1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/ktime.h>
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
23#include <asm/cpu-info.h>
24#include <asm/mmu_context.h>
25#include <asm/tlbflush.h>
26#include <asm/inst.h>
27
28#undef CONFIG_MIPS_MT
29#include <asm/r4kcache.h>
30#define CONFIG_MIPS_MT
31
32#include "opcode.h"
33#include "interrupt.h"
34#include "commpage.h"
35
36#include "trace.h"
37
38/*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43	unsigned long instpc)
44{
45	unsigned int dspcontrol;
46	union mips_instruction insn;
47	struct kvm_vcpu_arch *arch = &vcpu->arch;
48	long epc = instpc;
49	long nextpc = KVM_INVALID_INST;
50
51	if (epc & 3)
52		goto unaligned;
53
54	/* Read the instruction */
55	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57	if (insn.word == KVM_INVALID_INST)
58		return KVM_INVALID_INST;
59
60	switch (insn.i_format.opcode) {
61		/* jr and jalr are in r_format format. */
62	case spec_op:
63		switch (insn.r_format.func) {
64		case jalr_op:
65			arch->gprs[insn.r_format.rd] = epc + 8;
66			/* Fall through */
67		case jr_op:
68			nextpc = arch->gprs[insn.r_format.rs];
69			break;
70		}
71		break;
72
73		/*
74		 * This group contains:
75		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77		 */
78	case bcond_op:
79		switch (insn.i_format.rt) {
80		case bltz_op:
81		case bltzl_op:
82			if ((long)arch->gprs[insn.i_format.rs] < 0)
83				epc = epc + 4 + (insn.i_format.simmediate << 2);
84			else
85				epc += 8;
86			nextpc = epc;
87			break;
88
89		case bgez_op:
90		case bgezl_op:
91			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92				epc = epc + 4 + (insn.i_format.simmediate << 2);
93			else
94				epc += 8;
95			nextpc = epc;
96			break;
97
98		case bltzal_op:
99		case bltzall_op:
100			arch->gprs[31] = epc + 8;
101			if ((long)arch->gprs[insn.i_format.rs] < 0)
102				epc = epc + 4 + (insn.i_format.simmediate << 2);
103			else
104				epc += 8;
105			nextpc = epc;
106			break;
107
108		case bgezal_op:
109		case bgezall_op:
110			arch->gprs[31] = epc + 8;
111			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112				epc = epc + 4 + (insn.i_format.simmediate << 2);
113			else
114				epc += 8;
115			nextpc = epc;
116			break;
117		case bposge32_op:
118			if (!cpu_has_dsp)
119				goto sigill;
120
121			dspcontrol = rddsp(0x01);
122
123			if (dspcontrol >= 32)
124				epc = epc + 4 + (insn.i_format.simmediate << 2);
125			else
126				epc += 8;
127			nextpc = epc;
128			break;
129		}
130		break;
131
132		/* These are unconditional and in j_format. */
133	case jal_op:
134		arch->gprs[31] = instpc + 8;
135	case j_op:
136		epc += 4;
137		epc >>= 28;
138		epc <<= 28;
139		epc |= (insn.j_format.target << 2);
140		nextpc = epc;
141		break;
142
143		/* These are conditional and in i_format. */
144	case beq_op:
145	case beql_op:
146		if (arch->gprs[insn.i_format.rs] ==
147		    arch->gprs[insn.i_format.rt])
148			epc = epc + 4 + (insn.i_format.simmediate << 2);
149		else
150			epc += 8;
151		nextpc = epc;
152		break;
153
154	case bne_op:
155	case bnel_op:
156		if (arch->gprs[insn.i_format.rs] !=
157		    arch->gprs[insn.i_format.rt])
158			epc = epc + 4 + (insn.i_format.simmediate << 2);
159		else
160			epc += 8;
161		nextpc = epc;
162		break;
163
164	case blez_op:		/* not really i_format */
165	case blezl_op:
166		/* rt field assumed to be zero */
167		if ((long)arch->gprs[insn.i_format.rs] <= 0)
168			epc = epc + 4 + (insn.i_format.simmediate << 2);
169		else
170			epc += 8;
171		nextpc = epc;
172		break;
173
174	case bgtz_op:
175	case bgtzl_op:
176		/* rt field assumed to be zero */
177		if ((long)arch->gprs[insn.i_format.rs] > 0)
178			epc = epc + 4 + (insn.i_format.simmediate << 2);
179		else
180			epc += 8;
181		nextpc = epc;
182		break;
183
184		/* And now the FPA/cp1 branch instructions. */
185	case cop1_op:
186		kvm_err("%s: unsupported cop1_op\n", __func__);
187		break;
188	}
189
190	return nextpc;
191
192unaligned:
193	kvm_err("%s: unaligned epc\n", __func__);
194	return nextpc;
195
196sigill:
197	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198	return nextpc;
199}
200
201enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202{
203	unsigned long branch_pc;
204	enum emulation_result er = EMULATE_DONE;
205
206	if (cause & CAUSEF_BD) {
207		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208		if (branch_pc == KVM_INVALID_INST) {
209			er = EMULATE_FAIL;
210		} else {
211			vcpu->arch.pc = branch_pc;
212			kvm_debug("BD update_pc(): New PC: %#lx\n",
213				  vcpu->arch.pc);
214		}
215	} else
216		vcpu->arch.pc += 4;
217
218	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220	return er;
221}
222
223/**
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu:	Virtual CPU.
226 *
227 * Returns:	1 if the CP0_Count timer is disabled by either the guest
228 *		CP0_Cause.DC bit or the count_ctl.DC bit.
229 *		0 otherwise (in which case CP0_Count timer is running).
230 */
231static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232{
233	struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237}
238
239/**
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241 *
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243 *
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245 */
246static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247{
248	s64 now_ns, periods;
249	u64 delta;
250
251	now_ns = ktime_to_ns(now);
252	delta = now_ns + vcpu->arch.count_dyn_bias;
253
254	if (delta >= vcpu->arch.count_period) {
255		/* If delta is out of safe range the bias needs adjusting */
256		periods = div64_s64(now_ns, vcpu->arch.count_period);
257		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258		/* Recalculate delta with new bias */
259		delta = now_ns + vcpu->arch.count_dyn_bias;
260	}
261
262	/*
263	 * We've ensured that:
264	 *   delta < count_period
265	 *
266	 * Therefore the intermediate delta*count_hz will never overflow since
267	 * at the boundary condition:
268	 *   delta = count_period
269	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
270	 *   delta * count_hz = NSEC_PER_SEC * 2^32
271	 */
272	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273}
274
275/**
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu:	Virtual CPU.
278 *
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
282 *
283 * Returns:	Effective monotonic ktime for CP0_Count.
284 */
285static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286{
287	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288		return vcpu->arch.count_resume;
289
290	return ktime_get();
291}
292
293/**
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu:	Virtual CPU.
296 * @now:	Kernel time to read CP0_Count at.
297 *
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
300 *
301 * Returns:	The current value of the guest CP0_Count register.
302 */
303static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304{
305	struct mips_coproc *cop0 = vcpu->arch.cop0;
306	ktime_t expires, threshold;
307	uint32_t count, compare;
308	int running;
309
310	/* Calculate the biased and scaled guest CP0_Count */
311	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312	compare = kvm_read_c0_guest_compare(cop0);
313
314	/*
315	 * Find whether CP0_Count has reached the closest timer interrupt. If
316	 * not, we shouldn't inject it.
317	 */
318	if ((int32_t)(count - compare) < 0)
319		return count;
320
321	/*
322	 * The CP0_Count we're going to return has already reached the closest
323	 * timer interrupt. Quickly check if it really is a new interrupt by
324	 * looking at whether the interval until the hrtimer expiry time is
325	 * less than 1/4 of the timer period.
326	 */
327	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329	if (ktime_before(expires, threshold)) {
330		/*
331		 * Cancel it while we handle it so there's no chance of
332		 * interference with the timeout handler.
333		 */
334		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336		/* Nothing should be waiting on the timeout */
337		kvm_mips_callbacks->queue_timer_int(vcpu);
338
339		/*
340		 * Restart the timer if it was running based on the expiry time
341		 * we read, so that we don't push it back 2 periods.
342		 */
343		if (running) {
344			expires = ktime_add_ns(expires,
345					       vcpu->arch.count_period);
346			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347				      HRTIMER_MODE_ABS);
348		}
349	}
350
351	return count;
352}
353
354/**
355 * kvm_mips_read_count() - Read the current count value.
356 * @vcpu:	Virtual CPU.
357 *
358 * Read the current guest CP0_Count value, taking into account whether the timer
359 * is stopped.
360 *
361 * Returns:	The current guest CP0_Count value.
362 */
363uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364{
365	struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367	/* If count disabled just read static copy of count */
368	if (kvm_mips_count_disabled(vcpu))
369		return kvm_read_c0_guest_count(cop0);
370
371	return kvm_mips_read_count_running(vcpu, ktime_get());
372}
373
374/**
375 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376 * @vcpu:	Virtual CPU.
377 * @count:	Output pointer for CP0_Count value at point of freeze.
378 *
379 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380 * at the point it was frozen. It is guaranteed that any pending interrupts at
381 * the point it was frozen are handled, and none after that point.
382 *
383 * This is useful where the time/CP0_Count is needed in the calculation of the
384 * new parameters.
