1/*
2 * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3 * reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the NetLogic
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in
19 *    the documentation and/or other materials provided with the
20 *    distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <linux/types.h>
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/delay.h>
39
40#include <asm/mipsregs.h>
41#include <asm/time.h>
42
43#include <asm/netlogic/common.h>
44#include <asm/netlogic/haldefs.h>
45#include <asm/netlogic/xlp-hal/iomap.h>
46#include <asm/netlogic/xlp-hal/xlp.h>
47#include <asm/netlogic/xlp-hal/bridge.h>
48#include <asm/netlogic/xlp-hal/pic.h>
49#include <asm/netlogic/xlp-hal/sys.h>
50
51/* Main initialization */
52void nlm_node_init(int node)
53{
54	struct nlm_soc_info *nodep;
55
56	nodep = nlm_get_node(node);
57	if (node == 0)
58		nodep->coremask = 1;	/* node 0, boot cpu */
59	nodep->sysbase = nlm_get_sys_regbase(node);
60	nodep->picbase = nlm_get_pic_regbase(node);
61	nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
62	if (cpu_is_xlp9xx())
63		nodep->socbus = xlp9xx_get_socbus(node);
64	else
65		nodep->socbus = 0;
66	spin_lock_init(&nodep->piclock);
67}
68
69static int xlp9xx_irq_to_irt(int irq)
70{
71	switch (irq) {
72	case PIC_GPIO_IRQ:
73		return 12;
74	case PIC_I2C_0_IRQ:
75		return 125;
76	case PIC_I2C_1_IRQ:
77		return 126;
78	case PIC_I2C_2_IRQ:
79		return 127;
80	case PIC_I2C_3_IRQ:
81		return 128;
82	case PIC_9XX_XHCI_0_IRQ:
83		return 114;
84	case PIC_9XX_XHCI_1_IRQ:
85		return 115;
86	case PIC_9XX_XHCI_2_IRQ:
87		return 116;
88	case PIC_UART_0_IRQ:
89		return 133;
90	case PIC_UART_1_IRQ:
91		return 134;
92	case PIC_SATA_IRQ:
93		return 143;
94	case PIC_SPI_IRQ:
95		return 152;
96	case PIC_MMC_IRQ:
97		return 153;
98	case PIC_PCIE_LINK_LEGACY_IRQ(0):
99	case PIC_PCIE_LINK_LEGACY_IRQ(1):
100	case PIC_PCIE_LINK_LEGACY_IRQ(2):
101	case PIC_PCIE_LINK_LEGACY_IRQ(3):
102		return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
103	}
104	return -1;
105}
106
107static int xlp_irq_to_irt(int irq)
108{
109	uint64_t pcibase;
110	int devoff, irt;
111
112	devoff = 0;
113	switch (irq) {
114	case PIC_UART_0_IRQ:
115		devoff = XLP_IO_UART0_OFFSET(0);
116		break;
117	case PIC_UART_1_IRQ:
118		devoff = XLP_IO_UART1_OFFSET(0);
119		break;
120	case PIC_MMC_IRQ:
121		devoff = XLP_IO_MMC_OFFSET(0);
122		break;
123	case PIC_I2C_0_IRQ:	/* I2C will be fixed up */
124	case PIC_I2C_1_IRQ:
125	case PIC_I2C_2_IRQ:
126	case PIC_I2C_3_IRQ:
127		if (cpu_is_xlpii())
128			devoff = XLP2XX_IO_I2C_OFFSET(0);
129		else
130			devoff = XLP_IO_I2C0_OFFSET(0);
131		break;
132	case PIC_SATA_IRQ:
133		devoff = XLP_IO_SATA_OFFSET(0);
134		break;
135	case PIC_GPIO_IRQ:
136		devoff = XLP_IO_GPIO_OFFSET(0);
137		break;
138	case PIC_NAND_IRQ:
139		devoff = XLP_IO_NAND_OFFSET(0);
140		break;
141	case PIC_SPI_IRQ:
142		devoff = XLP_IO_SPI_OFFSET(0);
143		break;
144	default:
145		if (cpu_is_xlpii()) {
146			switch (irq) {
147				/* XLP2XX has three XHCI USB controller */
148			case PIC_2XX_XHCI_0_IRQ:
149				devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
150				break;
151			case PIC_2XX_XHCI_1_IRQ:
152				devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
153				break;
154			case PIC_2XX_XHCI_2_IRQ:
155				devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
156				break;
157			}
158		} else {
159			switch (irq) {
160			case PIC_EHCI_0_IRQ:
161				devoff = XLP_IO_USB_EHCI0_OFFSET(0);
162				break;
163			case PIC_EHCI_1_IRQ:
164				devoff = XLP_IO_USB_EHCI1_OFFSET(0);
165				break;
166			case PIC_OHCI_0_IRQ:
167				devoff = XLP_IO_USB_OHCI0_OFFSET(0);
168				break;
169			case PIC_OHCI_1_IRQ:
170				devoff = XLP_IO_USB_OHCI1_OFFSET(0);
171				break;
172			case PIC_OHCI_2_IRQ:
173				devoff = XLP_IO_USB_OHCI2_OFFSET(0);
174				break;
175			case PIC_OHCI_3_IRQ:
176				devoff = XLP_IO_USB_OHCI3_OFFSET(0);
177				break;
178			}
179		}
180	}
181
182	if (devoff != 0) {
183		uint32_t val;
184
185		pcibase = nlm_pcicfg_base(devoff);
186		val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
187		if (val == 0xffffffff) {
188			irt = -1;
189		} else {
190			irt = val & 0xffff;
191			/* HW weirdness, I2C IRT entry has to be fixed up */
192			switch (irq) {
193			case PIC_I2C_1_IRQ:
194				irt = irt + 1; break;
195			case PIC_I2C_2_IRQ:
196				irt = irt + 2; break;
197			case PIC_I2C_3_IRQ:
198				irt = irt + 3; break;
199			}
200		}
201	} else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
202			irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
203		/* HW bug, PCI IRT entries are bad on early silicon, fix */
204		irt = PIC_IRT_PCIE_LINK_INDEX(irq -
205					PIC_PCIE_LINK_LEGACY_IRQ_BASE);
206	} else {
207		irt = -1;
208	}
209	return irt;
210}
211
212int nlm_irq_to_irt(int irq)
213{
214	/* return -2 for irqs without 1-1 mapping */
215	if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
216		return -2;
217	if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
218		return -2;
219
220	if (cpu_is_xlp9xx())
221		return xlp9xx_irq_to_irt(irq);
222	else
223		return xlp_irq_to_irt(irq);
224}
225
226static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
227{
228	unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
229	uint64_t num, sysbase, clockbase;
230
231	if (cpu_is_xlp9xx()) {
232		clockbase = nlm_get_clock_regbase(node);
233		ctrl_val0 = nlm_read_sys_reg(clockbase,
234					SYS_9XX_CPU_PLL_CTRL0(core));
235		ctrl_val1 = nlm_read_sys_reg(clockbase,
236					SYS_9XX_CPU_PLL_CTRL1(core));
237	} else {
238		sysbase = nlm_get_node(node)->sysbase;
239		ctrl_val0 = nlm_read_sys_reg(sysbase,
240						SYS_CPU_PLL_CTRL0(core));
241		ctrl_val1 = nlm_read_sys_reg(sysbase,
242						SYS_CPU_PLL_CTRL1(core));
243	}
244
245	/* Find PLL post divider value */
246	switch ((ctrl_val0 >> 24) & 0x7) {
247	case 1:
248		pll_post_div = 2;
249		break;
250	case 3:
251		pll_post_div = 4;
252		break;
253	case 7:
254		pll_post_div = 8;
255		break;
256	case 6:
257		pll_post_div = 16;
258		break;
259	case 0:
260	default:
261		pll_post_div = 1;
262		break;
263	}
264
265	num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
266	denom = 3 * pll_post_div;
267	do_div(num, denom);
268
269	return (unsigned int)num;
270}
271
272static unsigned int nlm_xlp_get_core_frequency(int node, int core)
273{
274	unsigned int pll_divf, pll_divr, dfs_div, ext_div;
275	unsigned int rstval, dfsval, denom;
276	uint64_t num, sysbase;
277
278	sysbase = nlm_get_node(node)->sysbase;
279	rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
280	dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
281	pll_divf = ((rstval >> 10) & 0x7f) + 1;
282	pll_divr = ((rstval >> 8)  & 0x3) + 1;
283	ext_div  = ((rstval >> 30) & 0x3) + 1;
284	dfs_div  = ((dfsval >> (core * 4)) & 0xf) + 1;
285
286	num = 800000000ULL * pll_divf;
287	denom = 3 * pll_divr * ext_div * dfs_div;
288	do_div(num, denom);
289
290	return (unsigned int)num;
291}
292
293unsigned int nlm_get_core_frequency(int node, int core)
294{
295	if (cpu_is_xlpii())
296		return nlm_xlp2_get_core_frequency(node, core);
297	else
298		return nlm_xlp_get_core_frequency(node, core);
299}
300
301/*
302 * Calculate PIC frequency from PLL registers.
