1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/cpu-info.h>
49 #include <asm/processor.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/fpu.h>
52 #include <asm/mips-r2-to-r6-emul.h>
53 
54 #include "ieee754.h"
55 
56 /* Function which emulates a floating point instruction. */
57 
58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
59 	mips_instruction);
60 
61 static int fpux_emu(struct pt_regs *,
62 	struct mips_fpu_struct *, mips_instruction, void *__user *);
63 
64 /* Control registers */
65 
66 #define FPCREG_RID	0	/* $0  = revision id */
67 #define FPCREG_FCCR	25	/* $25 = fccr */
68 #define FPCREG_FEXR	26	/* $26 = fexr */
69 #define FPCREG_FENR	28	/* $28 = fenr */
70 #define FPCREG_CSR	31	/* $31 = csr */
71 
72 /* convert condition code register number to csr bit */
73 const unsigned int fpucondbit[8] = {
74 	FPU_CSR_COND,
75 	FPU_CSR_COND1,
76 	FPU_CSR_COND2,
77 	FPU_CSR_COND3,
78 	FPU_CSR_COND4,
79 	FPU_CSR_COND5,
80 	FPU_CSR_COND6,
81 	FPU_CSR_COND7
82 };
83 
84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
89 
90 /*
91  * This functions translates a 32-bit microMIPS instruction
92  * into a 32-bit MIPS32 instruction. Returns 0 on success
93  * and SIGILL otherwise.
94  */
microMIPS32_to_MIPS32(union mips_instruction * insn_ptr)95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
96 {
97 	union mips_instruction insn = *insn_ptr;
98 	union mips_instruction mips32_insn = insn;
99 	int func, fmt, op;
100 
101 	switch (insn.mm_i_format.opcode) {
102 	case mm_ldc132_op:
103 		mips32_insn.mm_i_format.opcode = ldc1_op;
104 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
105 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
106 		break;
107 	case mm_lwc132_op:
108 		mips32_insn.mm_i_format.opcode = lwc1_op;
109 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
110 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
111 		break;
112 	case mm_sdc132_op:
113 		mips32_insn.mm_i_format.opcode = sdc1_op;
114 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
115 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
116 		break;
117 	case mm_swc132_op:
118 		mips32_insn.mm_i_format.opcode = swc1_op;
119 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
120 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
121 		break;
122 	case mm_pool32i_op:
123 		/* NOTE: offset is << by 1 if in microMIPS mode. */
124 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
125 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
126 			mips32_insn.fb_format.opcode = cop1_op;
127 			mips32_insn.fb_format.bc = bc_op;
128 			mips32_insn.fb_format.flag =
129 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
130 		} else
131 			return SIGILL;
132 		break;
133 	case mm_pool32f_op:
134 		switch (insn.mm_fp0_format.func) {
135 		case mm_32f_01_op:
136 		case mm_32f_11_op:
137 		case mm_32f_02_op:
138 		case mm_32f_12_op:
139 		case mm_32f_41_op:
140 		case mm_32f_51_op:
141 		case mm_32f_42_op:
142 		case mm_32f_52_op:
143 			op = insn.mm_fp0_format.func;
144 			if (op == mm_32f_01_op)
145 				func = madd_s_op;
146 			else if (op == mm_32f_11_op)
147 				func = madd_d_op;
148 			else if (op == mm_32f_02_op)
149 				func = nmadd_s_op;
150 			else if (op == mm_32f_12_op)
151 				func = nmadd_d_op;
152 			else if (op == mm_32f_41_op)
153 				func = msub_s_op;
154 			else if (op == mm_32f_51_op)
155 				func = msub_d_op;
156 			else if (op == mm_32f_42_op)
157 				func = nmsub_s_op;
158 			else
159 				func = nmsub_d_op;
160 			mips32_insn.fp6_format.opcode = cop1x_op;
161 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
162 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
163 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
164 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
165 			mips32_insn.fp6_format.func = func;
166 			break;
167 		case mm_32f_10_op:
168 			func = -1;	/* Invalid */
169 			op = insn.mm_fp5_format.op & 0x7;
170 			if (op == mm_ldxc1_op)
171 				func = ldxc1_op;
172 			else if (op == mm_sdxc1_op)
173 				func = sdxc1_op;
174 			else if (op == mm_lwxc1_op)
175 				func = lwxc1_op;
176 			else if (op == mm_swxc1_op)
177 				func = swxc1_op;
178 
179 			if (func != -1) {
180 				mips32_insn.r_format.opcode = cop1x_op;
181 				mips32_insn.r_format.rs =
182 					insn.mm_fp5_format.base;
183 				mips32_insn.r_format.rt =
184 					insn.mm_fp5_format.index;
185 				mips32_insn.r_format.rd = 0;
186 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
187 				mips32_insn.r_format.func = func;
188 			} else
189 				return SIGILL;
190 			break;
191 		case mm_32f_40_op:
192 			op = -1;	/* Invalid */
193 			if (insn.mm_fp2_format.op == mm_fmovt_op)
194 				op = 1;
195 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
196 				op = 0;
197 			if (op != -1) {
198 				mips32_insn.fp0_format.opcode = cop1_op;
199 				mips32_insn.fp0_format.fmt =
200 					sdps_format[insn.mm_fp2_format.fmt];
201 				mips32_insn.fp0_format.ft =
202 					(insn.mm_fp2_format.cc<<2) + op;
203 				mips32_insn.fp0_format.fs =
204 					insn.mm_fp2_format.fs;
205 				mips32_insn.fp0_format.fd =
206 					insn.mm_fp2_format.fd;
207 				mips32_insn.fp0_format.func = fmovc_op;
208 			} else
209 				return SIGILL;
210 			break;
211 		case mm_32f_60_op:
212 			func = -1;	/* Invalid */
213 			if (insn.mm_fp0_format.op == mm_fadd_op)
214 				func = fadd_op;
215 			else if (insn.mm_fp0_format.op == mm_fsub_op)
216 				func = fsub_op;
217 			else if (insn.mm_fp0_format.op == mm_fmul_op)
218 				func = fmul_op;
219 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
220 				func = fdiv_op;
221 			if (func != -1) {
222 				mips32_insn.fp0_format.opcode = cop1_op;
223 				mips32_insn.fp0_format.fmt =
224 					sdps_format[insn.mm_fp0_format.fmt];
225 				mips32_insn.fp0_format.ft =
226 					insn.mm_fp0_format.ft;
227 				mips32_insn.fp0_format.fs =
228 					insn.mm_fp0_format.fs;
229 				mips32_insn.fp0_format.fd =
230 					insn.mm_fp0_format.fd;
231 				mips32_insn.fp0_format.func = func;
232 			} else
233 				return SIGILL;
234 			break;
235 		case mm_32f_70_op:
236 			func = -1;	/* Invalid */
237 			if (insn.mm_fp0_format.op == mm_fmovn_op)
238 				func = fmovn_op;
239 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
240 				func = fmovz_op;
241 			if (func != -1) {
242 				mips32_insn.fp0_format.opcode = cop1_op;
243 				mips32_insn.fp0_format.fmt =
244 					sdps_format[insn.mm_fp0_format.fmt];
245 				mips32_insn.fp0_format.ft =
246 					insn.mm_fp0_format.ft;
247 				mips32_insn.fp0_format.fs =
248 					insn.mm_fp0_format.fs;
249 				mips32_insn.fp0_format.fd =
250 					insn.mm_fp0_format.fd;
251 				mips32_insn.fp0_format.func = func;
252 			} else
253 				return SIGILL;
254 			break;
255 		case mm_32f_73_op:    /* POOL32FXF */
256 			switch (insn.mm_fp1_format.op) {
257 			case mm_movf0_op:
258 			case mm_movf1_op:
259 			case mm_movt0_op:
260 			case mm_movt1_op:
261 				if ((insn.mm_fp1_format.op & 0x7f) ==
262 				    mm_movf0_op)
263 					op = 0;
264 				else
265 					op = 1;
266 				mips32_insn.r_format.opcode = spec_op;
267 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
268 				mips32_insn.r_format.rt =
269 					(insn.mm_fp4_format.cc << 2) + op;
270 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
271 				mips32_insn.r_format.re = 0;
272 				mips32_insn.r_format.func = movc_op;
273 				break;
274 			case mm_fcvtd0_op:
275 			case mm_fcvtd1_op:
276 			case mm_fcvts0_op:
277 			case mm_fcvts1_op:
278 				if ((insn.mm_fp1_format.op & 0x7f) ==
279 				    mm_fcvtd0_op) {
280 					func = fcvtd_op;
281 					fmt = swl_format[insn.mm_fp3_format.fmt];
282 				} else {
283 					func = fcvts_op;
284 					fmt = dwl_format[insn.mm_fp3_format.fmt];
285 				}
286 				mips32_insn.fp0_format.opcode = cop1_op;
287 				mips32_insn.fp0_format.fmt = fmt;
288 				mips32_insn.fp0_format.ft = 0;
289 				mips32_insn.fp0_format.fs =
290 					insn.mm_fp3_format.fs;
291 				mips32_insn.fp0_format.fd =
292 					insn.mm_fp3_format.rt;
293 				mips32_insn.fp0_format.func = func;
294 				break;