385 *
386 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387 *
388 * Returns:	The ktime at the point of freeze.
389 */
390static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391				       uint32_t *count)
392{
393	ktime_t now;
394
395	/* stop hrtimer before finding time */
396	hrtimer_cancel(&vcpu->arch.comparecount_timer);
397	now = ktime_get();
398
399	/* find count at this point and handle pending hrtimer */
400	*count = kvm_mips_read_count_running(vcpu, now);
401
402	return now;
403}
404
405/**
406 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407 * @vcpu:	Virtual CPU.
408 * @now:	ktime at point of resume.
409 * @count:	CP0_Count at point of resume.
410 *
411 * Resumes the timer and updates the timer expiry based on @now and @count.
412 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413 * parameters need to be changed.
414 *
415 * It is guaranteed that a timer interrupt immediately after resume will be
416 * handled, but not if CP_Compare is exactly at @count. That case is already
417 * handled by kvm_mips_freeze_timer().
418 *
419 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420 */
421static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422				    ktime_t now, uint32_t count)
423{
424	struct mips_coproc *cop0 = vcpu->arch.cop0;
425	uint32_t compare;
426	u64 delta;
427	ktime_t expire;
428
429	/* Calculate timeout (wrap 0 to 2^32) */
430	compare = kvm_read_c0_guest_compare(cop0);
431	delta = (u64)(uint32_t)(compare - count - 1) + 1;
432	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433	expire = ktime_add_ns(now, delta);
434
435	/* Update hrtimer to use new timeout */
436	hrtimer_cancel(&vcpu->arch.comparecount_timer);
437	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438}
439
440/**
441 * kvm_mips_write_count() - Modify the count and update timer.
442 * @vcpu:	Virtual CPU.
443 * @count:	Guest CP0_Count value to set.
444 *
445 * Sets the CP0_Count value and updates the timer accordingly.
446 */
447void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448{
449	struct mips_coproc *cop0 = vcpu->arch.cop0;
450	ktime_t now;
451
452	/* Calculate bias */
453	now = kvm_mips_count_time(vcpu);
454	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455
456	if (kvm_mips_count_disabled(vcpu))
457		/* The timer's disabled, adjust the static count */
458		kvm_write_c0_guest_count(cop0, count);
459	else
460		/* Update timeout */
461		kvm_mips_resume_hrtimer(vcpu, now, count);
462}
463
464/**
465 * kvm_mips_init_count() - Initialise timer.
466 * @vcpu:	Virtual CPU.
467 *
468 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469 * it going if it's enabled.
470 */
471void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472{
473	/* 100 MHz */
474	vcpu->arch.count_hz = 100*1000*1000;
475	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476					  vcpu->arch.count_hz);
477	vcpu->arch.count_dyn_bias = 0;
478
479	/* Starting at 0 */
480	kvm_mips_write_count(vcpu, 0);
481}
482
483/**
484 * kvm_mips_set_count_hz() - Update the frequency of the timer.
485 * @vcpu:	Virtual CPU.
486 * @count_hz:	Frequency of CP0_Count timer in Hz.
487 *
488 * Change the frequency of the CP0_Count timer. This is done atomically so that
489 * CP0_Count is continuous and no timer interrupt is lost.
490 *
491 * Returns:	-EINVAL if @count_hz is out of range.
492 *		0 on success.
493 */
494int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495{
496	struct mips_coproc *cop0 = vcpu->arch.cop0;
497	int dc;
498	ktime_t now;
499	u32 count;
500
501	/* ensure the frequency is in a sensible range... */
502	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503		return -EINVAL;
504	/* ... and has actually changed */
505	if (vcpu->arch.count_hz == count_hz)
506		return 0;
507
508	/* Safely freeze timer so we can keep it continuous */
509	dc = kvm_mips_count_disabled(vcpu);
510	if (dc) {
511		now = kvm_mips_count_time(vcpu);
512		count = kvm_read_c0_guest_count(cop0);
513	} else {
514		now = kvm_mips_freeze_hrtimer(vcpu, &count);
515	}
516
517	/* Update the frequency */
518	vcpu->arch.count_hz = count_hz;
519	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520	vcpu->arch.count_dyn_bias = 0;
521
522	/* Calculate adjusted bias so dynamic count is unchanged */
523	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524
525	/* Update and resume hrtimer */
526	if (!dc)
527		kvm_mips_resume_hrtimer(vcpu, now, count);
528	return 0;
529}
530
531/**
532 * kvm_mips_write_compare() - Modify compare and update timer.
533 * @vcpu:	Virtual CPU.
534 * @compare:	New CP0_Compare value.
535 * @ack:	Whether to acknowledge timer interrupt.
536 *
537 * Update CP0_Compare to a new value and update the timeout.
538 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539 * any pending timer interrupt is preserved.
540 */
541void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542{
543	struct mips_coproc *cop0 = vcpu->arch.cop0;
544	int dc;
545	u32 old_compare = kvm_read_c0_guest_compare(cop0);
546	ktime_t now;
547	uint32_t count;
548
549	/* if unchanged, must just be an ack */
550	if (old_compare == compare) {
551		if (!ack)
552			return;
553		kvm_mips_callbacks->dequeue_timer_int(vcpu);
554		kvm_write_c0_guest_compare(cop0, compare);
555		return;
556	}
557
558	/* freeze_hrtimer() takes care of timer interrupts <= count */
559	dc = kvm_mips_count_disabled(vcpu);
560	if (!dc)
561		now = kvm_mips_freeze_hrtimer(vcpu, &count);
562
563	if (ack)
564		kvm_mips_callbacks->dequeue_timer_int(vcpu);
565
566	kvm_write_c0_guest_compare(cop0, compare);
567
568	/* resume_hrtimer() takes care of timer interrupts > count */
569	if (!dc)
570		kvm_mips_resume_hrtimer(vcpu, now, count);
571}
572
573/**
574 * kvm_mips_count_disable() - Disable count.
575 * @vcpu:	Virtual CPU.
576 *
577 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578 * time will be handled but not after.
579 *
580 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581 * count_ctl.DC has been set (count disabled).
582 *
583 * Returns:	The time that the timer was stopped.
584 */
585static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586{
587	struct mips_coproc *cop0 = vcpu->arch.cop0;
588	uint32_t count;
589	ktime_t now;
590
591	/* Stop hrtimer */
592	hrtimer_cancel(&vcpu->arch.comparecount_timer);
593
594	/* Set the static count from the dynamic count, handling pending TI */
595	now = ktime_get();
596	count = kvm_mips_read_count_running(vcpu, now);
597	kvm_write_c0_guest_count(cop0, count);
598
599	return now;
600}
601
602/**
603 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604 * @vcpu:	Virtual CPU.
605 *
606 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607 * before the final stop time will be handled if the timer isn't disabled by
608 * count_ctl.DC, but not after.
609 *
610 * Assumes CP0_Cause.DC is clear (count enabled).
611 */
612void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613{
614	struct mips_coproc *cop0 = vcpu->arch.cop0;
615
616	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618		kvm_mips_count_disable(vcpu);
619}
620
621/**
622 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623 * @vcpu:	Virtual CPU.
624 *
625 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627 * potentially before even returning, so the caller should be careful with
628 * ordering of CP0_Cause modifications so as not to lose it.
629 *
630 * Assumes CP0_Cause.DC is set (count disabled).
631 */
632void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633{
634	struct mips_coproc *cop0 = vcpu->arch.cop0;
635	uint32_t count;
636
637	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638
639	/*
640	 * Set the dynamic count to match the static count.
641	 * This starts the hrtimer if count_ctl.DC allows it.
642	 * Otherwise it conveniently updates the biases.
643	 */
644	count = kvm_read_c0_guest_count(cop0);
645	kvm_mips_write_count(vcpu, count);
646}
647
648/**
649 * kvm_mips_set_count_ctl() - Update the count control KVM register.
650 * @vcpu:	Virtual CPU.
651 * @count_ctl:	Count control register new value.
652 *
653 * Set the count control KVM register. The timer is updated accordingly.
654 *
655 * Returns:	-EINVAL if reserved bits are set.
656 *		0 on success.
657 */
658int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659{
660	struct mips_coproc *cop0 = vcpu->arch.cop0;
661	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662	s64 delta;
663	ktime_t expire, now;
664	uint32_t count, compare;
665
666	/* Only allow defined bits to be changed */
667	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668		return -EINVAL;
669
670	/* Apply new value */
671	vcpu->arch.count_ctl = count_ctl;
672
673	/* Master CP0_Count disable */
674	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675		/* Is CP0_Cause.DC already disabling CP0_Count? */
676		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678				/* Just record the current time */
679				vcpu->arch.count_resume = ktime_get();
680		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681			/* disable timer and record current time */
682			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683		} else {
684			/*
685			 * Calculate timeout relative to static count at resume
686			 * time (wrap 0 to 2^32).
687			 */
688			count = kvm_read_c0_guest_count(cop0);
689			compare = kvm_read_c0_guest_compare(cop0);
690			delta = (u64)(uint32_t)(compare - count - 1) + 1;
691			delta = div_u64(delta * NSEC_PER_SEC,
692					vcpu->arch.count_hz);
693			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694
695			/* Handle pending interrupt */
696			now = ktime_get();
697			if (ktime_compare(now, expire) >= 0)
698				/* Nothing should be waiting on the timeout */
699				kvm_mips_callbacks->queue_timer_int(vcpu);
700
701			/* Resume hrtimer without changing bias */
702			count = kvm_mips_read_count_running(vcpu, now);
703			kvm_mips_resume_hrtimer(vcpu, now, count);
704		}
705	}
706
707	return 0;
708}
709
710/**
711 * kvm_mips_set_count_resume() - Update the count resume KVM register.
