1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * A small micro-assembler. It is intentionally kept simple, does only 7 * support a subset of instructions, and does not try to hide pipeline 8 * effects like branch delay slots. 9 * 10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 11 * Copyright (C) 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. 14 */ 15 16#include <linux/kernel.h> 17#include <linux/types.h> 18 19#include <asm/inst.h> 20#include <asm/elf.h> 21#include <asm/bugs.h> 22#define UASM_ISA _UASM_ISA_CLASSIC 23#include <asm/uasm.h> 24 25#define RS_MASK 0x1f 26#define RS_SH 21 27#define RT_MASK 0x1f 28#define RT_SH 16 29#define SCIMM_MASK 0xfffff 30#define SCIMM_SH 6 31 32/* This macro sets the non-variable bits of an instruction. */ 33#define M(a, b, c, d, e, f) \ 34 ((a) << OP_SH \ 35 | (b) << RS_SH \ 36 | (c) << RT_SH \ 37 | (d) << RD_SH \ 38 | (e) << RE_SH \ 39 | (f) << FUNC_SH) 40 41/* This macro sets the non-variable bits of an R6 instruction. */ 42#define M6(a, b, c, d, e) \ 43 ((a) << OP_SH \ 44 | (b) << RS_SH \ 45 | (c) << RT_SH \ 46 | (d) << SIMM9_SH \ 47 | (e) << FUNC_SH) 48 49#include "uasm.c" 50 51static struct insn insn_table[] = { 52 { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 53 { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD }, 54 { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, 55 { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD }, 56 { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 57 { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 58 { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 59 { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 60 { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM }, 61 { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM }, 62 { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM }, 63 { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM }, 64 { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM }, 65#ifndef CONFIG_CPU_MIPSR6 66 { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 67#else 68 { insn_cache, M6(cache_op, 0, 0, 0, cache6_op), RS | RT | SIMM9 }, 69#endif 70 { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 71 { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD }, 72 { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE }, 73 { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE }, 74 { insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT }, 75 { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET}, 76 { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET}, 77 { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE }, 78 { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE }, 79 { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE }, 80 { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE }, 81 { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE }, 82 { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE }, 83 { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE }, 84 { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD }, 85 { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 }, 86 { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE }, 87 { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE }, 88 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, 89 { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM }, 90 { insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD }, 91 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM }, 92#ifndef CONFIG_CPU_MIPSR6 93 { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS }, 94#else 95 { insn_jr, M(spec_op, 0, 0, 0, 0, jalr_op), RS }, 96#endif 97 { insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 98 { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 99 { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD }, 100 { insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 101#ifndef CONFIG_CPU_MIPSR6 102 { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 103 { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 104#else 105 { insn_lld, M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9 }, 106 { insn_ll, M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9 }, 107#endif 108 { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM }, 109 { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 110 { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD }, 111 { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET}, 112 { insn_mfhc0, M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET}, 113 { insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD }, 114 { insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD }, 115 { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET}, 116 { insn_mthc0, M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET}, 117 { insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD}, 118 { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, 119 { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD }, 120#ifndef CONFIG_CPU_MIPSR6 121 { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 122#else 123 { insn_pref, M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9 }, 124#endif 125 { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 }, 126 { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE }, 127#ifndef CONFIG_CPU_MIPSR6 128 { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 129 { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 130#else 131 { insn_scd, M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9 }, 132 { insn_sc, M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9 }, 133#endif 134 { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 135 { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE }, 136 { insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD }, 137 { insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD }, 138 { insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 139 { insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD }, 140 { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE }, 141 { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE }, 142 { insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD }, 143 { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD }, 144 { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM }, 145 { insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE }, 146 { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM}, 147 { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 }, 148 { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 }, 149 { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 }, 150 { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 }, 151 { insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM }, 152 { insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD }, 153 { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM }, 154 { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD }, 155 { insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD }, 156 { insn_invalid, 0, 0 } 157}; 158 159#undef M 160 161static inline u32 build_bimm(s32 arg) 162{ 163 WARN(arg > 0x1ffff || arg < -0x20000, 164 KERN_WARNING "Micro-assembler field overflow\n"); 165 166 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); 167 168 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); 169} 170 171static inline u32 build_jimm(u32 arg) 172{ 173 WARN(arg & ~(JIMM_MASK << 2), 174 KERN_WARNING "Micro-assembler field overflow\n"); 175 176 return (arg >> 2) & JIMM_MASK; 177} 178 179/* 180 * The order of opcode arguments is implicitly left to right, 181 * starting with RS and ending with FUNC or IMM. 182 */ 183static void build_insn(u32 **buf, enum opcode opc, ...) 184{ 185 struct insn *ip = NULL; 186 unsigned int i; 187 va_list ap; 188 u32 op; 189 190 for (i = 0; insn_table[i].opcode != insn_invalid; i++) 191 if (insn_table[i].opcode == opc) { 192 ip = &insn_table[i]; 193 break; 194 } 195 196 if (!ip || (opc == insn_daddiu && r4k_daddiu_bug())) 197 panic("Unsupported Micro-assembler instruction %d", opc); 198 199 op = ip->match; 200 va_start(ap, opc); 201 if (ip->fields & RS) 202 op |= build_rs(va_arg(ap, u32)); 203 if (ip->fields & RT) 204 op |= build_rt(va_arg(ap, u32)); 205 if (ip->fields & RD) 206 op |= build_rd(va_arg(ap, u32)); 207 if (ip->fields & RE) 208 op |= build_re(va_arg(ap, u32)); 209 if (ip->fields & SIMM) 210 op |= build_simm(va_arg(ap, s32)); 211 if (ip->fields & UIMM) 212 op |= build_uimm(va_arg(ap, u32)); 213 if (ip->fields & BIMM) 214 op |= build_bimm(va_arg(ap, s32)); 215 if (ip->fields & JIMM) 216 op |= build_jimm(va_arg(ap, u32)); 217 if (ip->fields & FUNC) 218 op |= build_func(va_arg(ap, u32)); 219 if (ip->fields & SET) 220 op |= build_set(va_arg(ap, u32)); 221 if (ip->fields & SCIMM) 222 op |= build_scimm(va_arg(ap, u32)); 223 if (ip->fields & SIMM9) 224 op |= build_scimm9(va_arg(ap, u32)); 225 va_end(ap); 226 227 **buf = op; 228 (*buf)++; 229} 230 231static inline void 232__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) 233{ 234 long laddr = (long)lab->addr; 235 long raddr = (long)rel->addr; 236 237 switch (rel->type) { 238 case R_MIPS_PC16: 239 *rel->addr |= build_bimm(laddr - (raddr + 4)); 240 break; 241 242 default: 243 panic("Unsupported Micro-assembler relocation %d", 244 rel->type); 245 } 246} 247