295 			case mm_fmov0_op:
296 			case mm_fmov1_op:
297 			case mm_fabs0_op:
298 			case mm_fabs1_op:
299 			case mm_fneg0_op:
300 			case mm_fneg1_op:
301 				if ((insn.mm_fp1_format.op & 0x7f) ==
302 				    mm_fmov0_op)
303 					func = fmov_op;
304 				else if ((insn.mm_fp1_format.op & 0x7f) ==
305 					 mm_fabs0_op)
306 					func = fabs_op;
307 				else
308 					func = fneg_op;
309 				mips32_insn.fp0_format.opcode = cop1_op;
310 				mips32_insn.fp0_format.fmt =
311 					sdps_format[insn.mm_fp3_format.fmt];
312 				mips32_insn.fp0_format.ft = 0;
313 				mips32_insn.fp0_format.fs =
314 					insn.mm_fp3_format.fs;
315 				mips32_insn.fp0_format.fd =
316 					insn.mm_fp3_format.rt;
317 				mips32_insn.fp0_format.func = func;
318 				break;
319 			case mm_ffloorl_op:
320 			case mm_ffloorw_op:
321 			case mm_fceill_op:
322 			case mm_fceilw_op:
323 			case mm_ftruncl_op:
324 			case mm_ftruncw_op:
325 			case mm_froundl_op:
326 			case mm_froundw_op:
327 			case mm_fcvtl_op:
328 			case mm_fcvtw_op:
329 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
330 					func = ffloorl_op;
331 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
332 					func = ffloor_op;
333 				else if (insn.mm_fp1_format.op == mm_fceill_op)
334 					func = fceill_op;
335 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
336 					func = fceil_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
338 					func = ftruncl_op;
339 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
340 					func = ftrunc_op;
341 				else if (insn.mm_fp1_format.op == mm_froundl_op)
342 					func = froundl_op;
343 				else if (insn.mm_fp1_format.op == mm_froundw_op)
344 					func = fround_op;
345 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
346 					func = fcvtl_op;
347 				else
348 					func = fcvtw_op;
349 				mips32_insn.fp0_format.opcode = cop1_op;
350 				mips32_insn.fp0_format.fmt =
351 					sd_format[insn.mm_fp1_format.fmt];
352 				mips32_insn.fp0_format.ft = 0;
353 				mips32_insn.fp0_format.fs =
354 					insn.mm_fp1_format.fs;
355 				mips32_insn.fp0_format.fd =
356 					insn.mm_fp1_format.rt;
357 				mips32_insn.fp0_format.func = func;
358 				break;
359 			case mm_frsqrt_op:
360 			case mm_fsqrt_op:
361 			case mm_frecip_op:
362 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
363 					func = frsqrt_op;
364 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
365 					func = fsqrt_op;
366 				else
367 					func = frecip_op;
368 				mips32_insn.fp0_format.opcode = cop1_op;
369 				mips32_insn.fp0_format.fmt =
370 					sdps_format[insn.mm_fp1_format.fmt];
371 				mips32_insn.fp0_format.ft = 0;
372 				mips32_insn.fp0_format.fs =
373 					insn.mm_fp1_format.fs;
374 				mips32_insn.fp0_format.fd =
375 					insn.mm_fp1_format.rt;
376 				mips32_insn.fp0_format.func = func;
377 				break;
378 			case mm_mfc1_op:
379 			case mm_mtc1_op:
380 			case mm_cfc1_op:
381 			case mm_ctc1_op:
382 			case mm_mfhc1_op:
383 			case mm_mthc1_op:
384 				if (insn.mm_fp1_format.op == mm_mfc1_op)
385 					op = mfc_op;
386 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
387 					op = mtc_op;
388 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
389 					op = cfc_op;
390 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
391 					op = ctc_op;
392 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
393 					op = mfhc_op;
394 				else
395 					op = mthc_op;
396 				mips32_insn.fp1_format.opcode = cop1_op;
397 				mips32_insn.fp1_format.op = op;
398 				mips32_insn.fp1_format.rt =
399 					insn.mm_fp1_format.rt;
400 				mips32_insn.fp1_format.fs =
401 					insn.mm_fp1_format.fs;
402 				mips32_insn.fp1_format.fd = 0;
403 				mips32_insn.fp1_format.func = 0;
404 				break;
405 			default:
406 				return SIGILL;
407 			}
408 			break;
409 		case mm_32f_74_op:	/* c.cond.fmt */
410 			mips32_insn.fp0_format.opcode = cop1_op;
411 			mips32_insn.fp0_format.fmt =
412 				sdps_format[insn.mm_fp4_format.fmt];
413 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
414 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
415 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
416 			mips32_insn.fp0_format.func =
417 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
418 			break;
419 		default:
420 			return SIGILL;
421 		}
422 		break;
423 	default:
424 		return SIGILL;
425 	}
426 
427 	*insn_ptr = mips32_insn;
428 	return 0;
429 }
430 
431 /*
432  * Redundant with logic already in kernel/branch.c,
433  * embedded in compute_return_epc.  At some point,
434  * a single subroutine should be used across both
435  * modules.
436  */
isBranchInstr(struct pt_regs * regs,struct mm_decoded_insn dec_insn,unsigned long * contpc)437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
438 			 unsigned long *contpc)
439 {
440 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
441 	unsigned int fcr31;
442 	unsigned int bit = 0;
443 
444 	switch (insn.i_format.opcode) {
445 	case spec_op:
446 		switch (insn.r_format.func) {
447 		case jalr_op:
448 			if (insn.r_format.rd != 0) {
449 				regs->regs[insn.r_format.rd] =
450 					regs->cp0_epc + dec_insn.pc_inc +
451 					dec_insn.next_pc_inc;
452 			}
453 			/* Fall through */
454 		case jr_op:
455 			/* For R6, JR already emulated in jalr_op */
456 			if (NO_R6EMU && insn.r_format.func == jr_op)
457 				break;
458 			*contpc = regs->regs[insn.r_format.rs];
459 			return 1;
460 		}
461 		break;
462 	case bcond_op:
463 		switch (insn.i_format.rt) {
464 		case bltzal_op:
465 		case bltzall_op:
466 			if (NO_R6EMU && (insn.i_format.rs ||
467 			    insn.i_format.rt == bltzall_op))
468 				break;
469 
470 			regs->regs[31] = regs->cp0_epc +
471 				dec_insn.pc_inc +
472 				dec_insn.next_pc_inc;
473 			/* Fall through */
474 		case bltzl_op:
475 			if (NO_R6EMU)
476 				break;
477 		case bltz_op:
478 			if ((long)regs->regs[insn.i_format.rs] < 0)
479 				*contpc = regs->cp0_epc +
480 					dec_insn.pc_inc +
481 					(insn.i_format.simmediate << 2);
482 			else
483 				*contpc = regs->cp0_epc +
484 					dec_insn.pc_inc +
485 					dec_insn.next_pc_inc;
486 			return 1;
487 		case bgezal_op:
488 		case bgezall_op:
489 			if (NO_R6EMU && (insn.i_format.rs ||
490 			    insn.i_format.rt == bgezall_op))
491 				break;
492 
493 			regs->regs[31] = regs->cp0_epc +
494 				dec_insn.pc_inc +
495 				dec_insn.next_pc_inc;
496 			/* Fall through */
497 		case bgezl_op:
498 			if (NO_R6EMU)
499 				break;
500 		case bgez_op:
501 			if ((long)regs->regs[insn.i_format.rs] >= 0)
502 				*contpc = regs->cp0_epc +
503 					dec_insn.pc_inc +
504 					(insn.i_format.simmediate << 2);
505 			else
506 				*contpc = regs->cp0_epc +
507 					dec_insn.pc_inc +
508 					dec_insn.next_pc_inc;
509 			return 1;
510 		}
511 		break;
512 	case jalx_op:
513 		set_isa16_mode(bit);
514 	case jal_op:
515 		regs->regs[31] = regs->cp0_epc +
516 			dec_insn.pc_inc +
517 			dec_insn.next_pc_inc;
518 		/* Fall through */
519 	case j_op:
520 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
521 		*contpc >>= 28;
522 		*contpc <<= 28;
523 		*contpc |= (insn.j_format.target << 2);
524 		/* Set microMIPS mode bit: XOR for jalx. */
525 		*contpc ^= bit;
526 		return 1;
527 	case beql_op:
528 		if (NO_R6EMU)
529 			break;
530 	case beq_op:
531 		if (regs->regs[insn.i_format.rs] ==
532 		    regs->regs[insn.i_format.rt])
533 			*contpc = regs->cp0_epc +
534 				dec_insn.pc_inc +
535 				(insn.i_format.simmediate << 2);
536 		else
537 			*contpc = regs->cp0_epc +
538 				dec_insn.pc_inc +
539 				dec_insn.next_pc_inc;
540 		return 1;
541 	case bnel_op:
542 		if (NO_R6EMU)
543 			break;
544 	case bne_op:
545 		if (regs->regs[insn.i_format.rs] !=
546 		    regs->regs[insn.i_format.rt])
547 			*contpc = regs->cp0_epc +
548 				dec_insn.pc_inc +
549 				(insn.i_format.simmediate << 2);
550 		else
551 			*contpc = regs->cp0_epc +
552 				dec_insn.pc_inc +
553 				dec_insn.next_pc_inc;
554 		return 1;
555 	case blezl_op:
556 		if (NO_R6EMU)
557 			break;
558 	case blez_op:
559 
560 		/*
561 		 * Compact branches for R6 for the
562 		 * blez and blezl opcodes.