712 * @vcpu:		Virtual CPU.
713 * @count_resume:	Count resume register new value.
714 *
715 * Set the count resume KVM register.
716 *
717 * Returns:	-EINVAL if out of valid range (0..now).
718 *		0 on success.
719 */
720int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721{
722	/*
723	 * It doesn't make sense for the resume time to be in the future, as it
724	 * would be possible for the next interrupt to be more than a full
725	 * period in the future.
726	 */
727	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728		return -EINVAL;
729
730	vcpu->arch.count_resume = ns_to_ktime(count_resume);
731	return 0;
732}
733
734/**
735 * kvm_mips_count_timeout() - Push timer forward on timeout.
736 * @vcpu:	Virtual CPU.
737 *
738 * Handle an hrtimer event by push the hrtimer forward a period.
739 *
740 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
741 */
742enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743{
744	/* Add the Count period to the current expiry time */
745	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746			       vcpu->arch.count_period);
747	return HRTIMER_RESTART;
748}
749
750enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751{
752	struct mips_coproc *cop0 = vcpu->arch.cop0;
753	enum emulation_result er = EMULATE_DONE;
754
755	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
756		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
757			  kvm_read_c0_guest_epc(cop0));
758		kvm_clear_c0_guest_status(cop0, ST0_EXL);
759		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
760
761	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
762		kvm_clear_c0_guest_status(cop0, ST0_ERL);
763		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
764	} else {
765		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766			vcpu->arch.pc);
767		er = EMULATE_FAIL;
768	}
769
770	return er;
771}
772
773enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774{
775	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776		  vcpu->arch.pending_exceptions);
777
778	++vcpu->stat.wait_exits;
779	trace_kvm_exit(vcpu, WAIT_EXITS);
780	if (!vcpu->arch.pending_exceptions) {
781		vcpu->arch.wait = 1;
782		kvm_vcpu_block(vcpu);
783
784		/*
785		 * We we are runnable, then definitely go off to user space to
786		 * check if any I/O interrupts are pending.
787		 */
788		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791		}
792	}
793
794	return EMULATE_DONE;
795}
796
797/*
798 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799 * we can catch this, if things ever change
800 */
801enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802{
803	struct mips_coproc *cop0 = vcpu->arch.cop0;
804	uint32_t pc = vcpu->arch.pc;
805
806	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807	return EMULATE_FAIL;
808}
809
810/* Write Guest TLB Entry @ Index */
811enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
812{
813	struct mips_coproc *cop0 = vcpu->arch.cop0;
814	int index = kvm_read_c0_guest_index(cop0);
815	struct kvm_mips_tlb *tlb = NULL;
816	uint32_t pc = vcpu->arch.pc;
817
818	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
819		kvm_debug("%s: illegal index: %d\n", __func__, index);
820		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
821			  pc, index, kvm_read_c0_guest_entryhi(cop0),
822			  kvm_read_c0_guest_entrylo0(cop0),
823			  kvm_read_c0_guest_entrylo1(cop0),
824			  kvm_read_c0_guest_pagemask(cop0));
825		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
826	}
827
828	tlb = &vcpu->arch.guest_tlb[index];
829	/*
830	 * Probe the shadow host TLB for the entry being overwritten, if one
831	 * matches, invalidate it
832	 */
833	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
834
835	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
836	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
837	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
838	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
839
840	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
841		  pc, index, kvm_read_c0_guest_entryhi(cop0),
842		  kvm_read_c0_guest_entrylo0(cop0),
843		  kvm_read_c0_guest_entrylo1(cop0),
844		  kvm_read_c0_guest_pagemask(cop0));
845
846	return EMULATE_DONE;
847}
848
849/* Write Guest TLB Entry @ Random Index */
850enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
851{
852	struct mips_coproc *cop0 = vcpu->arch.cop0;
853	struct kvm_mips_tlb *tlb = NULL;
854	uint32_t pc = vcpu->arch.pc;
855	int index;
856
857	get_random_bytes(&index, sizeof(index));
858	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
859
860	tlb = &vcpu->arch.guest_tlb[index];
861
862	/*
863	 * Probe the shadow host TLB for the entry being overwritten, if one
864	 * matches, invalidate it
865	 */
866	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
867
868	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
869	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
870	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
871	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
872
873	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
874		  pc, index, kvm_read_c0_guest_entryhi(cop0),
875		  kvm_read_c0_guest_entrylo0(cop0),
876		  kvm_read_c0_guest_entrylo1(cop0));
877
878	return EMULATE_DONE;
879}
880
881enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
882{
883	struct mips_coproc *cop0 = vcpu->arch.cop0;
884	long entryhi = kvm_read_c0_guest_entryhi(cop0);
885	uint32_t pc = vcpu->arch.pc;
886	int index = -1;
887
888	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
889
890	kvm_write_c0_guest_index(cop0, index);
891
892	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
893		  index);
894
895	return EMULATE_DONE;
896}
897
898/**
899 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
900 * @vcpu:	Virtual CPU.
901 *
902 * Finds the mask of bits which are writable in the guest's Config1 CP0
903 * register, by userland (currently read-only to the guest).
904 */
905unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
906{
907	unsigned int mask = 0;
908
909	/* Permit FPU to be present if FPU is supported */
910	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
911		mask |= MIPS_CONF1_FP;
912
913	return mask;
914}
915
916/**
917 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
918 * @vcpu:	Virtual CPU.
919 *
920 * Finds the mask of bits which are writable in the guest's Config3 CP0
921 * register, by userland (currently read-only to the guest).
922 */
923unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
924{
925	/* Config4 is optional */
926	unsigned int mask = MIPS_CONF_M;
927
928	/* Permit MSA to be present if MSA is supported */
929	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
930		mask |= MIPS_CONF3_MSA;
931
932	return mask;
933}
934
935/**
936 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
937 * @vcpu:	Virtual CPU.
938 *
939 * Finds the mask of bits which are writable in the guest's Config4 CP0
940 * register, by userland (currently read-only to the guest).
941 */
942unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
943{
944	/* Config5 is optional */
945	return MIPS_CONF_M;
946}
947
948/**
949 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
950 * @vcpu:	Virtual CPU.
951 *
952 * Finds the mask of bits which are writable in the guest's Config5 CP0
953 * register, by the guest itself.
954 */
955unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
956{
957	unsigned int mask = 0;
958
959	/* Permit MSAEn changes if MSA supported and enabled */
960	if (kvm_mips_guest_has_msa(&vcpu->arch))
961		mask |= MIPS_CONF5_MSAEN;
962
963	/*
964	 * Permit guest FPU mode changes if FPU is enabled and the relevant
965	 * feature exists according to FIR register.