303 * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
304 * 		((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
305 */
306static unsigned int nlm_xlp2_get_pic_frequency(int node)
307{
308	u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
309	u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
310	u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
311
312	sysbase = nlm_get_node(node)->sysbase;
313	clockbase = nlm_get_clock_regbase(node);
314	cpu_xlp9xx = cpu_is_xlp9xx();
315
316	/* Find ref_clk_base */
317	if (cpu_xlp9xx)
318		ref_clk_select = (nlm_read_sys_reg(sysbase,
319				SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
320	else
321		ref_clk_select = (nlm_read_sys_reg(sysbase,
322					SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
323	switch (ref_clk_select) {
324	case 0:
325		ref_clk = 200000000ULL;
326		ref_div = 3;
327		break;
328	case 1:
329		ref_clk = 100000000ULL;
330		ref_div = 1;
331		break;
332	case 2:
333		ref_clk = 125000000ULL;
334		ref_div = 1;
335		break;
336	case 3:
337		ref_clk = 400000000ULL;
338		ref_div = 3;
339		break;
340	}
341
342	/* Find the clock source PLL device for PIC */
343	if (cpu_xlp9xx) {
344		reg_select = nlm_read_sys_reg(clockbase,
345				SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
346		switch (reg_select) {
347		case 0:
348			ctrl_val0 = nlm_read_sys_reg(clockbase,
349					SYS_9XX_PLL_CTRL0);
350			ctrl_val2 = nlm_read_sys_reg(clockbase,
351					SYS_9XX_PLL_CTRL2);
352			break;
353		case 1:
354			ctrl_val0 = nlm_read_sys_reg(clockbase,
355					SYS_9XX_PLL_CTRL0_DEVX(0));
356			ctrl_val2 = nlm_read_sys_reg(clockbase,
357					SYS_9XX_PLL_CTRL2_DEVX(0));
358			break;
359		case 2:
360			ctrl_val0 = nlm_read_sys_reg(clockbase,
361					SYS_9XX_PLL_CTRL0_DEVX(1));
362			ctrl_val2 = nlm_read_sys_reg(clockbase,
363					SYS_9XX_PLL_CTRL2_DEVX(1));
364			break;
365		case 3:
366			ctrl_val0 = nlm_read_sys_reg(clockbase,
367					SYS_9XX_PLL_CTRL0_DEVX(2));
368			ctrl_val2 = nlm_read_sys_reg(clockbase,
369					SYS_9XX_PLL_CTRL2_DEVX(2));
370			break;
371		}
372	} else {
373		reg_select = (nlm_read_sys_reg(sysbase,
374					SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
375		switch (reg_select) {
376		case 0:
377			ctrl_val0 = nlm_read_sys_reg(sysbase,
378					SYS_PLL_CTRL0);
379			ctrl_val2 = nlm_read_sys_reg(sysbase,
380					SYS_PLL_CTRL2);
381			break;
382		case 1:
383			ctrl_val0 = nlm_read_sys_reg(sysbase,
384					SYS_PLL_CTRL0_DEVX(0));
385			ctrl_val2 = nlm_read_sys_reg(sysbase,
386					SYS_PLL_CTRL2_DEVX(0));
387			break;
388		case 2:
389			ctrl_val0 = nlm_read_sys_reg(sysbase,
390					SYS_PLL_CTRL0_DEVX(1));
391			ctrl_val2 = nlm_read_sys_reg(sysbase,
392					SYS_PLL_CTRL2_DEVX(1));
393			break;
394		case 3:
395			ctrl_val0 = nlm_read_sys_reg(sysbase,
396					SYS_PLL_CTRL0_DEVX(2));
397			ctrl_val2 = nlm_read_sys_reg(sysbase,