563 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
564 		 * BLEZ  | rs = rt != 0      == BGEZALC
565 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
566 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
567 		 * BLEZL | rs = rt != 0      == BGEZC
568 		 * BLEZL | rs != 0 | rt != 0 == BGEC
569 		 *
570 		 * For real BLEZ{,L}, rt is always 0.
571 		 */
572 		if (cpu_has_mips_r6 && insn.i_format.rt) {
573 			if ((insn.i_format.opcode == blez_op) &&
574 			    ((!insn.i_format.rs && insn.i_format.rt) ||
575 			     (insn.i_format.rs == insn.i_format.rt)))
576 				regs->regs[31] = regs->cp0_epc +
577 					dec_insn.pc_inc;
578 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
579 				dec_insn.next_pc_inc;
580 
581 			return 1;
582 		}
583 		if ((long)regs->regs[insn.i_format.rs] <= 0)
584 			*contpc = regs->cp0_epc +
585 				dec_insn.pc_inc +
586 				(insn.i_format.simmediate << 2);
587 		else
588 			*contpc = regs->cp0_epc +
589 				dec_insn.pc_inc +
590 				dec_insn.next_pc_inc;
591 		return 1;
592 	case bgtzl_op:
593 		if (NO_R6EMU)
594 			break;
595 	case bgtz_op:
596 		/*
597 		 * Compact branches for R6 for the
598 		 * bgtz and bgtzl opcodes.
599 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
600 		 * BGTZ  | rs = rt != 0      == BLTZALC
601 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
602 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
603 		 * BGTZL | rs = rt != 0      == BLTZC
604 		 * BGTZL | rs != 0 | rt != 0 == BLTC
605 		 *
606 		 * *ZALC varint for BGTZ &&& rt != 0
607 		 * For real GTZ{,L}, rt is always 0.
608 		 */
609 		if (cpu_has_mips_r6 && insn.i_format.rt) {
610 			if ((insn.i_format.opcode == blez_op) &&
611 			    ((!insn.i_format.rs && insn.i_format.rt) ||
612 			     (insn.i_format.rs == insn.i_format.rt)))
613 				regs->regs[31] = regs->cp0_epc +
614 					dec_insn.pc_inc;
615 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
616 				dec_insn.next_pc_inc;
617 
618 			return 1;
619 		}
620 
621 		if ((long)regs->regs[insn.i_format.rs] > 0)
622 			*contpc = regs->cp0_epc +
623 				dec_insn.pc_inc +
624 				(insn.i_format.simmediate << 2);
625 		else
626 			*contpc = regs->cp0_epc +
627 				dec_insn.pc_inc +
628 				dec_insn.next_pc_inc;
629 		return 1;
630 	case cbcond0_op:
631 	case cbcond1_op:
632 		if (!cpu_has_mips_r6)
633 			break;
634 		if (insn.i_format.rt && !insn.i_format.rs)
635 			regs->regs[31] = regs->cp0_epc + 4;
636 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
637 			dec_insn.next_pc_inc;
638 
639 		return 1;
640 #ifdef CONFIG_CPU_CAVIUM_OCTEON
641 	case lwc2_op: /* This is bbit0 on Octeon */
642 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
643 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
644 		else
645 			*contpc = regs->cp0_epc + 8;
646 		return 1;
647 	case ldc2_op: /* This is bbit032 on Octeon */
648 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
649 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
650 		else
651 			*contpc = regs->cp0_epc + 8;
652 		return 1;
653 	case swc2_op: /* This is bbit1 on Octeon */
654 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
655 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
656 		else
657 			*contpc = regs->cp0_epc + 8;
658 		return 1;
659 	case sdc2_op: /* This is bbit132 on Octeon */
660 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
661 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
662 		else
663 			*contpc = regs->cp0_epc + 8;
664 		return 1;
665 #else
666 	case bc6_op:
667 		/*
668 		 * Only valid for MIPS R6 but we can still end up
669 		 * here from a broken userland so just tell emulator
670 		 * this is not a branch and let it break later on.
671 		 */
672 		if  (!cpu_has_mips_r6)
673 			break;
674 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
675 			dec_insn.next_pc_inc;
676 
677 		return 1;
678 	case balc6_op:
679 		if (!cpu_has_mips_r6)
680 			break;
681 		regs->regs[31] = regs->cp0_epc + 4;
682 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
683 			dec_insn.next_pc_inc;
684 
685 		return 1;
686 	case beqzcjic_op:
687 		if (!cpu_has_mips_r6)
688 			break;
689 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
690 			dec_insn.next_pc_inc;
691 
692 		return 1;
693 	case bnezcjialc_op:
694 		if (!cpu_has_mips_r6)
695 			break;
696 		if (!insn.i_format.rs)
697 			regs->regs[31] = regs->cp0_epc + 4;
698 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
699 			dec_insn.next_pc_inc;
700 
701 		return 1;
702 #endif
703 	case cop0_op:
704 	case cop1_op:
705 		/* Need to check for R6 bc1nez and bc1eqz branches */
706 		if (cpu_has_mips_r6 &&
707 		    ((insn.i_format.rs == bc1eqz_op) ||
708 		     (insn.i_format.rs == bc1nez_op))) {
709 			bit = 0;
710 			switch (insn.i_format.rs) {
711 			case bc1eqz_op:
712 				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
713 				    bit = 1;
714 				break;
715 			case bc1nez_op:
716 				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
717 				    bit = 1;
718 				break;
719 			}
720 			if (bit)
721 				*contpc = regs->cp0_epc +
722 					dec_insn.pc_inc +
723 					(insn.i_format.simmediate << 2);
724 			else
725 				*contpc = regs->cp0_epc +
726 					dec_insn.pc_inc +
727 					dec_insn.next_pc_inc;
728 
729 			return 1;
730 		}
731 		/* R2/R6 compatible cop1 instruction. Fall through */
732 	case cop2_op:
733 	case cop1x_op:
734 		if (insn.i_format.rs == bc_op) {
735 			preempt_disable();
736 			if (is_fpu_owner())
737 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
738 			else
739 				fcr31 = current->thread.fpu.fcr31;
740 			preempt_enable();
741 
742 			bit = (insn.i_format.rt >> 2);
743 			bit += (bit != 0);
744 			bit += 23;
745 			switch (insn.i_format.rt & 3) {
746 			case 0:	/* bc1f */
747 			case 2:	/* bc1fl */
748 				if (~fcr31 & (1 << bit))
749 					*contpc = regs->cp0_epc +
750 						dec_insn.pc_inc +
751 						(insn.i_format.simmediate << 2);
752 				else
753 					*contpc = regs->cp0_epc +
754 						dec_insn.pc_inc +
755 						dec_insn.next_pc_inc;
756 				return 1;
757 			case 1:	/* bc1t */
758 			case 3:	/* bc1tl */
759 				if (fcr31 & (1 << bit))
760 					*contpc = regs->cp0_epc +
761 						dec_insn.pc_inc +
762 						(insn.i_format.simmediate << 2);
763 				else
764 					*contpc = regs->cp0_epc +
765 						dec_insn.pc_inc +
766 						dec_insn.next_pc_inc;
767 				return 1;
768 			}
769 		}
770 		break;
771 	}
772 	return 0;
773 }
774 
775 /*
776  * In the Linux kernel, we support selection of FPR format on the
777  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
778  * is hardwired to zero, which would imply a 32-bit FPU even for
779  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
780  * FPU emu is slow and bulky and optimizing this function offers fairly
781  * sizeable benefits so we try to be clever and make this function return
782  * a constant whenever possible, that is on 64-bit kernels without O32
783  * compatibility enabled and on 32-bit without 64-bit FPU support.