966	 */
967	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
968		if (cpu_has_fre)
969			mask |= MIPS_CONF5_FRE;
970		/* We don't support UFR or UFE */
971	}
972
973	return mask;
974}
975
976enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
977					   uint32_t cause, struct kvm_run *run,
978					   struct kvm_vcpu *vcpu)
979{
980	struct mips_coproc *cop0 = vcpu->arch.cop0;
981	enum emulation_result er = EMULATE_DONE;
982	int32_t rt, rd, copz, sel, co_bit, op;
983	uint32_t pc = vcpu->arch.pc;
984	unsigned long curr_pc;
985
986	/*
987	 * Update PC and hold onto current PC in case there is
988	 * an error and we want to rollback the PC
989	 */
990	curr_pc = vcpu->arch.pc;
991	er = update_pc(vcpu, cause);
992	if (er == EMULATE_FAIL)
993		return er;
994
995	copz = (inst >> 21) & 0x1f;
996	rt = (inst >> 16) & 0x1f;
997	rd = (inst >> 11) & 0x1f;
998	sel = inst & 0x7;
999	co_bit = (inst >> 25) & 1;
1000
1001	if (co_bit) {
1002		op = (inst) & 0xff;
1003
1004		switch (op) {
1005		case tlbr_op:	/*  Read indexed TLB entry  */
1006			er = kvm_mips_emul_tlbr(vcpu);
1007			break;
1008		case tlbwi_op:	/*  Write indexed  */
1009			er = kvm_mips_emul_tlbwi(vcpu);
1010			break;
1011		case tlbwr_op:	/*  Write random  */
1012			er = kvm_mips_emul_tlbwr(vcpu);
1013			break;
1014		case tlbp_op:	/* TLB Probe */
1015			er = kvm_mips_emul_tlbp(vcpu);
1016			break;
1017		case rfe_op:
1018			kvm_err("!!!COP0_RFE!!!\n");
1019			break;
1020		case eret_op:
1021			er = kvm_mips_emul_eret(vcpu);
1022			goto dont_update_pc;
1023			break;
1024		case wait_op:
1025			er = kvm_mips_emul_wait(vcpu);
1026			break;
1027		}
1028	} else {
1029		switch (copz) {
1030		case mfc_op:
1031#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1032			cop0->stat[rd][sel]++;
1033#endif
1034			/* Get reg */
1035			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1036				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1037			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1038				vcpu->arch.gprs[rt] = 0x0;
1039#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1040				kvm_mips_trans_mfc0(inst, opc, vcpu);
1041#endif
1042			} else {
1043				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1044
1045#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1046				kvm_mips_trans_mfc0(inst, opc, vcpu);
1047#endif
1048			}
1049
1050			kvm_debug
1051			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1052			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1053
1054			break;
1055
1056		case dmfc_op:
1057			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1058			break;
1059
1060		case mtc_op:
1061#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1062			cop0->stat[rd][sel]++;
1063#endif
1064			if ((rd == MIPS_CP0_TLB_INDEX)
1065			    && (vcpu->arch.gprs[rt] >=
1066				KVM_MIPS_GUEST_TLB_SIZE)) {
1067				kvm_err("Invalid TLB Index: %ld",
1068					vcpu->arch.gprs[rt]);
1069				er = EMULATE_FAIL;
1070				break;
1071			}
1072#define C0_EBASE_CORE_MASK 0xff
1073			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1074				/* Preserve CORE number */
1075				kvm_change_c0_guest_ebase(cop0,
1076							  ~(C0_EBASE_CORE_MASK),
1077							  vcpu->arch.gprs[rt]);
1078				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1079					kvm_read_c0_guest_ebase(cop0));
1080			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1081				uint32_t nasid =
1082					vcpu->arch.gprs[rt] & ASID_MASK;
1083				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1084				    ((kvm_read_c0_guest_entryhi(cop0) &
1085				      ASID_MASK) != nasid)) {
1086					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1087						kvm_read_c0_guest_entryhi(cop0)
1088						& ASID_MASK,
1089						vcpu->arch.gprs[rt]
1090						& ASID_MASK);
1091
1092					/* Blow away the shadow host TLBs */
1093					kvm_mips_flush_host_tlb(1);
1094				}
1095				kvm_write_c0_guest_entryhi(cop0,
1096							   vcpu->arch.gprs[rt]);
1097			}
1098			/* Are we writing to COUNT */
1099			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1100				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1101				goto done;
1102			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1103				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1104					  pc, kvm_read_c0_guest_compare(cop0),
1105					  vcpu->arch.gprs[rt]);
1106
1107				/* If we are writing to COMPARE */
1108				/* Clear pending timer interrupt, if any */
1109				kvm_mips_write_compare(vcpu,
1110						       vcpu->arch.gprs[rt],
1111						       true);
1112			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1113				unsigned int old_val, val, change;
1114
1115				old_val = kvm_read_c0_guest_status(cop0);
1116				val = vcpu->arch.gprs[rt];
1117				change = val ^ old_val;
1118
1119				/* Make sure that the NMI bit is never set */
1120				val &= ~ST0_NMI;
1121
1122				/*
1123				 * Don't allow CU1 or FR to be set unless FPU
1124				 * capability enabled and exists in guest
1125				 * configuration.
1126				 */
1127				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1128					val &= ~(ST0_CU1 | ST0_FR);
1129
1130				/*
1131				 * Also don't allow FR to be set if host doesn't
1132				 * support it.
1133				 */
1134				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1135					val &= ~ST0_FR;
1136
1137
1138				/* Handle changes in FPU mode */
1139				preempt_disable();
1140
1141				/*
1142				 * FPU and Vector register state is made
1143				 * UNPREDICTABLE by a change of FR, so don't
1144				 * even bother saving it.
1145				 */
1146				if (change & ST0_FR)
1147					kvm_drop_fpu(vcpu);
1148
1149				/*
1150				 * If MSA state is already live, it is undefined
1151				 * how it interacts with FR=0 FPU state, and we
1152				 * don't want to hit reserved instruction
1153				 * exceptions trying to save the MSA state later
1154				 * when CU=1 && FR=1, so play it safe and save
1155				 * it first.
1156				 */
1157				if (change & ST0_CU1 && !(val & ST0_FR) &&
1158				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1159					kvm_lose_fpu(vcpu);
1160
1161				/*
1162				 * Propagate CU1 (FPU enable) changes
1163				 * immediately if the FPU context is already
1164				 * loaded. When disabling we leave the context
1165				 * loaded so it can be quickly enabled again in
1166				 * the near future.
1167				 */
1168				if (change & ST0_CU1 &&
1169				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1170					change_c0_status(ST0_CU1, val);
1171
1172				preempt_enable();
1173
1174				kvm_write_c0_guest_status(cop0, val);
1175
1176#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1177				/*
1178				 * If FPU present, we need CU1/FR bits to take
1179				 * effect fairly soon.
1180				 */
1181				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1182					kvm_mips_trans_mtc0(inst, opc, vcpu);
1183#endif
1184			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1185				unsigned int old_val, val, change, wrmask;
1186
1187				old_val = kvm_read_c0_guest_config5(cop0);
1188				val = vcpu->arch.gprs[rt];
1189
1190				/* Only a few bits are writable in Config5 */
1191				wrmask = kvm_mips_config5_wrmask(vcpu);
1192				change = (val ^ old_val) & wrmask;
1193				val = old_val ^ change;
1194
1195
1196				/* Handle changes in FPU/MSA modes */
1197				preempt_disable();
1198
1199				/*
1200				 * Propagate FRE changes immediately if the FPU
1201				 * context is already loaded.
1202				 */
1203				if (change & MIPS_CONF5_FRE &&
1204				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1205					change_c0_config5(MIPS_CONF5_FRE, val);
1206
1207				/*
1208				 * Propagate MSAEn changes immediately if the
1209				 * MSA context is already loaded. When disabling
1210				 * we leave the context loaded so it can be
1211				 * quickly enabled again in the near future.
1212				 */
1213				if (change & MIPS_CONF5_MSAEN &&
1214				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1215					change_c0_config5(MIPS_CONF5_MSAEN,
1216							  val);
1217
1218				preempt_enable();
1219
1220				kvm_write_c0_guest_config5(cop0, val);
1221			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1222				uint32_t old_cause, new_cause;
1223
1224				old_cause = kvm_read_c0_guest_cause(cop0);
1225				new_cause = vcpu->arch.gprs[rt];
1226				/* Update R/W bits */
1227				kvm_change_c0_guest_cause(cop0, 0x08800300,
1228							  new_cause);
1229				/* DC bit enabling/disabling timer? */
1230				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1231					if (new_cause & CAUSEF_DC)
1232						kvm_mips_count_disable_cause(vcpu);
1233					else
1234						kvm_mips_count_enable_cause(vcpu);
1235				}
1236			} else {
1237				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1238#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1239				kvm_mips_trans_mtc0(inst, opc, vcpu);
1240#endif
1241			}
1242
1243			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1244				  rd, sel, cop0->reg[rd][sel]);
1245			break;
1246
1247		case dmtc_op:
1248			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1249				vcpu->arch.pc, rt, rd, sel);
1250			er = EMULATE_FAIL;
1251			break;
1252
1253		case mfmcz_op:
1254#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1255			cop0->stat[MIPS_CP0_STATUS][0]++;
1256#endif
1257			if (rt != 0) {
1258				vcpu->arch.gprs[rt] =
1259				    kvm_read_c0_guest_status(cop0);
1260			}
1261			/* EI */
1262			if (inst & 0x20) {
1263				kvm_debug("[%#lx] mfmcz_op: EI\n",
1264					  vcpu->arch.pc);
1265				kvm_set_c0_guest_status(cop0, ST0_IE);
1266			} else {
1267				kvm_debug("[%#lx] mfmcz_op: DI\n",
1268					  vcpu->arch.pc);
1269				kvm_clear_c0_guest_status(cop0, ST0_IE);
1270			}
1271
1272			break;
1273
1274		case wrpgpr_op:
1275			{
1276				uint32_t css =
1277				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1278				uint32_t pss =
1279				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1280				/*
1281				 * We don't support any shadow register sets, so
1282				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1283				 */
1284				if (css || pss) {
1285					er = EMULATE_FAIL;
1286					break;
1287				}
1288				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1289					  vcpu->arch.gprs[rt]);
1290				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1291			}
1292			break;
1293		default:
1294			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1295				vcpu->arch.pc, copz);
1296			er = EMULATE_FAIL;
1297			break;
1298		}
1299	}
1300
1301done:
1302	/* Rollback PC only if emulation was unsuccessful */
1303	if (er == EMULATE_FAIL)
1304		vcpu->arch.pc = curr_pc;
1305
1306dont_update_pc:
1307	/*
1308	 * This is for special instructions whose emulation
1309	 * updates the PC, so do not overwrite the PC under
1310	 * any circumstances
1311	 */
1312
1313	return er;
1314}
1315
1316enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1317					     struct kvm_run *run,