398					SYS_PLL_CTRL2_DEVX(2));
399			break;
400		}
401	}
402
403	vco_post_div = (ctrl_val0 >> 5) & 0x7;
404	pll_post_div = (ctrl_val0 >> 24) & 0x7;
405	mdiv = ctrl_val2 & 0xff;
406	fdiv = (ctrl_val2 >> 8) & 0x1fff;
407
408	/* Find PLL post divider value */
409	switch (pll_post_div) {
410	case 1:
411		pll_post_div = 2;
412		break;
413	case 3:
414		pll_post_div = 4;
415		break;
416	case 7:
417		pll_post_div = 8;
418		break;
419	case 6:
420		pll_post_div = 16;
421		break;
422	case 0:
423	default:
424		pll_post_div = 1;
425		break;
426	}
427
428	fdiv = fdiv/(1 << 13);
429	pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
430	pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
431
432	if (pll_out_freq_den > 0)
433		do_div(pll_out_freq_num, pll_out_freq_den);
434
435	/* PIC post divider, which happens after PLL */
436	if (cpu_xlp9xx)
437		pic_div = nlm_read_sys_reg(clockbase,
438				SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
439	else
440		pic_div = (nlm_read_sys_reg(sysbase,
441					SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
442	do_div(pll_out_freq_num, 1 << pic_div);
443
444	return pll_out_freq_num;
445}
446
447unsigned int nlm_get_pic_frequency(int node)
448{
449	if (cpu_is_xlpii())
450		return nlm_xlp2_get_pic_frequency(node);
451	else
452		return 133333333;
453}
454
455unsigned int nlm_get_cpu_frequency(void)
456{
457	return nlm_get_core_frequency(0, 0);
458}
459
460/*
461 * Fills upto 8 pairs of entries containing the DRAM map of a node
462 * if node < 0, get dram map for all nodes
463 */
464int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries)
465{
466	uint64_t bridgebase, base, lim;
467	uint32_t val;
468	unsigned int barreg, limreg, xlatreg;
469	int i, n, rv;
470
471	/* Look only at mapping on Node 0, we don't handle crazy configs */
472	bridgebase = nlm_get_bridge_regbase(0);
473	rv = 0;
474	for (i = 0; i < 8; i++) {
475		if (rv + 1 >= nentries)
476			break;
477		if (cpu_is_xlp9xx()) {
478			barreg = BRIDGE_9XX_DRAM_BAR(i);
479			limreg = BRIDGE_9XX_DRAM_LIMIT(i);
480			xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
481		} else {
482			barreg = BRIDGE_DRAM_BAR(i);
483			limreg = BRIDGE_DRAM_LIMIT(i);
484			xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
485		}
486		if (node >= 0) {
487			/* node specified, get node mapping of BAR */
488			val = nlm_read_bridge_reg(bridgebase, xlatreg);
489			n = (val >> 1) & 0x3;
490			if (n != node)
491				continue;
492		}
493		val = nlm_read_bridge_reg(bridgebase, barreg);
494		val = (val >>  12) & 0xfffff;
495		base = (uint64_t) val << 20;
496		val = nlm_read_bridge_reg(bridgebase, limreg);
497		val = (val >>  12) & 0xfffff;
498		if (val == 0)   /* BAR not used */
499			continue;
500		lim = ((uint64_t)val + 1) << 20;
501		dram_map[rv] = base;
502		dram_map[rv + 1] = lim;
503		rv += 2;
504	}
505	return rv;
506}
507