784  */
cop1_64bit(struct pt_regs * xcp)785 static inline int cop1_64bit(struct pt_regs *xcp)
786 {
787 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
788 		return 1;
789 	else if (config_enabled(CONFIG_32BIT) &&
790 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
791 		return 0;
792 
793 	return !test_thread_flag(TIF_32BIT_FPREGS);
794 }
795 
hybrid_fprs(void)796 static inline bool hybrid_fprs(void)
797 {
798 	return test_thread_flag(TIF_HYBRID_FPREGS);
799 }
800 
801 #define SIFROMREG(si, x)						\
802 do {									\
803 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
804 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
805 	else								\
806 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
807 } while (0)
808 
809 #define SITOREG(si, x)							\
810 do {									\
811 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
812 		unsigned i;						\
813 		set_fpr32(&ctx->fpr[x], 0, si);				\
814 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
815 			set_fpr32(&ctx->fpr[x], i, 0);			\
816 	} else {							\
817 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
818 	}								\
819 } while (0)
820 
821 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
822 
823 #define SITOHREG(si, x)							\
824 do {									\
825 	unsigned i;							\
826 	set_fpr32(&ctx->fpr[x], 1, si);					\
827 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
828 		set_fpr32(&ctx->fpr[x], i, 0);				\
829 } while (0)
830 
831 #define DIFROMREG(di, x)						\
832 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
833 
834 #define DITOREG(di, x)							\
835 do {									\
836 	unsigned fpr, i;						\
837 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
838 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
839 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
840 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
841 } while (0)
842 
843 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
844 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
845 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
846 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
847 
848 /*
849  * Emulate a CFC1 instruction.
850  */
cop1_cfc(struct pt_regs * xcp,struct mips_fpu_struct * ctx,mips_instruction ir)851 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
852 			    mips_instruction ir)
853 {
854 	u32 fcr31 = ctx->fcr31;
855 	u32 value = 0;
856 
857 	switch (MIPSInst_RD(ir)) {
858 	case FPCREG_CSR:
859 		value = fcr31;
860 		pr_debug("%p gpr[%d]<-csr=%08x\n",
861 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
862 		break;
863 
864 	case FPCREG_FENR:
865 		if (!cpu_has_mips_r)
866 			break;
867 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
868 			MIPS_FENR_FS;
869 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
870 		pr_debug("%p gpr[%d]<-enr=%08x\n",
871 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
872 		break;
873 
874 	case FPCREG_FEXR:
875 		if (!cpu_has_mips_r)
876 			break;
877 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
878 		pr_debug("%p gpr[%d]<-exr=%08x\n",
879 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
880 		break;
881 
882 	case FPCREG_FCCR:
883 		if (!cpu_has_mips_r)
884 			break;
885 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
886 			MIPS_FCCR_COND0;
887 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
888 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
889 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
890 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
891 		break;
892 
893 	case FPCREG_RID:
894 		value = boot_cpu_data.fpu_id;
895 		break;
896 
897 	default:
898 		break;
899 	}
900 
901 	if (MIPSInst_RT(ir))
902 		xcp->regs[MIPSInst_RT(ir)] = value;
903 }
904 
905 /*
906  * Emulate a CTC1 instruction.
907  */
cop1_ctc(struct pt_regs * xcp,struct mips_fpu_struct * ctx,mips_instruction ir)908 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
909 			    mips_instruction ir)
910 {
911 	u32 fcr31 = ctx->fcr31;
912 	u32 value;
913 	u32 mask;
914 
915 	if (MIPSInst_RT(ir) == 0)
916 		value = 0;
917 	else
918 		value = xcp->regs[MIPSInst_RT(ir)];
919 
920 	switch (MIPSInst_RD(ir)) {
921 	case FPCREG_CSR:
922 		pr_debug("%p gpr[%d]->csr=%08x\n",
923 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
924 
925 		/* Preserve read-only bits.  */
926 		mask = boot_cpu_data.fpu_msk31;
927 		fcr31 = (value & ~mask) | (fcr31 & mask);
928 		break;
929 
930 	case FPCREG_FENR:
931 		if (!cpu_has_mips_r)
932 			break;
933 		pr_debug("%p gpr[%d]->enr=%08x\n",
934 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
935 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
936 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
937 			 FPU_CSR_FS;
938 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
939 		break;
940 
941 	case FPCREG_FEXR:
942 		if (!cpu_has_mips_r)
943 			break;
944 		pr_debug("%p gpr[%d]->exr=%08x\n",
945 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
946 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
947 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
948 		break;
949 
950 	case FPCREG_FCCR:
951 		if (!cpu_has_mips_r)
952 			break;
953 		pr_debug("%p gpr[%d]->ccr=%08x\n",
954 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
955 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
956 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
957 			 FPU_CSR_COND;
958 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
959 			 FPU_CSR_CONDX;
960 		break;
961 
962 	default:
963 		break;
964 	}
965 
966 	ctx->fcr31 = fcr31;
967 }
968 
969 /*
970  * Emulate the single floating point instruction pointed at by EPC.
971  * Two instructions if the instruction is in a branch delay slot.
972  */
973 
cop1Emulate(struct pt_regs * xcp,struct mips_fpu_struct * ctx,struct mm_decoded_insn dec_insn,void * __user * fault_addr)974 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
975 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
976 {
977 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
978 	unsigned int cond, cbit;
979 	mips_instruction ir;
980 	int likely, pc_inc;
981 	u32 __user *wva;
982 	u64 __user *dva;
983 	u32 wval;
984 	u64 dval;
985 	int sig;
986 
987 	/*
988 	 * These are giving gcc a gentle hint about what to expect in
989 	 * dec_inst in order to do better optimization.
990 	 */
991 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
992 		unreachable();
993 
994 	/* XXX NEC Vr54xx bug workaround */
995 	if (delay_slot(xcp)) {
996 		if (dec_insn.micro_mips_mode) {
997 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
998 				clear_delay_slot(xcp);
999 		} else {
1000 			if (!isBranchInstr(xcp, dec_insn, &contpc))
1001 				clear_delay_slot(xcp);
1002 		}
1003 	}
1004 
1005 	if (delay_slot(xcp)) {
1006 		/*
1007 		 * The instruction to be emulated is in a branch delay slot
1008 		 * which means that we have to	emulate the branch instruction
1009 		 * BEFORE we do the cop1 instruction.
1010 		 *
1011 		 * This branch could be a COP1 branch, but in that case we
1012 		 * would have had a trap for that instruction, and would not
1013 		 * come through this route.
1014 		 *
1015 		 * Linux MIPS branch emulator operates on context, updating the
1016 		 * cp0_epc.
1017 		 */
1018 		ir = dec_insn.next_insn;  /* process delay slot instr */
1019 		pc_inc = dec_insn.next_pc_inc;
1020 	} else {
1021 		ir = dec_insn.insn;       /* process current instr */
1022 		pc_inc = dec_insn.pc_inc;
1023 	}
1024 
1025 	/*
1026 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1027 	 * instructions, we want to convert microMIPS FPU instructions
1028 	 * into MIPS32 instructions so that we could reuse all of the
1029 	 * FPU emulation code.
1030 	 *
1031 	 * NOTE: We cannot do this for branch instructions since they
1032 	 *       are not a subset. Example: Cannot emulate a 16-bit
1033 	 *       aligned target address with a MIPS32 instruction.
1034 	 */
1035 	if (dec_insn.micro_mips_mode) {
1036 		/*
1037 		 * If next instruction is a 16-bit instruction, then it
1038 		 * it cannot be a FPU instruction. This could happen
1039 		 * since we can be called for non-FPU instructions.