1318					     struct kvm_vcpu *vcpu)
1319{
1320	enum emulation_result er = EMULATE_DO_MMIO;
1321	int32_t op, base, rt, offset;
1322	uint32_t bytes;
1323	void *data = run->mmio.data;
1324	unsigned long curr_pc;
1325
1326	/*
1327	 * Update PC and hold onto current PC in case there is
1328	 * an error and we want to rollback the PC
1329	 */
1330	curr_pc = vcpu->arch.pc;
1331	er = update_pc(vcpu, cause);
1332	if (er == EMULATE_FAIL)
1333		return er;
1334
1335	rt = (inst >> 16) & 0x1f;
1336	base = (inst >> 21) & 0x1f;
1337	offset = inst & 0xffff;
1338	op = (inst >> 26) & 0x3f;
1339
1340	switch (op) {
1341	case sb_op:
1342		bytes = 1;
1343		if (bytes > sizeof(run->mmio.data)) {
1344			kvm_err("%s: bad MMIO length: %d\n", __func__,
1345			       run->mmio.len);
1346		}
1347		run->mmio.phys_addr =
1348		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1349						   host_cp0_badvaddr);
1350		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1351			er = EMULATE_FAIL;
1352			break;
1353		}
1354		run->mmio.len = bytes;
1355		run->mmio.is_write = 1;
1356		vcpu->mmio_needed = 1;
1357		vcpu->mmio_is_write = 1;
1358		*(u8 *) data = vcpu->arch.gprs[rt];
1359		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1360			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1361			  *(uint8_t *) data);
1362
1363		break;
1364
1365	case sw_op:
1366		bytes = 4;
1367		if (bytes > sizeof(run->mmio.data)) {
1368			kvm_err("%s: bad MMIO length: %d\n", __func__,
1369			       run->mmio.len);
1370		}
1371		run->mmio.phys_addr =
1372		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1373						   host_cp0_badvaddr);
1374		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1375			er = EMULATE_FAIL;
1376			break;
1377		}
1378
1379		run->mmio.len = bytes;
1380		run->mmio.is_write = 1;
1381		vcpu->mmio_needed = 1;
1382		vcpu->mmio_is_write = 1;
1383		*(uint32_t *) data = vcpu->arch.gprs[rt];
1384
1385		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1386			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1387			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1388		break;
1389
1390	case sh_op:
1391		bytes = 2;
1392		if (bytes > sizeof(run->mmio.data)) {
1393			kvm_err("%s: bad MMIO length: %d\n", __func__,
1394			       run->mmio.len);
1395		}
1396		run->mmio.phys_addr =
1397		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1398						   host_cp0_badvaddr);
1399		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1400			er = EMULATE_FAIL;
1401			break;
1402		}
1403
1404		run->mmio.len = bytes;
1405		run->mmio.is_write = 1;
1406		vcpu->mmio_needed = 1;
1407		vcpu->mmio_is_write = 1;
1408		*(uint16_t *) data = vcpu->arch.gprs[rt];
1409
1410		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1411			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1412			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1413		break;
1414
1415	default:
1416		kvm_err("Store not yet supported");
1417		er = EMULATE_FAIL;
1418		break;
1419	}
1420
1421	/* Rollback PC if emulation was unsuccessful */
1422	if (er == EMULATE_FAIL)
1423		vcpu->arch.pc = curr_pc;
1424
1425	return er;
1426}
1427
1428enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1429					    struct kvm_run *run,
1430					    struct kvm_vcpu *vcpu)
1431{
1432	enum emulation_result er = EMULATE_DO_MMIO;
1433	int32_t op, base, rt, offset;
1434	uint32_t bytes;
1435
1436	rt = (inst >> 16) & 0x1f;
1437	base = (inst >> 21) & 0x1f;
1438	offset = inst & 0xffff;
1439	op = (inst >> 26) & 0x3f;
1440
1441	vcpu->arch.pending_load_cause = cause;
1442	vcpu->arch.io_gpr = rt;
1443
1444	switch (op) {
1445	case lw_op:
1446		bytes = 4;
1447		if (bytes > sizeof(run->mmio.data)) {
1448			kvm_err("%s: bad MMIO length: %d\n", __func__,
1449			       run->mmio.len);
1450			er = EMULATE_FAIL;
1451			break;
1452		}
1453		run->mmio.phys_addr =
1454		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1455						   host_cp0_badvaddr);
1456		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1457			er = EMULATE_FAIL;
1458			break;
1459		}
1460
1461		run->mmio.len = bytes;
1462		run->mmio.is_write = 0;
1463		vcpu->mmio_needed = 1;
1464		vcpu->mmio_is_write = 0;
1465		break;
1466
1467	case lh_op:
1468	case lhu_op:
1469		bytes = 2;
1470		if (bytes > sizeof(run->mmio.data)) {
1471			kvm_err("%s: bad MMIO length: %d\n", __func__,
1472			       run->mmio.len);
1473			er = EMULATE_FAIL;
1474			break;
1475		}
1476		run->mmio.phys_addr =
1477		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1478						   host_cp0_badvaddr);
1479		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1480			er = EMULATE_FAIL;
1481			break;
1482		}
1483
1484		run->mmio.len = bytes;
1485		run->mmio.is_write = 0;
1486		vcpu->mmio_needed = 1;
1487		vcpu->mmio_is_write = 0;
1488
1489		if (op == lh_op)
1490			vcpu->mmio_needed = 2;
1491		else
1492			vcpu->mmio_needed = 1;
1493
1494		break;
1495
1496	case lbu_op:
1497	case lb_op:
1498		bytes = 1;
1499		if (bytes > sizeof(run->mmio.data)) {
1500			kvm_err("%s: bad MMIO length: %d\n", __func__,
1501			       run->mmio.len);
1502			er = EMULATE_FAIL;
1503			break;
1504		}
1505		run->mmio.phys_addr =
1506		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1507						   host_cp0_badvaddr);
1508		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1509			er = EMULATE_FAIL;
1510			break;
1511		}
1512
1513		run->mmio.len = bytes;
1514		run->mmio.is_write = 0;
1515		vcpu->mmio_is_write = 0;
1516
1517		if (op == lb_op)
1518			vcpu->mmio_needed = 2;
1519		else
1520			vcpu->mmio_needed = 1;
1521
1522		break;
1523
1524	default:
1525		kvm_err("Load not yet supported");
1526		er = EMULATE_FAIL;
1527		break;
1528	}
1529
1530	return er;
1531}
1532
1533int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1534{
1535	unsigned long offset = (va & ~PAGE_MASK);
1536	struct kvm *kvm = vcpu->kvm;
1537	unsigned long pa;
1538	gfn_t gfn;
1539	pfn_t pfn;
1540
1541	gfn = va >> PAGE_SHIFT;
1542
1543	if (gfn >= kvm->arch.guest_pmap_npages) {
1544		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1545		kvm_mips_dump_host_tlbs();
1546		kvm_arch_vcpu_dump_regs(vcpu);
1547		return -1;
1548	}
1549	pfn = kvm->arch.guest_pmap[gfn];
1550	pa = (pfn << PAGE_SHIFT) | offset;
1551
1552	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1553		  CKSEG0ADDR(pa));
1554
1555	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1556	return 0;
1557}
1558
1559#define MIPS_CACHE_OP_INDEX_INV         0x0
1560#define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1561#define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1562#define MIPS_CACHE_OP_IMP               0x3
1563#define MIPS_CACHE_OP_HIT_INV           0x4
1564#define MIPS_CACHE_OP_FILL_WB_INV       0x5
1565#define MIPS_CACHE_OP_HIT_HB            0x6
1566#define MIPS_CACHE_OP_FETCH_LOCK        0x7
1567
1568#define MIPS_CACHE_ICACHE               0x0
1569#define MIPS_CACHE_DCACHE               0x1
1570#define MIPS_CACHE_SEC                  0x3
1571
1572enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1573					     uint32_t cause,
1574					     struct kvm_run *run,
1575					     struct kvm_vcpu *vcpu)
1576{
1577	struct mips_coproc *cop0 = vcpu->arch.cop0;
1578	enum emulation_result er = EMULATE_DONE;
1579	int32_t offset, cache, op_inst, op, base;
1580	struct kvm_vcpu_arch *arch = &vcpu->arch;
1581	unsigned long va;
1582	unsigned long curr_pc;
1583
1584	/*
1585	 * Update PC and hold onto current PC in case there is
1586	 * an error and we want to rollback the PC
1587	 */
1588	curr_pc = vcpu->arch.pc;
1589	er = update_pc(vcpu, cause);
1590	if (er == EMULATE_FAIL)
1591		return er;
1592
1593	base = (inst >> 21) & 0x1f;
1594	op_inst = (inst >> 16) & 0x1f;
1595	offset = (int16_t)inst;
1596	cache = (inst >> 16) & 0x3;
1597	op = (inst >> 18) & 0x7;
1598
1599	va = arch->gprs[base] + offset;
1600
1601	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1602		  cache, op, base, arch->gprs[base], offset);
1603
1604	/*
1605	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1606	 * invalidate the caches entirely by stepping through all the
1607	 * ways/indexes
1608	 */
1609	if (op == MIPS_CACHE_OP_INDEX_INV) {
1610		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1611			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1612			  arch->gprs[base], offset);
1613
1614		if (cache == MIPS_CACHE_DCACHE)
1615			r4k_blast_dcache();
1616		else if (cache == MIPS_CACHE_ICACHE)
1617			r4k_blast_icache();
1618		else {
1619			kvm_err("%s: unsupported CACHE INDEX operation\n",
1620				__func__);
1621			return EMULATE_FAIL;
1622		}
1623
1624#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1625		kvm_mips_trans_cache_index(inst, opc, vcpu);
1626#endif
1627		goto done;
1628	}
1629
1630	preempt_disable();
1631	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1632		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1633			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1634	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1635		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1636		int index;
1637
1638		/* If an entry already exists then skip */
1639		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1640			goto skip_fault;
1641
1642		/*
1643		 * If address not in the guest TLB, then give the guest a fault,
1644		 * the resulting handler will do the right thing
1645		 */
1646		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1647						  (kvm_read_c0_guest_entryhi
1648						   (cop0) & ASID_MASK));
1649
1650		if (index < 0) {
1651			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1652			vcpu->arch.host_cp0_badvaddr = va;
1653			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1654							 vcpu);
1655			preempt_enable();
1656			goto dont_update_pc;
1657		} else {
1658			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1659			/*
1660			 * Check if the entry is valid, if not then setup a TLB
1661			 * invalid exception to the guest
1662			 */
1663			if (!TLB_IS_VALID(*tlb, va)) {
1664				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1665								run, vcpu);
1666				preempt_enable();
1667				goto dont_update_pc;
1668			} else {
1669				/*
1670				 * We fault an entry from the guest tlb to the
1671				 * shadow host TLB
1672				 */
1673				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1674								     NULL,
1675								     NULL);
1676			}
1677		}
1678	} else {
1679		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1680			cache, op, base, arch->gprs[base], offset);
1681		er = EMULATE_FAIL;
1682		preempt_enable();
1683		goto dont_update_pc;
1684
1685	}
1686
1687skip_fault:
1688	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1689	if (cache == MIPS_CACHE_DCACHE
1690	    && (op == MIPS_CACHE_OP_FILL_WB_INV
1691		|| op == MIPS_CACHE_OP_HIT_INV)) {
1692		flush_dcache_line(va);
1693
1694#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1695		/*
