERROR(e) \
79	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
80#define pmd_ERROR(e) \
81	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
82#define pgd_ERROR(e) \
83	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
84
85/* This is the size of the initially mapped kernel memory */
86#define KERNEL_INITIAL_ORDER	24	/* 0 to 1<<24 = 16MB */
87#define KERNEL_INITIAL_SIZE	(1 << KERNEL_INITIAL_ORDER)
88
89#if CONFIG_PGTABLE_LEVELS == 3
90#define PGD_ORDER	1 /* Number of pages per pgd */
91#define PMD_ORDER	1 /* Number of pages per pmd */
92#define PGD_ALLOC_ORDER	2 /* first pgd contains pmd */
93#else
94#define PGD_ORDER	1 /* Number of pages per pgd */
95#define PGD_ALLOC_ORDER	PGD_ORDER
96#endif
97
98/* Definitions for 3rd level (we use PLD here for Page Lower directory
99 * because PTE_SHIFT is used lower down to mean shift that has to be
100 * done to get usable bits out of the PTE) */
101#define PLD_SHIFT	PAGE_SHIFT
102#define PLD_SIZE	PAGE_SIZE
103#define BITS_PER_PTE	(PAGE_SHIFT - BITS_PER_PTE_ENTRY)
104#define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
105
106/* Definitions for 2nd level */
107#define pgtable_cache_init()	do { } while (0)
108
109#define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
110#define PMD_SIZE	(1UL << PMD_SHIFT)
111#define PMD_MASK	(~(PMD_SIZE-1))
112#if CONFIG_PGTABLE_LEVELS == 3
113#define BITS_PER_PMD	(PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
114#else
115#define __PAGETABLE_PMD_FOLDED
116#define BITS_PER_PMD	0
117#endif
118#define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
119
120/* Definitions for 1st level */
121#define PGDIR_SHIFT	(PMD_SHIFT + BITS_PER_PMD)
122#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
123#define BITS_PER_PGD	(BITS_PER_LONG - PGDIR_SHIFT)
124#else
125#define BITS_PER_PGD	(PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
126#endif
127#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
128#define PGDIR_MASK	(~(PGDIR_SIZE-1))
129#define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
130#define USER_PTRS_PER_PGD       PTRS_PER_PGD
131
132#ifdef CONFIG_64BIT
133#define MAX_ADDRBITS	(PGDIR_SHIFT + BITS_PER_PGD)
134#define MAX_ADDRESS	(1UL << MAX_ADDRBITS)
135#define SPACEID_SHIFT	(MAX_ADDRBITS - 32)
136#else
137#define MAX_ADDRBITS	(BITS_PER_LONG)
138#define MAX_ADDRESS	(1UL << MAX_ADDRBITS)
139#define SPACEID_SHIFT	0
140#endif
141
142/* This calculates the number of initial pages we need for the initial
143 * page tables */
144#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
145# define PT_INITIAL	(1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
146#else
147# define PT_INITIAL	(1)  /* all initial PTEs fit into one page */
148#endif
149
150/*
151 * pgd entries used up by user/kernel:
152 */
153
154#define FIRST_USER_ADDRESS	0UL
155
156/* NB: The tlb miss handlers make certain assumptions about the order */
157/*     of the following bits, so be careful (One example, bits 25-31  */
158/*     are moved together in one instruction).                        */
159
160#define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
161#define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
162#define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
163#define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
164#define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
165#define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
166#define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
167#define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
168#define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
169#define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
170/* bit 21 was formerly the FLUSH bit but is now unused */
171#define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
172
173/* N.B. The bits are defined in terms of a 32 bit word above, so the */
174/*      following macro is ok for both 32 and 64 bit.                */
175
176#define xlate_pabit(x) (31 - x)
177
178/* this defines the shift to the usable bits in the PTE it is set so
179 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
180 * to zero */
181#define PTE_SHIFT	   	xlate_pabit(_PAGE_USER_BIT)
182
183/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
184#define PFN_PTE_SHIFT		12
185
186#define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
187#define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
188#define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
189#define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
190#define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
191#define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
192#define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
193#define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
194#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
195#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
196#define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
197#define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
198
199#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_ACCESSED)
200#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
201#define _PAGE_KERNEL_RO	(_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
202#define _PAGE_KERNEL_EXEC	(_PAGE_KERNEL_RO | _PAGE_EXEC)
203#define _PAGE_KERNEL_RWX	(_PAGE_KERNEL_EXEC | _PAGE_WRITE)
204#define _PAGE_KERNEL		(_PAGE_KERNEL_RO | _PAGE_WRITE)
205
206/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
207 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
208 * for a few meta-information bits, so we shift the address to be
209 * able to effectively address 40/42/44-bits of physical address space
210 * depending on 4k/16k/64k PAGE_SIZE */
211#define _PxD_PRESENT_BIT   31
212#define _PxD_ATTACHED_BIT  30
213#define _PxD_VALID_BIT     29
214
215#define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
216#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
217#define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
218#define PxD_FLAG_MASK     (0xf)
219#define PxD_FLAG_SHIFT    (4)
220#define PxD_VALUE_SHIFT   (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
221
222#ifndef __ASSEMBLY__
223
224#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
225#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
226/* Others seem to make this executable, I don't know if that's correct
227   or not.  The stack is mapped this way though so this is necessary
228   in the short term - dhd@linuxcare.com, 2000-08-08 */
229#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
230#define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
231#define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
232#define PAGE_COPY       PAGE_EXECREAD
233#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
234#define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
235#define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL_EXEC)
236#define PAGE_KERNEL_RWX	__pgprot(_PAGE_KERNEL_RWX)
237#define PAGE_KERNEL_RO	__pgprot(_PAGE_KERNEL_RO)
238#define PAGE_KERNEL_UNC	__pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
239#define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
240
241
242/*
243 * We could have an execute only page using "gateway - promote to priv
244 * level 3", but that is kind of silly. So, the way things are defined
245 * now, we must always have read permission for pages with execute
246 * permission. For the fun of it we'll go ahead and support write only
247 * pages.