1040 		 */
1041 		if ((pc_inc == 2) ||
1042 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1043 			 == SIGILL))
1044 			return SIGILL;
1045 	}
1046 
1047 emul:
1048 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1049 	MIPS_FPU_EMU_INC_STATS(emulated);
1050 	switch (MIPSInst_OPCODE(ir)) {
1051 	case ldc1_op:
1052 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1053 				     MIPSInst_SIMM(ir));
1054 		MIPS_FPU_EMU_INC_STATS(loads);
1055 
1056 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1057 			MIPS_FPU_EMU_INC_STATS(errors);
1058 			*fault_addr = dva;
1059 			return SIGBUS;
1060 		}
1061 		if (__get_user(dval, dva)) {
1062 			MIPS_FPU_EMU_INC_STATS(errors);
1063 			*fault_addr = dva;
1064 			return SIGSEGV;
1065 		}
1066 		DITOREG(dval, MIPSInst_RT(ir));
1067 		break;
1068 
1069 	case sdc1_op:
1070 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1071 				      MIPSInst_SIMM(ir));
1072 		MIPS_FPU_EMU_INC_STATS(stores);
1073 		DIFROMREG(dval, MIPSInst_RT(ir));
1074 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1075 			MIPS_FPU_EMU_INC_STATS(errors);
1076 			*fault_addr = dva;
1077 			return SIGBUS;
1078 		}
1079 		if (__put_user(dval, dva)) {
1080 			MIPS_FPU_EMU_INC_STATS(errors);
1081 			*fault_addr = dva;
1082 			return SIGSEGV;
1083 		}
1084 		break;
1085 
1086 	case lwc1_op:
1087 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1088 				      MIPSInst_SIMM(ir));
1089 		MIPS_FPU_EMU_INC_STATS(loads);
1090 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1091 			MIPS_FPU_EMU_INC_STATS(errors);
1092 			*fault_addr = wva;
1093 			return SIGBUS;
1094 		}
1095 		if (__get_user(wval, wva)) {
1096 			MIPS_FPU_EMU_INC_STATS(errors);
1097 			*fault_addr = wva;
1098 			return SIGSEGV;
1099 		}
1100 		SITOREG(wval, MIPSInst_RT(ir));
1101 		break;
1102 
1103 	case swc1_op:
1104 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1105 				      MIPSInst_SIMM(ir));
1106 		MIPS_FPU_EMU_INC_STATS(stores);
1107 		SIFROMREG(wval, MIPSInst_RT(ir));
1108 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1109 			MIPS_FPU_EMU_INC_STATS(errors);
1110 			*fault_addr = wva;
1111 			return SIGBUS;
1112 		}
1113 		if (__put_user(wval, wva)) {
1114 			MIPS_FPU_EMU_INC_STATS(errors);
1115 			*fault_addr = wva;
1116 			return SIGSEGV;
1117 		}
1118 		break;
1119 
1120 	case cop1_op:
1121 		switch (MIPSInst_RS(ir)) {
1122 		case dmfc_op:
1123 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1124 				return SIGILL;
1125 
1126 			/* copregister fs -> gpr[rt] */
1127 			if (MIPSInst_RT(ir) != 0) {
1128 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1129 					MIPSInst_RD(ir));
1130 			}
1131 			break;
1132 
1133 		case dmtc_op:
1134 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1135 				return SIGILL;
1136 
1137 			/* copregister fs <- rt */
1138 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1139 			break;
1140 
1141 		case mfhc_op:
1142 			if (!cpu_has_mips_r2_r6)
1143 				goto sigill;
1144 
1145 			/* copregister rd -> gpr[rt] */
1146 			if (MIPSInst_RT(ir) != 0) {
1147 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1148 					MIPSInst_RD(ir));
1149 			}
1150 			break;
1151 
1152 		case mthc_op:
1153 			if (!cpu_has_mips_r2_r6)
1154 				goto sigill;
1155 
1156 			/* copregister rd <- gpr[rt] */
1157 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1158 			break;
1159 
1160 		case mfc_op:
1161 			/* copregister rd -> gpr[rt] */
1162 			if (MIPSInst_RT(ir) != 0) {
1163 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1164 					MIPSInst_RD(ir));
1165 			}
1166 			break;
1167 
1168 		case mtc_op:
1169 			/* copregister rd <- rt */
1170 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1171 			break;
1172 
1173 		case cfc_op:
1174 			/* cop control register rd -> gpr[rt] */
1175 			cop1_cfc(xcp, ctx, ir);
1176 			break;
1177 
1178 		case ctc_op:
1179 			/* copregister rd <- rt */
1180 			cop1_ctc(xcp, ctx, ir);
1181 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1182 				return SIGFPE;
1183 			}
1184 			break;
1185 
1186 		case bc1eqz_op:
1187 		case bc1nez_op:
1188 			if (!cpu_has_mips_r6 || delay_slot(xcp))
1189 				return SIGILL;
1190 
1191 			cond = likely = 0;
1192 			switch (MIPSInst_RS(ir)) {
1193 			case bc1eqz_op:
1194 				if (get_fpr32(&current->thread.fpu.fpr[MIPSInst_RT(ir)], 0) & 0x1)
1195 				    cond = 1;
1196 				break;
1197 			case bc1nez_op:
1198 				if (!(get_fpr32(&current->thread.fpu.fpr[MIPSInst_RT(ir)], 0) & 0x1))
1199 				    cond = 1;
1200 				break;
1201 			}
1202 			goto branch_common;
1203 
1204 		case bc_op:
1205 			if (delay_slot(xcp))
1206 				return SIGILL;
1207 
1208 			if (cpu_has_mips_4_5_r)
1209 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1210 			else
1211 				cbit = FPU_CSR_COND;
1212 			cond = ctx->fcr31 & cbit;
1213 
1214 			likely = 0;
1215 			switch (MIPSInst_RT(ir) & 3) {
1216 			case bcfl_op:
1217 				if (cpu_has_mips_2_3_4_5_r)
1218 					likely = 1;
1219 				/* Fall through */
1220 			case bcf_op:
1221 				cond = !cond;
1222 				break;
1223 			case bctl_op:
1224 				if (cpu_has_mips_2_3_4_5_r)
1225 					likely = 1;
1226 				/* Fall through */
1227 			case bct_op:
1228 				break;
1229 			}
1230 branch_common:
1231 			set_delay_slot(xcp);
1232 			if (cond) {
1233 				/*
1234 				 * Branch taken: emulate dslot instruction
1235 				 */
1236 				unsigned long bcpc;
1237 
1238 				/*
1239 				 * Remember EPC at the branch to point back
1240 				 * at so that any delay-slot instruction
1241 				 * signal is not silently ignored.
1242 				 */
1243 				bcpc = xcp->cp0_epc;
1244 				xcp->cp0_epc += dec_insn.pc_inc;
1245 
1246 				contpc = MIPSInst_SIMM(ir);
1247 				ir = dec_insn.next_insn;
1248 				if (dec_insn.micro_mips_mode) {
1249 					contpc = (xcp->cp0_epc + (contpc << 1));
1250 
1251 					/* If 16-bit instruction, not FPU. */
1252 					if ((dec_insn.next_pc_inc == 2) ||
1253 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1254 
1255 						/*
1256 						 * Since this instruction will
1257 						 * be put on the stack with
1258 						 * 32-bit words, get around
1259 						 * this problem by putting a
1260 						 * NOP16 as the second one.
1261 						 */
1262 						if (dec_insn.next_pc_inc == 2)
1263 							ir = (ir & (~0xffff)) | MM_NOP16;
1264 
1265 						/*
1266 						 * Single step the non-CP1
1267 						 * instruction in the dslot.
1268 						 */
1269 						sig = mips_dsemul(xcp, ir,
1270 								  contpc);
1271 						if (sig)
1272 							xcp->cp0_epc = bcpc;
1273 						/*
1274 						 * SIGILL forces out of
1275 						 * the emulation loop.
1276 						 */
1277 						return sig ? sig : SIGILL;
1278 					}
1279 				} else
1280 					contpc = (xcp->cp0_epc + (contpc << 2));
1281 
1282 				switch (MIPSInst_OPCODE(ir)) {
1283 				case lwc1_op:
1284 				case swc1_op:
1285 					goto emul;
1286 
1287 				case ldc1_op:
1288 				case sdc1_op:
1289 					if (cpu_has_mips_2_3_4_5_r)
1290 						goto emul;
1291 
1292 					goto bc_sigill;
1293 
1294 				case cop1_op:
1295 					goto emul;
1296 
1297 				case cop1x_op:
1298 					if (cpu_has_mips_4_5_64_r2_r6)
1299 						/* its one of ours */
1300 						goto emul;
1301 
1302 					goto bc_sigill;
1303 
1304 				case spec_op:
1305 					switch (MIPSInst_FUNC(ir)) {
1306 					case movc_op:
1307 						if (cpu_has_mips_4_5_r)
1308 							goto emul;
1309 
1310 						goto bc_sigill;
1311 					}
1312 					break;
1313 
1314 				bc_sigill:
1315 					xcp->cp0_epc = bcpc;
1316 					return SIGILL;
1317 				}
1318 
1319 				/*
1320 				 * Single step the non-cp1
1321 				 * instruction in the dslot
1322 				 */
1323 				sig = mips_dsemul(xcp, ir, contpc);
1324 				if (sig)
1325 					xcp->cp0_epc = bcpc;
1326 				/* SIGILL forces out of the emulation loop.  */
1327 				return sig ? sig : SIGILL;
1328 			} else if (likely) {	/* branch not taken */
1329 				/*
1330 				 * branch likely nullifies
1331 				 * dslot if not taken
1332 				 */
1333 				xcp->cp0_epc += dec_insn.pc_inc;
1334 				contpc += dec_insn.pc_inc;
1335 				/*
1336 				 * else continue & execute
1337 				 * dslot as normal insn
1338 				 */
1339 			}
1340 			break;
1341 
1342 		default:
1343 			if (!(MIPSInst_RS(ir) & 0x10))
1344 				return SIGILL;
1345 
1346 			/* a real fpu computation instruction */
1347 			if ((sig = fpu_emu(xcp, ctx, ir)))
1348 				return sig;
1349 		}
1350 		break;
1351 
1352 	case cop1x_op:
1353 		if (!cpu_has_mips_4_5_64_r2_r6)
1354 			return SIGILL;
1355 
1356 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1357 		if (sig)
1358 			return sig;
1359 		break;
1360 
1361 	case spec_op:
1362 		if (!cpu_has_mips_4_5_r)
1363 			return SIGILL;
1364 
1365 		if (MIPSInst_FUNC(ir) != movc_op)
1366 			return SIGILL;
1367 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1368 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1369 			xcp->regs[MIPSInst_RD(ir)] =
1370 				xcp->regs[MIPSInst_RS(ir)];
1371 		break;
1372 	default:
1373 sigill:
1374 		return SIGILL;
1375 	}
1376 
1377 	/* we did it !! */
1378 	xcp->cp0_epc = contpc;
1379 	clear_delay_slot(xcp);
1380 
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Conversion table from MIPS compare ops 48-63
1386  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1387  */
1388 static const unsigned char cmptab[8] = {
1389 	0,			/* cmp_0 (sig) cmp_sf */