1696		 * Replace the CACHE instruction, with a SYNCI, not the same,
1697		 * but avoids a trap
1698		 */
1699		kvm_mips_trans_cache_va(inst, opc, vcpu);
1700#endif
1701	} else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1702		flush_dcache_line(va);
1703		flush_icache_line(va);
1704
1705#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1706		/* Replace the CACHE instruction, with a SYNCI */
1707		kvm_mips_trans_cache_va(inst, opc, vcpu);
1708#endif
1709	} else {
1710		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1711			cache, op, base, arch->gprs[base], offset);
1712		er = EMULATE_FAIL;
1713		preempt_enable();
1714		goto dont_update_pc;
1715	}
1716
1717	preempt_enable();
1718
1719dont_update_pc:
1720	/* Rollback PC */
1721	vcpu->arch.pc = curr_pc;
1722done:
1723	return er;
1724}
1725
1726enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1727					    struct kvm_run *run,
1728					    struct kvm_vcpu *vcpu)
1729{
1730	enum emulation_result er = EMULATE_DONE;
1731	uint32_t inst;
1732
1733	/* Fetch the instruction. */
1734	if (cause & CAUSEF_BD)
1735		opc += 1;
1736
1737	inst = kvm_get_inst(opc, vcpu);
1738
1739	switch (((union mips_instruction)inst).r_format.opcode) {
1740	case cop0_op:
1741		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1742		break;
1743	case sb_op:
1744	case sh_op:
1745	case sw_op:
1746		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1747		break;
1748	case lb_op:
1749	case lbu_op:
1750	case lhu_op:
1751	case lh_op:
1752	case lw_op:
1753		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1754		break;
1755
1756	case cache_op:
1757		++vcpu->stat.cache_exits;
1758		trace_kvm_exit(vcpu, CACHE_EXITS);
1759		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1760		break;
1761
1762	default:
1763		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1764			inst);
1765		kvm_arch_vcpu_dump_regs(vcpu);
1766		er = EMULATE_FAIL;
1767		break;
1768	}
1769
1770	return er;
1771}
1772
1773enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1774					       uint32_t *opc,
1775					       struct kvm_run *run,
1776					       struct kvm_vcpu *vcpu)
1777{
1778	struct mips_coproc *cop0 = vcpu->arch.cop0;
1779	struct kvm_vcpu_arch *arch = &vcpu->arch;
1780	enum emulation_result er = EMULATE_DONE;
1781
1782	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1783		/* save old pc */
1784		kvm_write_c0_guest_epc(cop0, arch->pc);
1785		kvm_set_c0_guest_status(cop0, ST0_EXL);
1786
1787		if (cause & CAUSEF_BD)
1788			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1789		else
1790			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1791
1792		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1793
1794		kvm_change_c0_guest_cause(cop0, (0xff),
1795					  (T_SYSCALL << CAUSEB_EXCCODE));
1796
1797		/* Set PC to the exception entry point */
1798		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1799
1800	} else {
1801		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1802		er = EMULATE_FAIL;
1803	}
1804
1805	return er;
1806}
1807
1808enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1809						  uint32_t *opc,
1810						  struct kvm_run *run,
1811						  struct kvm_vcpu *vcpu)
1812{
1813	struct mips_coproc *cop0 = vcpu->arch.cop0;
1814	struct kvm_vcpu_arch *arch = &vcpu->arch;
1815	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1816				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1817
1818	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1819		/* save old pc */
1820		kvm_write_c0_guest_epc(cop0, arch->pc);
1821		kvm_set_c0_guest_status(cop0, ST0_EXL);
1822
1823		if (cause & CAUSEF_BD)
1824			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1825		else
1826			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1827
1828		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1829			  arch->pc);
1830
1831		/* set pc to the exception entry point */
1832		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1833
1834	} else {
1835		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1836			  arch->pc);
1837
1838		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1839	}
1840
1841	kvm_change_c0_guest_cause(cop0, (0xff),
1842				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1843
1844	/* setup badvaddr, context and entryhi registers for the guest */
1845	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1846	/* XXXKYMA: is the context register used by linux??? */
1847	kvm_write_c0_guest_entryhi(cop0, entryhi);
1848	/* Blow away the shadow host TLBs */
1849	kvm_mips_flush_host_tlb(1);
1850
1851	return EMULATE_DONE;
1852}
1853
1854enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1855						 uint32_t *opc,
1856						 struct kvm_run *run,
1857						 struct kvm_vcpu *vcpu)
1858{
1859	struct mips_coproc *cop0 = vcpu->arch.cop0;
1860	struct kvm_vcpu_arch *arch = &vcpu->arch;
1861	unsigned long entryhi =
1862		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1863		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1864
1865	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1866		/* save old pc */
1867		kvm_write_c0_guest_epc(cop0, arch->pc);
1868		kvm_set_c0_guest_status(cop0, ST0_EXL);
1869
1870		if (cause & CAUSEF_BD)
1871			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1872		else
1873			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1874
1875		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1876			  arch->pc);
1877
1878		/* set pc to the exception entry point */
1879		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1880
1881	} else {
1882		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1883			  arch->pc);
1884		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1885	}
1886
1887	kvm_change_c0_guest_cause(cop0, (0xff),
1888				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1889
1890	/* setup badvaddr, context and entryhi registers for the guest */
1891	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1892	/* XXXKYMA: is the context register used by linux??? */
1893	kvm_write_c0_guest_entryhi(cop0, entryhi);
1894	/* Blow away the shadow host TLBs */
1895	kvm_mips_flush_host_tlb(1);
1896
1897	return EMULATE_DONE;
1898}
1899
1900enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1901						  uint32_t *opc,
1902						  struct kvm_run *run,
1903						  struct kvm_vcpu *vcpu)
1904{
1905	struct mips_coproc *cop0 = vcpu->arch.cop0;
1906	struct kvm_vcpu_arch *arch = &vcpu->arch;
1907	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1908				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1909
1910	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1911		/* save old pc */
1912		kvm_write_c0_guest_epc(cop0, arch->pc);
1913		kvm_set_c0_guest_status(cop0, ST0_EXL);
1914
1915		if (cause & CAUSEF_BD)
1916			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1917		else
1918			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1919
1920		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1921			  arch->pc);
1922
1923		/* Set PC to the exception entry point */
1924		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1925	} else {
1926		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1927			  arch->pc);
1928		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1929	}
1930
1931	kvm_change_c0_guest_cause(cop0, (0xff),
1932				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1933
1934	/* setup badvaddr, context and entryhi registers for the guest */
1935	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1936	/* XXXKYMA: is the context register used by linux??? */
1937	kvm_write_c0_guest_entryhi(cop0, entryhi);
1938	/* Blow away the shadow host TLBs */
1939	kvm_mips_flush_host_tlb(1);
1940
1941	return EMULATE_DONE;
1942}
1943
1944enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1945						 uint32_t *opc,
1946						 struct kvm_run *run,
1947						 struct kvm_vcpu *vcpu)
1948{
1949	struct mips_coproc *cop0 = vcpu->arch.cop0;
1950	struct kvm_vcpu_arch *arch = &vcpu->arch;
1951	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1952		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1953
1954	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1955		/* save old pc */
1956		kvm_write_c0_guest_epc(cop0, arch->pc);
1957		kvm_set_c0_guest_status(cop0, ST0_EXL);
1958
1959		if (cause & CAUSEF_BD)
1960			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1961		else
1962			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1963
1964		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1965			  arch->pc);
1966
1967		/* Set PC to the exception entry point */
1968		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1969	} else {
1970		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1971			  arch->pc);
1972		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1973	}
1974
1975	kvm_change_c0_guest_cause(cop0, (0xff),
1976				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1977
1978	/* setup badvaddr, context and entryhi registers for the guest */
1979	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1980	/* XXXKYMA: is the context register used by linux??? */
1981	kvm_write_c0_guest_entryhi(cop0, entryhi);
1982	/* Blow away the shadow host TLBs */
1983	kvm_mips_flush_host_tlb(1);
1984
1985	return EMULATE_DONE;
1986}
1987
1988/* TLBMOD: store into address matching TLB with Dirty bit off */
1989enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1990					     struct kvm_run *run,
1991					     struct kvm_vcpu *vcpu)
1992{
1993	enum emulation_result er = EMULATE_DONE;
1994#ifdef DEBUG
1995	struct mips_coproc *cop0 = vcpu->arch.cop0;
1996	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1997				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1998	int index;
1999
2000	/* If address not in the guest TLB, then we are in trouble */
2001	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2002	if (index < 0) {
2003		/* XXXKYMA Invalidate and retry */
2004		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2005		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2006		     __func__, entryhi);
2007		kvm_mips_dump_guest_tlbs(vcpu);
2008		kvm_mips_dump_host_tlbs();
2009		return EMULATE_FAIL;
2010	}
2011#endif
2012
2013	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2014	return er;
2015}
2016
2017enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2018					      uint32_t *opc,
2019					      struct kvm_run *run,
2020					      struct kvm_vcpu *vcpu)
2021{
2022	struct mips_coproc *cop0 = vcpu->arch.cop0;
2023	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2024				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
2025	struct kvm_vcpu_arch *arch = &vcpu->arch;
2026
2027	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2028		/* save old pc */
2029		kvm_write_c0_guest_epc(cop0, arch->pc);
2030		kvm_set_c0_guest_status(cop0, ST0_EXL);
2031
2032		if (cause & CAUSEF_BD)
