1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013   MIPS Technologies, Inc.  All rights reserved.
14 */
15
16#include <linux/kernel.h>
17#include <linux/types.h>
18
19#include <asm/inst.h>
20#include <asm/elf.h>
21#include <asm/bugs.h>
22#define UASM_ISA	_UASM_ISA_MICROMIPS
23#include <asm/uasm.h>
24
25#define RS_MASK		0x1f
26#define RS_SH		16
27#define RT_MASK		0x1f
28#define RT_SH		21
29#define SCIMM_MASK	0x3ff
30#define SCIMM_SH	16
31
32/* This macro sets the non-variable bits of an instruction. */
33#define M(a, b, c, d, e, f)					\
34	((a) << OP_SH						\
35	 | (b) << RT_SH						\
36	 | (c) << RS_SH						\
37	 | (d) << RD_SH						\
38	 | (e) << RE_SH						\
39	 | (f) << FUNC_SH)
40
41#include "uasm.c"
42
43static struct insn insn_table_MM[] = {
44	{ insn_addu, M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD },
45	{ insn_addiu, M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
46	{ insn_and, M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD },
47	{ insn_andi, M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
48	{ insn_beq, M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
49	{ insn_beql, 0, 0 },
50	{ insn_bgez, M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM },
51	{ insn_bgezl, 0, 0 },
52	{ insn_bltz, M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM },
53	{ insn_bltzl, 0, 0 },
54	{ insn_bne, M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM },
55	{ insn_cache, M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM },
56	{ insn_daddu, 0, 0 },
57	{ insn_daddiu, 0, 0 },
58	{ insn_divu, M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS },
59	{ insn_dmfc0, 0, 0 },
60	{ insn_dmtc0, 0, 0 },
61	{ insn_dsll, 0, 0 },
62	{ insn_dsll32, 0, 0 },
63	{ insn_dsra, 0, 0 },
64	{ insn_dsrl, 0, 0 },
65	{ insn_dsrl32, 0, 0 },
66	{ insn_drotr, 0, 0 },
67	{ insn_drotr32, 0, 0 },
68	{ insn_dsubu, 0, 0 },
69	{ insn_eret, M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0 },
70	{ insn_ins, M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE },
71	{ insn_ext, M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE },
72	{ insn_j, M(mm_j32_op, 0, 0, 0, 0, 0), JIMM },
73	{ insn_jal, M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM },
74	{ insn_jalr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS },
75	{ insn_jr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS },
76	{ insn_lb, M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
77	{ insn_ld, 0, 0 },
78	{ insn_lh, M(mm_lh32_op, 0, 0, 0, 0, 0), RS | RS | SIMM },
79	{ insn_ll, M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM },
80	{ insn_lld, 0, 0 },
81	{ insn_lui, M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM },
82	{ insn_lw, M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
83	{ insn_mfc0, M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD },
84	{ insn_mfhi, M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS },
85	{ insn_mflo, M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS },
86	{ insn_mtc0, M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD },
87	{ insn_mul, M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD },
88	{ insn_or, M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD },
89	{ insn_ori, M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
90	{ insn_pref, M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM },
91	{ insn_rfe, 0, 0 },
92	{ insn_sc, M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM },
93	{ insn_scd, 0, 0 },
94	{ insn_sd, 0, 0 },
95	{ insn_sll, M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD },
96	{ insn_sllv, M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD },
97	{ insn_slt, M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD },
98	{ insn_sltiu, M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
99	{ insn_sltu, M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD },
100	{ insn_sra, M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD },
101	{ insn_srl, M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD },
102	{ insn_srlv, M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD },
103	{ insn_rotr, M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD },
104	{ insn_subu, M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD },
105	{ insn_sw, M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
106	{ insn_sync, M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS },
107	{ insn_tlbp, M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0 },
108	{ insn_tlbr, M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0 },
109	{ insn_tlbwi, M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0 },
110	{ insn_tlbwr, M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0 },
111	{ insn_wait, M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM },
112	{ insn_wsbh, M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS },
113	{ insn_xor, M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD },
114	{ insn_xori, M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
115	{ insn_dins, 0, 0 },
116	{ insn_dinsm, 0, 0 },
117	{ insn_syscall, M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
118	{ insn_bbit0, 0, 0 },
119	{ insn_bbit1, 0, 0 },
120	{ insn_lwx, 0, 0 },
121	{ insn_ldx, 0, 0 },
122	{ insn_invalid, 0, 0 }
123};
124
125#undef M
126
127static inline u32 build_bimm(s32 arg)
128{
129	WARN(arg > 0xffff || arg < -0x10000,
130	     KERN_WARNING "Micro-assembler field overflow\n");
131
132	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
133
134	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
135}
136
137static inline u32 build_jimm(u32 arg)
138{
139
140	WARN(arg & ~((JIMM_MASK << 2) | 1),
141	     KERN_WARNING "Micro-assembler field overflow\n");
142
143	return (arg >> 1) & JIMM_MASK;
144}
145
146/*
147 * The order of opcode arguments is implicitly left to right,
148 * starting with RS and ending with FUNC or IMM.
149 */
150static void build_insn(u32 **buf, enum opcode opc, ...)
151{
152	struct insn *ip = NULL;
153	unsigned int i;
154	va_list ap;
155	u32 op;
156
157	for (i = 0; insn_table_MM[i].opcode != insn_invalid; i++)
158		if (insn_table_MM[i].opcode == opc) {
159			ip = &insn_table_MM[i];
160			break;
161		}
162
163	if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
164		panic("Unsupported Micro-assembler instruction %d", opc);
165
166	op = ip->match;
167	va_start(ap, opc);
168	if (ip->fields & RS) {
169		if (opc == insn_mfc0 || opc == insn_mtc0)
170			op |= build_rt(va_arg(ap, u32));
171		else
172			op |= build_rs(va_arg(ap, u32));
173	}
174	if (ip->fields & RT) {
175		if (opc == insn_mfc0 || opc == insn_mtc0)
176			op |= build_rs(va_arg(ap, u32));
177		else
178			op |= build_rt(va_arg(ap, u32));
179	}
180	if (ip->fields & RD)
181		op |= build_rd(va_arg(ap, u32));
182	if (ip->fields & RE)
183		op |= build_re(va_arg(ap, u32));
184	if (ip->fields & SIMM)
185		op |= build_simm(va_arg(ap, s32));
186	if (ip->fields & UIMM)
187		op |= build_uimm(va_arg(ap, u32));
188	if (ip->fields & BIMM)
189		op |= build_bimm(va_arg(ap, s32));
190	if (ip->fields & JIMM)
191		op |= build_jimm(va_arg(ap, u32));
192	if (ip->fields & FUNC)
193		op |= build_func(va_arg(ap, u32));
194	if (ip->fields & SET)
195		op |= build_set(va_arg(ap, u32));
196	if (ip->fields & SCIMM)
197		op |= build_scimm(va_arg(ap, u32));
198	va_end(ap);
199
200#ifdef CONFIG_CPU_LITTLE_ENDIAN
201	**buf = ((op & 0xffff) << 16) | (op >> 16);
202#else
203	**buf = op;
204#endif
205	(*buf)++;
206}
207
208static inline void
209__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
210{
211	long laddr = (long)lab->addr;
212	long raddr = (long)rel->addr;
213
214	switch (rel->type) {
215	case R_MIPS_PC16:
216#ifdef CONFIG_CPU_LITTLE_ENDIAN
217		*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
218#else
219		*rel->addr |= build_bimm(laddr - (raddr + 4));
220#endif
221		break;
222
223	default:
224		panic("Unsupported Micro-assembler relocation %d",
225		      rel->type);
226	}
227}
228