1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
65 #include <asm/uasm.h>
66 
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
96 
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
104 
show_raw_backtrace(unsigned long reg29)105 static void show_raw_backtrace(unsigned long reg29)
106 {
107 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
108 	unsigned long addr;
109 
110 	printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
112 	printk("\n");
113 #endif
114 	while (!kstack_end(sp)) {
115 		unsigned long __user *p =
116 			(unsigned long __user *)(unsigned long)sp++;
117 		if (__get_user(addr, p)) {
118 			printk(" (Bad stack address)");
119 			break;
120 		}
121 		if (__kernel_text_address(addr))
122 			print_ip_sym(addr);
123 	}
124 	printk("\n");
125 }
126 
127 #ifdef CONFIG_KALLSYMS
128 int raw_show_trace;
set_raw_show_trace(char * str)129 static int __init set_raw_show_trace(char *str)
130 {
131 	raw_show_trace = 1;
132 	return 1;
133 }
134 __setup("raw_show_trace", set_raw_show_trace);
135 #endif
136 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
138 {
139 	unsigned long sp = regs->regs[29];
140 	unsigned long ra = regs->regs[31];
141 	unsigned long pc = regs->cp0_epc;
142 
143 	if (!task)
144 		task = current;
145 
146 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
147 		show_raw_backtrace(sp);
148 		return;
149 	}
150 	printk("Call Trace:\n");
151 	do {
152 		print_ip_sym(pc);
153 		pc = unwind_stack(task, &sp, pc, &ra);
154 	} while (pc);
155 	printk("\n");
156 }
157 
158 /*
159  * This routine abuses get_user()/put_user() to reference pointers
160  * with at least a bit of error checking ...
161  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)162 static void show_stacktrace(struct task_struct *task,
163 	const struct pt_regs *regs)
164 {
165 	const int field = 2 * sizeof(unsigned long);
166 	long stackdata;
167 	int i;
168 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
169 
170 	printk("Stack :");
171 	i = 0;
172 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 		if (i && ((i % (64 / field)) == 0))
174 			printk("\n	 ");
175 		if (i > 39) {
176 			printk(" ...");
177 			break;
178 		}
179 
180 		if (__get_user(stackdata, sp++)) {
181 			printk(" (Bad stack address)");
182 			break;
183 		}
184 
185 		printk(" %0*lx", field, stackdata);
186 		i++;
187 	}
188 	printk("\n");
189 	show_backtrace(task, regs);
190 }
191 
show_stack(struct task_struct * task,unsigned long * sp)192 void show_stack(struct task_struct *task, unsigned long *sp)
193 {
194 	struct pt_regs regs;
195 	mm_segment_t old_fs = get_fs();
196 	if (sp) {
197 		regs.regs[29] = (unsigned long)sp;
198 		regs.regs[31] = 0;
199 		regs.cp0_epc = 0;
200 	} else {
201 		if (task && task != current) {
202 			regs.regs[29] = task->thread.reg29;
203 			regs.regs[31] = 0;
204 			regs.cp0_epc = task->thread.reg31;
205 #ifdef CONFIG_KGDB_KDB
206 		} else if (atomic_read(&kgdb_active) != -1 &&
207 			   kdb_current_regs) {
208 			memcpy(&regs, kdb_current_regs, sizeof(regs));
209 #endif /* CONFIG_KGDB_KDB */
210 		} else {
211 			prepare_frametrace(&regs);
212 		}
213 	}
214 	/*
215 	 * show_stack() deals exclusively with kernel mode, so be sure to access
216 	 * the stack in the kernel (not user) address space.