1390 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1391 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1392 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1393 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1394 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1395 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1396 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1397 };
1398 
1399 
1400 /*
1401  * Additional MIPS4 instructions
1402  */
1403 
1404 #define DEF3OP(name, p, f1, f2, f3)					\
1405 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1406 	union ieee754##p s, union ieee754##p t)				\
1407 {									\
1408 	struct _ieee754_csr ieee754_csr_save;				\
1409 	s = f1(s, t);							\
1410 	ieee754_csr_save = ieee754_csr;					\
1411 	s = f2(s, r);							\
1412 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1413 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1414 	s = f3(s);							\
1415 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1416 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1417 	return s;							\
1418 }
1419 
fpemu_dp_recip(union ieee754dp d)1420 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1421 {
1422 	return ieee754dp_div(ieee754dp_one(0), d);
1423 }
1424 
fpemu_dp_rsqrt(union ieee754dp d)1425 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1426 {
1427 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1428 }
1429 
fpemu_sp_recip(union ieee754sp s)1430 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1431 {
1432 	return ieee754sp_div(ieee754sp_one(0), s);
1433 }
1434 
fpemu_sp_rsqrt(union ieee754sp s)1435 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1436 {
1437 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1438 }
1439 
1440 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1441 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1442 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1443 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1444 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1445 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1446 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1447 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1448 
fpux_emu(struct pt_regs * xcp,struct mips_fpu_struct * ctx,mips_instruction ir,void * __user * fault_addr)1449 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1450 	mips_instruction ir, void *__user *fault_addr)
1451 {
1452 	unsigned rcsr = 0;	/* resulting csr */
1453 
1454 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1455 
1456 	switch (MIPSInst_FMA_FFMT(ir)) {
1457 	case s_fmt:{		/* 0 */
1458 
1459 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1460 		union ieee754sp fd, fr, fs, ft;
1461 		u32 __user *va;
1462 		u32 val;
1463 
1464 		switch (MIPSInst_FUNC(ir)) {
1465 		case lwxc1_op:
1466 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1467 				xcp->regs[MIPSInst_FT(ir)]);
1468 
1469 			MIPS_FPU_EMU_INC_STATS(loads);
1470 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1471 				MIPS_FPU_EMU_INC_STATS(errors);
1472 				*fault_addr = va;
1473 				return SIGBUS;
1474 			}
1475 			if (__get_user(val, va)) {
1476 				MIPS_FPU_EMU_INC_STATS(errors);
1477 				*fault_addr = va;
1478 				return SIGSEGV;
1479 			}
1480 			SITOREG(val, MIPSInst_FD(ir));
1481 			break;
1482 
1483 		case swxc1_op:
1484 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1485 				xcp->regs[MIPSInst_FT(ir)]);
1486 
1487 			MIPS_FPU_EMU_INC_STATS(stores);
1488 
1489 			SIFROMREG(val, MIPSInst_FS(ir));
1490 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1491 				MIPS_FPU_EMU_INC_STATS(errors);
1492 				*fault_addr = va;
1493 				return SIGBUS;
1494 			}
1495 			if (put_user(val, va)) {
1496 				MIPS_FPU_EMU_INC_STATS(errors);
1497 				*fault_addr = va;
1498 				return SIGSEGV;
1499 			}
1500 			break;
1501 
1502 		case madd_s_op:
1503 			handler = fpemu_sp_madd;
1504 			goto scoptop;
1505 		case msub_s_op:
1506 			handler = fpemu_sp_msub;
1507 			goto scoptop;
1508 		case nmadd_s_op:
1509 			handler = fpemu_sp_nmadd;
1510 			goto scoptop;
1511 		case nmsub_s_op:
1512 			handler = fpemu_sp_nmsub;
1513 			goto scoptop;
1514 
1515 		      scoptop:
1516 			SPFROMREG(fr, MIPSInst_FR(ir));
1517 			SPFROMREG(fs, MIPSInst_FS(ir));
1518 			SPFROMREG(ft, MIPSInst_FT(ir));
1519 			fd = (*handler) (fr, fs, ft);
1520 			SPTOREG(fd, MIPSInst_FD(ir));
1521 
1522 		      copcsr:
1523 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1524 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1525 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1526 			}
1527 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1528 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1529 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1530 			}
1531 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1532 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1533 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1534 			}
1535 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1536 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1537 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1538 			}
1539 
1540 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1541 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1542 				/*printk ("SIGFPE: FPU csr = %08x\n",
1543 				   ctx->fcr31); */
1544 				return SIGFPE;
1545 			}
1546 
1547 			break;
1548 
1549 		default:
1550 			return SIGILL;
1551 		}
1552 		break;
1553 	}
1554 
1555 	case d_fmt:{		/* 1 */
1556 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1557 		union ieee754dp fd, fr, fs, ft;
1558 		u64 __user *va;
1559 		u64 val;
1560 
1561 		switch (MIPSInst_FUNC(ir)) {
1562 		case ldxc1_op:
1563 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1564 				xcp->regs[MIPSInst_FT(ir)]);
1565 
1566 			MIPS_FPU_EMU_INC_STATS(loads);
1567 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1568 				MIPS_FPU_EMU_INC_STATS(errors);
1569 				*fault_addr = va;
1570 				return SIGBUS;
1571 			}
1572 			if (__get_user(val, va)) {
1573 				MIPS_FPU_EMU_INC_STATS(errors);
1574 				*fault_addr = va;
1575 				return SIGSEGV;
1576 			}
1577 			DITOREG(val, MIPSInst_FD(ir));
1578 			break;
1579 
1580 		case sdxc1_op:
1581 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1582 				xcp->regs[MIPSInst_FT(ir)]);
1583 
1584 			MIPS_FPU_EMU_INC_STATS(stores);
1585 			DIFROMREG(val, MIPSInst_FS(ir));
1586 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1587 				MIPS_FPU_EMU_INC_STATS(errors);
1588 				*fault_addr = va;
1589 				return SIGBUS;
1590 			}
1591 			if (__put_user(val, va)) {
1592 				MIPS_FPU_EMU_INC_STATS(errors);
1593 				*fault_addr = va;
1594 				return SIGSEGV;
1595 			}
1596 			break;
1597 
1598 		case madd_d_op:
1599 			handler = fpemu_dp_madd;
1600 			goto dcoptop;
1601 		case msub_d_op:
1602 			handler = fpemu_dp_msub;
1603 			goto dcoptop;
1604 		case nmadd_d_op:
1605 			handler = fpemu_dp_nmadd;
1606 			goto dcoptop;
1607 		case nmsub_d_op:
1608 			handler = fpemu_dp_nmsub;
1609 			goto dcoptop;
1610 
1611 		      dcoptop:
1612 			DPFROMREG(fr, MIPSInst_FR(ir));
1613 			DPFROMREG(fs, MIPSInst_FS(ir));
1614 			DPFROMREG(ft, MIPSInst_FT(ir));
1615 			fd = (*handler) (fr, fs, ft);
1616 			DPTOREG(fd, MIPSInst_FD(ir));
1617 			goto copcsr;
1618 
1619 		default:
1620 			return SIGILL;
1621 		}
1622 		break;
1623 	}
1624 
1625 	case 0x3:
1626 		if (MIPSInst_FUNC(ir) != pfetch_op)
1627 			return SIGILL;
1628 
1629 		/* ignore prefx operation */
1630 		break;
1631 
1632 	default:
1633 		return SIGILL;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 
1640 
1641 /*
1642  * Emulate a single COP1 arithmetic instruction.
1643  */
fpu_emu(struct pt_regs * xcp,struct mips_fpu_struct * ctx,mips_instruction ir)1644 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1645 	mips_instruction ir)
1646 {
1647 	int rfmt;		/* resulting format */
1648 	unsigned rcsr = 0;	/* resulting csr */
1649 	unsigned int oldrm;
1650 	unsigned int cbit;
1651 	unsigned cond;
1652 	union {
1653 		union ieee754dp d;
1654 		union ieee754sp s;
1655 		int w;
1656 		s64 l;
1657 	} rv;			/* resulting value */
1658 	u64 bits;
1659 
1660 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1661 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1662 	case s_fmt: {		/* 0 */
1663 		union {
1664 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1665 			union ieee754sp(*u) (union ieee754sp);
1666 		} handler;
1667 		union ieee754sp fs, ft;
1668 
1669 		switch (MIPSInst_FUNC(ir)) {
1670 			/* binary ops */
1671 		case fadd_op:
1672 			handler.b = ieee754sp_add;
1673 			goto scopbop;
1674 		case fsub_op:
1675 			handler.b = ieee754sp_sub;
1676 			goto scopbop;
1677 		case fmul_op:
1678 			handler.b = ieee754sp_mul;
1679 			goto scopbop;
1680 		case fdiv_op:
1681 			handler.b = ieee754sp_div;
1682 			goto scopbop;
1683 
1684 			/* unary  ops */
1685 		case fsqrt_op:
1686 			if (!cpu_has_mips_2_3_4_5_r)
1687 				return SIGILL;
1688 
1689 			handler.u = ieee754sp_sqrt;
1690 			goto scopuop;
1691 
1692 		/*
1693 		 * Note that on some MIPS IV implementations such as the
1694 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1695 		 * achieve full IEEE-754 accuracy - however this emulator does.