2033			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2034		else
2035			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2036
2037		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2038			  arch->pc);
2039
2040		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2041	} else {
2042		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2043			  arch->pc);
2044		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2045	}
2046
2047	kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
2048
2049	/* setup badvaddr, context and entryhi registers for the guest */
2050	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2051	/* XXXKYMA: is the context register used by linux??? */
2052	kvm_write_c0_guest_entryhi(cop0, entryhi);
2053	/* Blow away the shadow host TLBs */
2054	kvm_mips_flush_host_tlb(1);
2055
2056	return EMULATE_DONE;
2057}
2058
2059enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2060					       uint32_t *opc,
2061					       struct kvm_run *run,
2062					       struct kvm_vcpu *vcpu)
2063{
2064	struct mips_coproc *cop0 = vcpu->arch.cop0;
2065	struct kvm_vcpu_arch *arch = &vcpu->arch;
2066
2067	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2068		/* save old pc */
2069		kvm_write_c0_guest_epc(cop0, arch->pc);
2070		kvm_set_c0_guest_status(cop0, ST0_EXL);
2071
2072		if (cause & CAUSEF_BD)
2073			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2074		else
2075			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2076
2077	}
2078
2079	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2080
2081	kvm_change_c0_guest_cause(cop0, (0xff),
2082				  (T_COP_UNUSABLE << CAUSEB_EXCCODE));
2083	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2084
2085	return EMULATE_DONE;
2086}
2087
2088enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2089					      uint32_t *opc,
2090					      struct kvm_run *run,
2091					      struct kvm_vcpu *vcpu)
2092{
2093	struct mips_coproc *cop0 = vcpu->arch.cop0;
2094	struct kvm_vcpu_arch *arch = &vcpu->arch;
2095	enum emulation_result er = EMULATE_DONE;
2096
2097	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2098		/* save old pc */
2099		kvm_write_c0_guest_epc(cop0, arch->pc);
2100		kvm_set_c0_guest_status(cop0, ST0_EXL);
2101
2102		if (cause & CAUSEF_BD)
2103			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2104		else
2105			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2106
2107		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2108
2109		kvm_change_c0_guest_cause(cop0, (0xff),
2110					  (T_RES_INST << CAUSEB_EXCCODE));
2111
2112		/* Set PC to the exception entry point */
2113		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2114
2115	} else {
2116		kvm_err("Trying to deliver RI when EXL is already set\n");
2117		er = EMULATE_FAIL;
2118	}
2119
2120	return er;
2121}
2122
2123enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2124					      uint32_t *opc,
2125					      struct kvm_run *run,
2126					      struct kvm_vcpu *vcpu)
2127{
2128	struct mips_coproc *cop0 = vcpu->arch.cop0;
2129	struct kvm_vcpu_arch *arch = &vcpu->arch;
2130	enum emulation_result er = EMULATE_DONE;
2131
2132	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2133		/* save old pc */
2134		kvm_write_c0_guest_epc(cop0, arch->pc);
2135		kvm_set_c0_guest_status(cop0, ST0_EXL);
2136
2137		if (cause & CAUSEF_BD)
2138			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2139		else
2140			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2141
2142		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2143
2144		kvm_change_c0_guest_cause(cop0, (0xff),
2145					  (T_BREAK << CAUSEB_EXCCODE));
2146
2147		/* Set PC to the exception entry point */
2148		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2149
2150	} else {
2151		kvm_err("Trying to deliver BP when EXL is already set\n");
2152		er = EMULATE_FAIL;
2153	}
2154
2155	return er;
2156}
2157
2158enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2159						uint32_t *opc,
2160						struct kvm_run *run,
2161						struct kvm_vcpu *vcpu)
2162{
2163	struct mips_coproc *cop0 = vcpu->arch.cop0;
2164	struct kvm_vcpu_arch *arch = &vcpu->arch;
2165	enum emulation_result er = EMULATE_DONE;
2166
2167	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2168		/* save old pc */
2169		kvm_write_c0_guest_epc(cop0, arch->pc);
2170		kvm_set_c0_guest_status(cop0, ST0_EXL);
2171
2172		if (cause & CAUSEF_BD)
2173			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2174		else
2175			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2176
2177		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2178
2179		kvm_change_c0_guest_cause(cop0, (0xff),
2180					  (T_TRAP << CAUSEB_EXCCODE));
2181
2182		/* Set PC to the exception entry point */
2183		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2184
2185	} else {
2186		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2187		er = EMULATE_FAIL;
2188	}
2189
2190	return er;
2191}
2192
2193enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2194						  uint32_t *opc,
2195						  struct kvm_run *run,
2196						  struct kvm_vcpu *vcpu)
2197{
2198	struct mips_coproc *cop0 = vcpu->arch.cop0;
2199	struct kvm_vcpu_arch *arch = &vcpu->arch;
2200	enum emulation_result er = EMULATE_DONE;
2201
2202	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2203		/* save old pc */
2204		kvm_write_c0_guest_epc(cop0, arch->pc);
2205		kvm_set_c0_guest_status(cop0, ST0_EXL);
2206
2207		if (cause & CAUSEF_BD)
2208			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2209		else
2210			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2211
2212		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2213
2214		kvm_change_c0_guest_cause(cop0, (0xff),
2215					  (T_MSAFPE << CAUSEB_EXCCODE));
2216
2217		/* Set PC to the exception entry point */
2218		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2219
2220	} else {
2221		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2222		er = EMULATE_FAIL;
2223	}
2224
2225	return er;
2226}
2227
2228enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2229					       uint32_t *opc,
2230					       struct kvm_run *run,
2231					       struct kvm_vcpu *vcpu)
2232{
2233	struct mips_coproc *cop0 = vcpu->arch.cop0;
2234	struct kvm_vcpu_arch *arch = &vcpu->arch;
2235	enum emulation_result er = EMULATE_DONE;
2236
2237	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2238		/* save old pc */
2239		kvm_write_c0_guest_epc(cop0, arch->pc);
2240		kvm_set_c0_guest_status(cop0, ST0_EXL);
2241
2242		if (cause & CAUSEF_BD)
2243			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2244		else
2245			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2246
2247		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2248
2249		kvm_change_c0_guest_cause(cop0, (0xff),
2250					  (T_FPE << CAUSEB_EXCCODE));
2251
2252		/* Set PC to the exception entry point */
2253		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2254
2255	} else {
2256		kvm_err("Trying to deliver FPE when EXL is already set\n");
2257		er = EMULATE_FAIL;
2258	}
2259
2260	return er;
2261}
2262
2263enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2264						  uint32_t *opc,
2265						  struct kvm_run *run,
2266						  struct kvm_vcpu *vcpu)
2267{
2268	struct mips_coproc *cop0 = vcpu->arch.cop0;
2269	struct kvm_vcpu_arch *arch = &vcpu->arch;
2270	enum emulation_result er = EMULATE_DONE;
2271
2272	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2273		/* save old pc */
2274		kvm_write_c0_guest_epc(cop0, arch->pc);
2275		kvm_set_c0_guest_status(cop0, ST0_EXL);
2276
2277		if (cause & CAUSEF_BD)
2278			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2279		else
2280			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2281
2282		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2283
2284		kvm_change_c0_guest_cause(cop0, (0xff),
2285					  (T_MSADIS << CAUSEB_EXCCODE));
2286
2287		/* Set PC to the exception entry point */
2288		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2289
2290	} else {
2291		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2292		er = EMULATE_FAIL;
2293	}
2294
2295	return er;
2296}
2297
2298/* ll/sc, rdhwr, sync emulation */
2299
2300#define OPCODE 0xfc000000
2301#define BASE   0x03e00000
2302#define RT     0x001f0000
2303#define OFFSET 0x0000ffff
2304#define LL     0xc0000000
2305#define SC     0xe0000000
2306#define SPEC0  0x00000000
2307#define SPEC3  0x7c000000
2308#define RD     0x0000f800
2309#define FUNC   0x0000003f
2310#define SYNC   0x0000000f
2311#define RDHWR  0x0000003b
2312
2313enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2314					 struct kvm_run *run,
2315					 struct kvm_vcpu *vcpu)
2316{
2317	struct mips_coproc *cop0 = vcpu->arch.cop0;
2318	struct kvm_vcpu_arch *arch = &vcpu->arch;
2319	enum emulation_result er = EMULATE_DONE;
2320	unsigned long curr_pc;
2321	uint32_t inst;
2322
2323	/*
2324	 * Update PC and hold onto current PC in case there is
2325	 * an error and we want to rollback the PC
2326	 */
2327	curr_pc = vcpu->arch.pc;
2328	er = update_pc(vcpu, cause);
2329	if (er == EMULATE_FAIL)
2330		return er;
2331
2332	/* Fetch the instruction. */
2333	if (cause & CAUSEF_BD)
2334		opc += 1;
2335
2336	inst = kvm_get_inst(opc, vcpu);
2337
2338	if (inst == KVM_INVALID_INST) {
2339		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2340		return EMULATE_FAIL;
2341	}
2342
2343	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2344		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2345		int rd = (inst & RD) >> 11;
2346		int rt = (inst & RT) >> 16;
2347		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2348		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2349			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2350				  rd, opc);
2351			goto emulate_ri;
2352		}
2353		switch (rd) {
2354		case 0:	/* CPU number */
2355			arch->gprs[rt] = 0;
2356			break;
2357		case 1:	/* SYNCI length */
2358			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2359					     current_cpu_data.icache.linesz);
2360			break;
2361		case 2:	/* Read count register */
2362			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2363			break;
2364		case 3:	/* Count register resolution */
2365			switch (current_cpu_data.cputype) {
2366			case CPU_20KC:
2367			case CPU_25KF:
2368				arch->gprs[rt] = 1;
2369				break;
2370			default:
2371				arch->gprs[rt] = 2;
2372			}
2373			break;
2374		case 29:
2375			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2376			break;
2377
2378		default:
2379			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2380			goto emulate_ri;
2381		}
2382	} else {
2383		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2384		goto emulate_ri;
2385	}
2386
2387	return EMULATE_DONE;
2388
2389emulate_ri:
2390	/*
2391	 * Rollback PC (if in branch delay slot then the PC already points to
2392	 * branch target), and pass the RI exception to the guest OS.