248 */
249
250	 /*xwr*/
251#define __P000  PAGE_NONE
252#define __P001  PAGE_READONLY
253#define __P010  __P000 /* copy on write */
254#define __P011  __P001 /* copy on write */
255#define __P100  PAGE_EXECREAD
256#define __P101  PAGE_EXECREAD
257#define __P110  __P100 /* copy on write */
258#define __P111  __P101 /* copy on write */
259
260#define __S000  PAGE_NONE
261#define __S001  PAGE_READONLY
262#define __S010  PAGE_WRITEONLY
263#define __S011  PAGE_SHARED
264#define __S100  PAGE_EXECREAD
265#define __S101  PAGE_EXECREAD
266#define __S110  PAGE_RWX
267#define __S111  PAGE_RWX
268
269
270extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
271
272/* initial page tables for 0-8MB for kernel */
273
274extern pte_t pg0[];
275
276/* zero page used for uninitialized stuff */
277
278extern unsigned long *empty_zero_page;
279
280/*
281 * ZERO_PAGE is a global shared page that is always zero: used
282 * for zero-mapped memory areas etc..
283 */
284
285#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
286
287#define pte_none(x)     (pte_val(x) == 0)
288#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
289#define pte_clear(mm, addr, xp)  set_pte_at(mm, addr, xp, __pte(0))
290
291#define pmd_flag(x)	(pmd_val(x) & PxD_FLAG_MASK)
292#define pmd_address(x)	((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
293#define pgd_flag(x)	(pgd_val(x) & PxD_FLAG_MASK)
294#define pgd_address(x)	((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
295
296#if CONFIG_PGTABLE_LEVELS == 3
297/* The first entry of the permanent pmd is not there if it contains
298 * the gateway marker */
299#define pmd_none(x)	(!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
300#else
301#define pmd_none(x)	(!pmd_val(x))
302#endif
303#define pmd_bad(x)	(!(pmd_flag(x) & PxD_FLAG_VALID))
304#define pmd_present(x)	(pmd_flag(x) & PxD_FLAG_PRESENT)
305static inline void pmd_clear(pmd_t *pmd) {
306#if CONFIG_PGTABLE_LEVELS == 3
307	if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
308		/* This is the entry pointing to the permanent pmd
309		 * attached to the pgd; cannot clear it */
310		__pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
311	else
312#endif
313		__pmd_val_set(*pmd,  0);
314}
315
316
317
318#if CONFIG_PGTABLE_LEVELS == 3
319#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
320#define pgd_page(pgd)	virt_to_page((void *)pgd_page_vaddr(pgd))
321
322/* For 64 bit we have three level tables */
323
324#define pgd_none(x)     (!pgd_val(x))
325#define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID))
326#define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT)
327static inline void pgd_clear(pgd_t *pgd) {
328#if CONFIG_PGTABLE_LEVELS == 3
329	if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
330		/* This is the permanent pmd attached to the pgd; cannot
331		 * free it */
332		return;
333#endif
334	__pgd_val_set(*pgd, 0);
335}
336#else
337/*
338 * The "pgd_xxx()" functions here are trivial for a folded two-level
339 * setup: the pgd is never bad, and a pmd always exists (as it's folded
340 * into the pgd entry)
341 */
342static inline int pgd_none(pgd_t pgd)		{ return 0; }
343static inline int pgd_bad(pgd_t pgd)		{ return 0; }
344static inline int pgd_present(pgd_t pgd)	{ return 1; }
345static inline void pgd_clear(pgd_t * pgdp)	{ }
346#endif
347
348/*
349 * The following only work if pte_present() is true.
350 * Undefined behaviour if not..
351 */
352static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
353static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
354static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_WRITE; }
355static inline int pte_special(pte_t pte)	{ return 0; }
356
357static inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
358static inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
359static inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_WRITE; return pte; }
360static inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
361static inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
362static inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_WRITE; return pte; }
363static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
364
365/*
366 * Conversion functions: convert a page and protection to a page entry,
367 * and a page entry and page directory to the page they refer to.