1696 		 */
1697 		case frsqrt_op:
1698 			if (!cpu_has_mips_4_5_64_r2_r6)
1699 				return SIGILL;
1700 
1701 			handler.u = fpemu_sp_rsqrt;
1702 			goto scopuop;
1703 
1704 		case frecip_op:
1705 			if (!cpu_has_mips_4_5_64_r2_r6)
1706 				return SIGILL;
1707 
1708 			handler.u = fpemu_sp_recip;
1709 			goto scopuop;
1710 
1711 		case fmovc_op:
1712 			if (!cpu_has_mips_4_5_r)
1713 				return SIGILL;
1714 
1715 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1716 			if (((ctx->fcr31 & cond) != 0) !=
1717 				((MIPSInst_FT(ir) & 1) != 0))
1718 				return 0;
1719 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1720 			break;
1721 
1722 		case fmovz_op:
1723 			if (!cpu_has_mips_4_5_r)
1724 				return SIGILL;
1725 
1726 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1727 				return 0;
1728 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1729 			break;
1730 
1731 		case fmovn_op:
1732 			if (!cpu_has_mips_4_5_r)
1733 				return SIGILL;
1734 
1735 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1736 				return 0;
1737 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1738 			break;
1739 
1740 		case fabs_op:
1741 			handler.u = ieee754sp_abs;
1742 			goto scopuop;
1743 
1744 		case fneg_op:
1745 			handler.u = ieee754sp_neg;
1746 			goto scopuop;
1747 
1748 		case fmov_op:
1749 			/* an easy one */
1750 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1751 			goto copcsr;
1752 
1753 			/* binary op on handler */
1754 scopbop:
1755 			SPFROMREG(fs, MIPSInst_FS(ir));
1756 			SPFROMREG(ft, MIPSInst_FT(ir));
1757 
1758 			rv.s = (*handler.b) (fs, ft);
1759 			goto copcsr;
1760 scopuop:
1761 			SPFROMREG(fs, MIPSInst_FS(ir));
1762 			rv.s = (*handler.u) (fs);
1763 			goto copcsr;
1764 copcsr:
1765 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1766 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1767 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1768 			}
1769 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1770 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1771 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1772 			}
1773 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1774 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1775 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1776 			}
1777 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1778 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1779 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1780 			}
1781 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1782 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1783 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1784 			}
1785 			break;
1786 
1787 			/* unary conv ops */
1788 		case fcvts_op:
1789 			return SIGILL;	/* not defined */
1790 
1791 		case fcvtd_op:
1792 			SPFROMREG(fs, MIPSInst_FS(ir));
1793 			rv.d = ieee754dp_fsp(fs);
1794 			rfmt = d_fmt;
1795 			goto copcsr;
1796 
1797 		case fcvtw_op:
1798 			SPFROMREG(fs, MIPSInst_FS(ir));
1799 			rv.w = ieee754sp_tint(fs);
1800 			rfmt = w_fmt;
1801 			goto copcsr;
1802 
1803 		case fround_op:
1804 		case ftrunc_op:
1805 		case fceil_op:
1806 		case ffloor_op:
1807 			if (!cpu_has_mips_2_3_4_5_r)
1808 				return SIGILL;
1809 
1810 			oldrm = ieee754_csr.rm;
1811 			SPFROMREG(fs, MIPSInst_FS(ir));
1812 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1813 			rv.w = ieee754sp_tint(fs);
1814 			ieee754_csr.rm = oldrm;
1815 			rfmt = w_fmt;
1816 			goto copcsr;
1817 
1818 		case fcvtl_op:
1819 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1820 				return SIGILL;
1821 
1822 			SPFROMREG(fs, MIPSInst_FS(ir));
1823 			rv.l = ieee754sp_tlong(fs);
1824 			rfmt = l_fmt;
1825 			goto copcsr;
1826 
1827 		case froundl_op:
1828 		case ftruncl_op:
1829 		case fceill_op:
1830 		case ffloorl_op:
1831 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1832 				return SIGILL;
1833 
1834 			oldrm = ieee754_csr.rm;
1835 			SPFROMREG(fs, MIPSInst_FS(ir));
1836 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1837 			rv.l = ieee754sp_tlong(fs);
1838 			ieee754_csr.rm = oldrm;
1839 			rfmt = l_fmt;
1840 			goto copcsr;
1841 
1842 		default:
1843 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1844 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1845 				union ieee754sp fs, ft;
1846 
1847 				SPFROMREG(fs, MIPSInst_FS(ir));
1848 				SPFROMREG(ft, MIPSInst_FT(ir));
1849 				rv.w = ieee754sp_cmp(fs, ft,
1850 					cmptab[cmpop & 0x7], cmpop & 0x8);
1851 				rfmt = -1;
1852 				if ((cmpop & 0x8) && ieee754_cxtest
1853 					(IEEE754_INVALID_OPERATION))
1854 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1855 				else
1856 					goto copcsr;
1857 
1858 			} else
1859 				return SIGILL;
1860 			break;
1861 		}
1862 		break;
1863 	}
1864 
1865 	case d_fmt: {
1866 		union ieee754dp fs, ft;
1867 		union {
1868 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1869 			union ieee754dp(*u) (union ieee754dp);
1870 		} handler;
1871 
1872 		switch (MIPSInst_FUNC(ir)) {
1873 			/* binary ops */
1874 		case fadd_op:
1875 			handler.b = ieee754dp_add;
1876 			goto dcopbop;
1877 		case fsub_op:
1878 			handler.b = ieee754dp_sub;
1879 			goto dcopbop;
1880 		case fmul_op:
1881 			handler.b = ieee754dp_mul;
1882 			goto dcopbop;
1883 		case fdiv_op:
1884 			handler.b = ieee754dp_div;
1885 			goto dcopbop;
1886 
1887 			/* unary  ops */
1888 		case fsqrt_op:
1889 			if (!cpu_has_mips_2_3_4_5_r)
1890 				return SIGILL;
1891 
1892 			handler.u = ieee754dp_sqrt;
1893 			goto dcopuop;
1894 		/*
1895 		 * Note that on some MIPS IV implementations such as the
1896 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1897 		 * achieve full IEEE-754 accuracy - however this emulator does.