2393	 */
2394	vcpu->arch.pc = curr_pc;
2395	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2396}
2397
2398enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2399						  struct kvm_run *run)
2400{
2401	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2402	enum emulation_result er = EMULATE_DONE;
2403
2404	if (run->mmio.len > sizeof(*gpr)) {
2405		kvm_err("Bad MMIO length: %d", run->mmio.len);
2406		er = EMULATE_FAIL;
2407		goto done;
2408	}
2409
2410	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2411	if (er == EMULATE_FAIL)
2412		return er;
2413
2414	switch (run->mmio.len) {
2415	case 4:
2416		*gpr = *(int32_t *) run->mmio.data;
2417		break;
2418
2419	case 2:
2420		if (vcpu->mmio_needed == 2)
2421			*gpr = *(int16_t *) run->mmio.data;
2422		else
2423			*gpr = *(uint16_t *)run->mmio.data;
2424
2425		break;
2426	case 1:
2427		if (vcpu->mmio_needed == 2)
2428			*gpr = *(int8_t *) run->mmio.data;
2429		else
2430			*gpr = *(u8 *) run->mmio.data;
2431		break;
2432	}
2433
2434	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2435		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2436			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2437			  vcpu->mmio_needed);
2438
2439done:
2440	return er;
2441}
2442
2443static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2444						  uint32_t *opc,
2445						  struct kvm_run *run,
2446						  struct kvm_vcpu *vcpu)
2447{
2448	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2449	struct mips_coproc *cop0 = vcpu->arch.cop0;
2450	struct kvm_vcpu_arch *arch = &vcpu->arch;
2451	enum emulation_result er = EMULATE_DONE;
2452
2453	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2454		/* save old pc */
2455		kvm_write_c0_guest_epc(cop0, arch->pc);
2456		kvm_set_c0_guest_status(cop0, ST0_EXL);
2457
2458		if (cause & CAUSEF_BD)
2459			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2460		else
2461			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2462
2463		kvm_change_c0_guest_cause(cop0, (0xff),
2464					  (exccode << CAUSEB_EXCCODE));
2465
2466		/* Set PC to the exception entry point */
2467		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2468		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2469
2470		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2471			  exccode, kvm_read_c0_guest_epc(cop0),
2472			  kvm_read_c0_guest_badvaddr(cop0));
2473	} else {
2474		kvm_err("Trying to deliver EXC when EXL is already set\n");
2475		er = EMULATE_FAIL;
2476	}
2477
2478	return er;
2479}
2480
2481enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2482					       uint32_t *opc,
2483					       struct kvm_run *run,
2484					       struct kvm_vcpu *vcpu)
2485{
2486	enum emulation_result er = EMULATE_DONE;
2487	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2488	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2489
2490	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2491
2492	if (usermode) {
2493		switch (exccode) {
2494		case T_INT:
2495		case T_SYSCALL:
2496		case T_BREAK:
2497		case T_RES_INST:
2498		case T_TRAP:
2499		case T_MSAFPE:
2500		case T_FPE:
2501		case T_MSADIS:
2502			break;
2503
2504		case T_COP_UNUSABLE:
2505			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2506				er = EMULATE_PRIV_FAIL;
2507			break;
2508
2509		case T_TLB_MOD:
2510			break;
2511
2512		case T_TLB_LD_MISS:
2513			/*
2514			 * We we are accessing Guest kernel space, then send an
2515			 * address error exception to the guest
2516			 */
2517			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2518				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2519					  badvaddr);
2520				cause &= ~0xff;
2521				cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2522				er = EMULATE_PRIV_FAIL;
2523			}
2524			break;
2525
2526		case T_TLB_ST_MISS:
2527			/*
2528			 * We we are accessing Guest kernel space, then send an
2529			 * address error exception to the guest
2530			 */
2531			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2532				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2533					  badvaddr);
2534				cause &= ~0xff;
2535				cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2536				er = EMULATE_PRIV_FAIL;
2537			}
2538			break;
2539
2540		case T_ADDR_ERR_ST:
2541			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2542				  badvaddr);
2543			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2544				cause &= ~0xff;
2545				cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2546			}
2547			er = EMULATE_PRIV_FAIL;
2548			break;
2549		case T_ADDR_ERR_LD:
2550			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2551				  badvaddr);
2552			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2553				cause &= ~0xff;
2554				cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2555			}
2556			er = EMULATE_PRIV_FAIL;
2557			break;
2558		default:
2559			er = EMULATE_PRIV_FAIL;
2560			break;
2561		}
2562	}
2563
2564	if (er == EMULATE_PRIV_FAIL)
2565		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2566
2567	return er;
2568}
2569
2570/*
2571 * User Address (UA) fault, this could happen if
2572 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2573 *     case we pass on the fault to the guest kernel and let it handle it.
2574 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2575 *     case we inject the TLB from the Guest TLB into the shadow host TLB
2576 */
2577enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2578					      uint32_t *opc,
2579					      struct kvm_run *run,
2580					      struct kvm_vcpu *vcpu)
2581{
2582	enum emulation_result er = EMULATE_DONE;
2583	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2584	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2585	int index;
2586
2587	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2588		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2589
2590	/*
2591	 * KVM would not have got the exception if this entry was valid in the
2592	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2593	 * send the guest an exception. The guest exc handler should then inject
2594	 * an entry into the guest TLB.
2595	 */
2596	index = kvm_mips_guest_tlb_lookup(vcpu,
2597					  (va & VPN2_MASK) |
2598					  (kvm_read_c0_guest_entryhi
2599					   (vcpu->arch.cop0) & ASID_MASK));
2600	if (index < 0) {
2601		if (exccode == T_TLB_LD_MISS) {
2602			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2603		} else if (exccode == T_TLB_ST_MISS) {
2604			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2605		} else {
2606			kvm_err("%s: invalid exc code: %d\n", __func__,
2607				exccode);
2608			er = EMULATE_FAIL;
2609		}
2610	} else {
2611		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2612
2613		/*
2614		 * Check if the entry is valid, if not then setup a TLB invalid
2615		 * exception to the guest
2616		 */
2617		if (!TLB_IS_VALID(*tlb, va)) {
2618			if (exccode == T_TLB_LD_MISS) {
2619				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2620								vcpu);
2621			} else if (exccode == T_TLB_ST_MISS) {
2622				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2623								vcpu);
2624			} else {
2625				kvm_err("%s: invalid exc code: %d\n", __func__,
2626					exccode);
2627				er = EMULATE_FAIL;
2628			}
2629		} else {
2630			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2631				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2632			/*
2633			 * OK we have a Guest TLB entry, now inject it into the
2634			 * shadow host TLB
2635			 */
2636			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2637							     NULL);
2638		}
2639	}
2640
2641	return er;
2642}
2643