368 */
369#define __mk_pte(addr,pgprot) \
370({									\
371	pte_t __pte;							\
372									\
373	pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));	\
374									\
375	__pte;								\
376})
377
378#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
379
380static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
381{
382	pte_t pte;
383	pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
384	return pte;
385}
386
387static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
388{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
389
390/* Permanent address of a page.  On parisc we don't have highmem. */
391
392#define pte_pfn(x)		(pte_val(x) >> PFN_PTE_SHIFT)
393
394#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
395
396#define pmd_page_vaddr(pmd)	((unsigned long) __va(pmd_address(pmd)))
397
398#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
399#define pmd_page(pmd)	virt_to_page((void *)__pmd_page(pmd))
400
401#define pgd_index(address) ((address) >> PGDIR_SHIFT)
402
403/* to find an entry in a page-table-directory */
404#define pgd_offset(mm, address) \
405((mm)->pgd + ((address) >> PGDIR_SHIFT))
406
407/* to find an entry in a kernel page-table-directory */
408#define pgd_offset_k(address) pgd_offset(&init_mm, address)
409
410/* Find an entry in the second-level page table.. */
411
412#if CONFIG_PGTABLE_LEVELS == 3
413#define pmd_offset(dir,address) \
414((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
415#else
416#define pmd_offset(dir,addr) ((pmd_t *) dir)
417#endif
418
419/* Find an entry in the third-level page table.. */
420#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
421#define pte_offset_kernel(pmd, address) \
422	((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
423#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
424#define pte_unmap(pte) do { } while (0)
425
426#define pte_unmap(pte)			do { } while (0)
427#define pte_unmap_nested(pte)		do { } while (0)
428
429extern void paging_init (void);
430
431/* Used for deferring calls to flush_dcache_page() */
432
433#define PG_dcache_dirty         PG_arch_1
434
435extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
436
437/* Encode and de-code a swap entry */
438
439#define __swp_type(x)                     ((x).val & 0x1f)
440#define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
441					  (((x).val >> 8) & ~0x7) )
442#define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
443					    ((offset &  0x7) << 6) | \
444					    ((offset & ~0x7) << 8) })
445#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
446#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
447
448static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
449{
450	pte_t pte;
451	unsigned long flags;
452
453	if (!pte_young(*ptep))
454		return 0;
455
456	spin_lock_irqsave(&pa_tlb_lock, flags);
457	pte = *ptep;
458	if (!pte_young(pte)) {
459		spin_unlock_irqrestore(&pa_tlb_lock, flags);
460		return 0;
461	}
462	set_pte(ptep, pte_mkold(pte));
463	purge_tlb_entries(vma->vm_mm, addr);
464	spin_unlock_irqrestore(&pa_tlb_lock, flags);
465	return 1;
466}
467
468struct mm_struct;
469static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
470{
471	pte_t old_pte;
472	unsigned long flags;
473
474	spin_lock_irqsave(&pa_tlb_lock, flags);
475	old_pte = *ptep;
476	set_pte(ptep, __pte(0));
477	if (pte_inserted(old_pte))
478		purge_tlb_entries(mm, addr);
479	spin_unlock_irqrestore(&pa_tlb_lock, flags);
480
481	return old_pte;
482}
483
484static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
485{
486	unsigned long flags;
487	spin_lock_irqsave(&pa_tlb_lock, flags);
488	set_pte(ptep, pte_wrprotect(*ptep));
489	purge_tlb_entries(mm, addr);
490	spin_unlock_irqrestore(&pa_tlb_lock, flags);
491}
492
493#define pte_same(A,B)	(pte_val(A) == pte_val(B))
494
495#endif /* !__ASSEMBLY__ */
496
497
498/* TLB page size encoding - see table 3-1 in parisc20.pdf */
499#define _PAGE_SIZE_ENCODING_4K		0
500#define _PAGE_SIZE_ENCODING_16K		1
501#define _PAGE_SIZE_ENCODING_64K		2
502#define _PAGE_SIZE_ENCODING_256K	3
503#define _PAGE_SIZE_ENCODING_1M		4
504#define _PAGE_SIZE_ENCODING_4M		5
505#define _PAGE_SIZE_ENCODING_16M		6
506#define _PAGE_SIZE_ENCODING_64M		7
507
508#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
509# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
510#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
511# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
512#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
513# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
514#endif
515
516
517#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
518
519/* We provide our own get_unmapped_area to provide cache coherency */
520
521#define HAVE_ARCH_UNMAPPED_AREA
522#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
523
524#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
525#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
526#define __HAVE_ARCH_PTEP_SET_WRPROTECT
527#define __HAVE_ARCH_PTE_SAME
528#include <asm-generic/pgtable.h>
529
530#endif /* _PARISC_PGTABLE_H */
531