1898 		 */
1899 		case frsqrt_op:
1900 			if (!cpu_has_mips_4_5_64_r2_r6)
1901 				return SIGILL;
1902 
1903 			handler.u = fpemu_dp_rsqrt;
1904 			goto dcopuop;
1905 		case frecip_op:
1906 			if (!cpu_has_mips_4_5_64_r2_r6)
1907 				return SIGILL;
1908 
1909 			handler.u = fpemu_dp_recip;
1910 			goto dcopuop;
1911 		case fmovc_op:
1912 			if (!cpu_has_mips_4_5_r)
1913 				return SIGILL;
1914 
1915 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1916 			if (((ctx->fcr31 & cond) != 0) !=
1917 				((MIPSInst_FT(ir) & 1) != 0))
1918 				return 0;
1919 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1920 			break;
1921 		case fmovz_op:
1922 			if (!cpu_has_mips_4_5_r)
1923 				return SIGILL;
1924 
1925 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1926 				return 0;
1927 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1928 			break;
1929 		case fmovn_op:
1930 			if (!cpu_has_mips_4_5_r)
1931 				return SIGILL;
1932 
1933 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1934 				return 0;
1935 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1936 			break;
1937 		case fabs_op:
1938 			handler.u = ieee754dp_abs;
1939 			goto dcopuop;
1940 
1941 		case fneg_op:
1942 			handler.u = ieee754dp_neg;
1943 			goto dcopuop;
1944 
1945 		case fmov_op:
1946 			/* an easy one */
1947 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1948 			goto copcsr;
1949 
1950 			/* binary op on handler */
1951 dcopbop:
1952 			DPFROMREG(fs, MIPSInst_FS(ir));
1953 			DPFROMREG(ft, MIPSInst_FT(ir));
1954 
1955 			rv.d = (*handler.b) (fs, ft);
1956 			goto copcsr;
1957 dcopuop:
1958 			DPFROMREG(fs, MIPSInst_FS(ir));
1959 			rv.d = (*handler.u) (fs);
1960 			goto copcsr;
1961 
1962 		/*
1963 		 * unary conv ops
1964 		 */
1965 		case fcvts_op:
1966 			DPFROMREG(fs, MIPSInst_FS(ir));
1967 			rv.s = ieee754sp_fdp(fs);
1968 			rfmt = s_fmt;
1969 			goto copcsr;
1970 
1971 		case fcvtd_op:
1972 			return SIGILL;	/* not defined */
1973 
1974 		case fcvtw_op:
1975 			DPFROMREG(fs, MIPSInst_FS(ir));
1976 			rv.w = ieee754dp_tint(fs);	/* wrong */
1977 			rfmt = w_fmt;
1978 			goto copcsr;
1979 
1980 		case fround_op:
1981 		case ftrunc_op:
1982 		case fceil_op:
1983 		case ffloor_op:
1984 			if (!cpu_has_mips_2_3_4_5_r)
1985 				return SIGILL;
1986 
1987 			oldrm = ieee754_csr.rm;
1988 			DPFROMREG(fs, MIPSInst_FS(ir));
1989 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1990 			rv.w = ieee754dp_tint(fs);
1991 			ieee754_csr.rm = oldrm;
1992 			rfmt = w_fmt;
1993 			goto copcsr;
1994 
1995 		case fcvtl_op:
1996 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1997 				return SIGILL;
1998 
1999 			DPFROMREG(fs, MIPSInst_FS(ir));
2000 			rv.l = ieee754dp_tlong(fs);
2001 			rfmt = l_fmt;
2002 			goto copcsr;
2003 
2004 		case froundl_op:
2005 		case ftruncl_op:
2006 		case fceill_op:
2007 		case ffloorl_op:
2008 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2009 				return SIGILL;
2010 
2011 			oldrm = ieee754_csr.rm;
2012 			DPFROMREG(fs, MIPSInst_FS(ir));
2013 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2014 			rv.l = ieee754dp_tlong(fs);
2015 			ieee754_csr.rm = oldrm;
2016 			rfmt = l_fmt;
2017 			goto copcsr;
2018 
2019 		default:
2020 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
2021 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2022 				union ieee754dp fs, ft;
2023 
2024 				DPFROMREG(fs, MIPSInst_FS(ir));
2025 				DPFROMREG(ft, MIPSInst_FT(ir));
2026 				rv.w = ieee754dp_cmp(fs, ft,
2027 					cmptab[cmpop & 0x7], cmpop & 0x8);
2028 				rfmt = -1;
2029 				if ((cmpop & 0x8)
2030 					&&
2031 					ieee754_cxtest
2032 					(IEEE754_INVALID_OPERATION))
2033 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2034 				else
2035 					goto copcsr;
2036 
2037 			}
2038 			else {
2039 				return SIGILL;
2040 			}
2041 			break;
2042 		}
2043 		break;
2044 
2045 	case w_fmt:
2046 		switch (MIPSInst_FUNC(ir)) {
2047 		case fcvts_op:
2048 			/* convert word to single precision real */
2049 			SPFROMREG(fs, MIPSInst_FS(ir));
2050 			rv.s = ieee754sp_fint(fs.bits);
2051 			rfmt = s_fmt;
2052 			goto copcsr;
2053 		case fcvtd_op:
2054 			/* convert word to double precision real */
2055 			SPFROMREG(fs, MIPSInst_FS(ir));
2056 			rv.d = ieee754dp_fint(fs.bits);
2057 			rfmt = d_fmt;
2058 			goto copcsr;
2059 		default:
2060 			return SIGILL;
2061 		}
2062 		break;
2063 	}
2064 
2065 	case l_fmt:
2066 
2067 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2068 			return SIGILL;
2069 
2070 		DIFROMREG(bits, MIPSInst_FS(ir));
2071 
2072 		switch (MIPSInst_FUNC(ir)) {
2073 		case fcvts_op:
2074 			/* convert long to single precision real */
2075 			rv.s = ieee754sp_flong(bits);
2076 			rfmt = s_fmt;
2077 			goto copcsr;
2078 		case fcvtd_op:
2079 			/* convert long to double precision real */
2080 			rv.d = ieee754dp_flong(bits);
2081 			rfmt = d_fmt;
2082 			goto copcsr;
2083 		default:
2084 			return SIGILL;
2085 		}
2086 		break;
2087 
2088 	default:
2089 		return SIGILL;
2090 	}
2091 
2092 	/*
2093 	 * Update the fpu CSR register for this operation.
2094 	 * If an exception is required, generate a tidy SIGFPE exception,
2095 	 * without updating the result register.
2096 	 * Note: cause exception bits do not accumulate, they are rewritten
2097 	 * for each op; only the flag/sticky bits accumulate.
2098 	 */
2099 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2100 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2101 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2102 		return SIGFPE;
2103 	}
2104 
2105 	/*
2106 	 * Now we can safely write the result back to the register file.
2107 	 */
2108 	switch (rfmt) {
2109 	case -1:
2110 
2111 		if (cpu_has_mips_4_5_r)
2112 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2113 		else
2114 			cbit = FPU_CSR_COND;
2115 		if (rv.w)
2116 			ctx->fcr31 |= cbit;
2117 		else
2118 			ctx->fcr31 &= ~cbit;
2119 		break;
2120 
2121 	case d_fmt:
2122 		DPTOREG(rv.d, MIPSInst_FD(ir));
2123 		break;
2124 	case s_fmt:
2125 		SPTOREG(rv.s, MIPSInst_FD(ir));
2126 		break;
2127 	case w_fmt:
2128 		SITOREG(rv.w, MIPSInst_FD(ir));
2129 		break;
2130 	case l_fmt:
2131 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2132 			return SIGILL;
2133 
2134 		DITOREG(rv.l, MIPSInst_FD(ir));
2135 		break;
2136 	default:
2137 		return SIGILL;
2138 	}
2139 
2140 	return 0;
2141 }
2142 
fpu_emulator_cop1Handler(struct pt_regs * xcp,struct mips_fpu_struct * ctx,int has_fpu,void * __user * fault_addr)2143 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2144 	int has_fpu, void *__user *fault_addr)
2145 {
2146 	unsigned long oldepc, prevepc;
2147 	struct mm_decoded_insn dec_insn;
2148 	u16 instr[4];
2149 	u16 *instr_ptr;
2150 	int sig = 0;
2151 
2152 	oldepc = xcp->cp0_epc;
2153 	do {
2154 		prevepc = xcp->cp0_epc;
2155 
2156 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2157 			/*
2158 			 * Get next 2 microMIPS instructions and convert them
2159 			 * into 32-bit instructions.
2160 			 */
2161 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2162 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2163 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2164 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2165 				MIPS_FPU_EMU_INC_STATS(errors);
2166 				return SIGBUS;
2167 			}
2168 			instr_ptr = instr;
2169 
2170 			/* Get first instruction. */
2171 			if (mm_insn_16bit(*instr_ptr)) {
2172 				/* Duplicate the half-word. */
2173 				dec_insn.insn = (*instr_ptr << 16) |
2174 					(*instr_ptr);
2175 				/* 16-bit instruction. */
2176 				dec_insn.pc_inc = 2;
2177 				instr_ptr += 1;
2178 			} else {
2179 				dec_insn.insn = (*instr_ptr << 16) |
2180 					*(instr_ptr+1);
2181 				/* 32-bit instruction. */
2182 				dec_insn.pc_inc = 4;
2183 				instr_ptr += 2;
2184 			}
2185 			/* Get second instruction. */
2186 			if (mm_insn_16bit(*instr_ptr)) {
2187 				/* Duplicate the half-word. */
2188 				dec_insn.next_insn = (*instr_ptr << 16) |
2189 					(*instr_ptr);
2190 				/* 16-bit instruction. */
2191 				dec_insn.next_pc_inc = 2;
2192 			} else {
2193 				dec_insn.next_insn = (*instr_ptr << 16) |
2194 					*(instr_ptr+1);
2195 				/* 32-bit instruction. */
2196 				dec_insn.next_pc_inc = 4;
2197 			}
2198 			dec_insn.micro_mips_mode = 1;
2199 		} else {
2200 			if ((get_user(dec_insn.insn,
2201 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2202 			    (get_user(dec_insn.next_insn,
2203 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2204 				MIPS_FPU_EMU_INC_STATS(errors);
2205 				return SIGBUS;
2206 			}
2207 			dec_insn.pc_inc = 4;
2208 			dec_insn.next_pc_inc = 4;
2209 			dec_insn.micro_mips_mode = 0;
2210 		}
2211 
2212 		if ((dec_insn.insn == 0) ||
2213 		   ((dec_insn.pc_inc == 2) &&
2214 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2215 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2216 		else {
2217 			/*
2218 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2219 			 * No need to copy ctx->fcr31 to ieee754_csr.
2220 			 */
2221 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2222 		}
2223 
2224 		if (has_fpu)
2225 			break;
2226 		if (sig)
2227 			break;
2228 
2229 		cond_resched();
2230 	} while (xcp->cp0_epc > prevepc);
2231 
2232 	/* SIGILL indicates a non-fpu instruction */
2233 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2234 		/* but if EPC has advanced, then ignore it */
2235 		sig = 0;
2236 
2237 	return sig;
2238 }
2239