217 	 */
218 	set_fs(KERNEL_DS);
219 	show_stacktrace(task, &regs);
220 	set_fs(old_fs);
221 }
222 
show_code(unsigned int __user * pc)223 static void show_code(unsigned int __user *pc)
224 {
225 	long i;
226 	unsigned short __user *pc16 = NULL;
227 
228 	printk("\nCode:");
229 
230 	if ((unsigned long)pc & 1)
231 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
232 	for(i = -3 ; i < 6 ; i++) {
233 		unsigned int insn;
234 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
235 			printk(" (Bad address in epc)\n");
236 			break;
237 		}
238 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
239 	}
240 }
241 
__show_regs(const struct pt_regs * regs)242 static void __show_regs(const struct pt_regs *regs)
243 {
244 	const int field = 2 * sizeof(unsigned long);
245 	unsigned int cause = regs->cp0_cause;
246 	int i;
247 
248 	show_regs_print_info(KERN_DEFAULT);
249 
250 	/*
251 	 * Saved main processor registers
252 	 */
253 	for (i = 0; i < 32; ) {
254 		if ((i % 4) == 0)
255 			printk("$%2d   :", i);
256 		if (i == 0)
257 			printk(" %0*lx", field, 0UL);
258 		else if (i == 26 || i == 27)
259 			printk(" %*s", field, "");
260 		else
261 			printk(" %0*lx", field, regs->regs[i]);
262 
263 		i++;
264 		if ((i % 4) == 0)
265 			printk("\n");
266 	}
267 
268 #ifdef CONFIG_CPU_HAS_SMARTMIPS
269 	printk("Acx    : %0*lx\n", field, regs->acx);
270 #endif
271 	printk("Hi    : %0*lx\n", field, regs->hi);
272 	printk("Lo    : %0*lx\n", field, regs->lo);
273 
274 	/*
275 	 * Saved cp0 registers
276 	 */
277 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
278 	       (void *) regs->cp0_epc);
279 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
280 	       (void *) regs->regs[31]);
281 
282 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
283 
284 	if (cpu_has_3kex) {
285 		if (regs->cp0_status & ST0_KUO)
286 			printk("KUo ");
287 		if (regs->cp0_status & ST0_IEO)
288 			printk("IEo ");
289 		if (regs->cp0_status & ST0_KUP)
290 			printk("KUp ");
291 		if (regs->cp0_status & ST0_IEP)
292 			printk("IEp ");
293 		if (regs->cp0_status & ST0_KUC)
294 			printk("KUc ");
295 		if (regs->cp0_status & ST0_IEC)
296 			printk("IEc ");
297 	} else if (cpu_has_4kex) {
298 		if (regs->cp0_status & ST0_KX)
299 			printk("KX ");
300 		if (regs->cp0_status & ST0_SX)
301 			printk("SX ");
302 		if (regs->cp0_status & ST0_UX)
303 			printk("UX ");
304 		switch (regs->cp0_status & ST0_KSU) {
305 		case KSU_USER:
306 			printk("USER ");
307 			break;
308 		case KSU_SUPERVISOR:
309 			printk("SUPERVISOR ");
310 			break;
311 		case KSU_KERNEL:
312 			printk("KERNEL ");
313 			break;
314 		default:
315 			printk("BAD_MODE ");
316 			break;
317 		}
318 		if (regs->cp0_status & ST0_ERL)
319 			printk("ERL ");
320 		if (regs->cp0_status & ST0_EXL)
321 			printk("EXL ");
322 		if (regs->cp0_status & ST0_IE)
323 			printk("IE ");
324 	}
325 	printk("\n");
326 
327 	printk("Cause : %08x\n", cause);
328 
329 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
330 	if (1 <= cause && cause <= 5)
331 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
332 
333 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
334 	       cpu_name_string());
335 }
336 
337 /*
338  * FIXME: really the generic show_regs should take a const pointer argument.
339  */
show_regs(struct pt_regs * regs)340 void show_regs(struct pt_regs *regs)
341 {
342 	__show_regs((struct pt_regs *)regs);
343 }
344 
show_registers(struct pt_regs * regs)345 void show_registers(struct pt_regs *regs)
346 {
347 	const int field = 2 * sizeof(unsigned long);
348 	mm_segment_t old_fs = get_fs();
349 
350 	__show_regs(regs);
351 	print_modules();
352 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
353 	       current->comm, current->pid, current_thread_info(), current,
354 	      field, current_thread_info()->tp_value);
355 	if (cpu_has_userlocal) {
356 		unsigned long tls;
357 
358 		tls = read_c0_userlocal();
359 		if (tls != current_thread_info()->tp_value)
360 			printk("*HwTLS: %0*lx\n", field, tls);
361 	}
362 
363 	if (!user_mode(regs))
364 		/* Necessary for getting the correct stack content */
365 		set_fs(KERNEL_DS);
366 	show_stacktrace(current, regs);
367 	show_code((unsigned int __user *) regs->cp0_epc);
368 	printk("\n");
369 	set_fs(old_fs);
370 }
371 
regs_to_trapnr(struct pt_regs * regs)372 static int regs_to_trapnr(struct pt_regs *regs)
373 {
374 	return (regs->cp0_cause >> 2) & 0x1f;
375 }
376 
377 static DEFINE_RAW_SPINLOCK(die_lock);
378 
die(const char * str,struct pt_regs * regs)379 void __noreturn die(const char *str, struct pt_regs *regs)
380 {
381 	static int die_counter;
382 	int sig = SIGSEGV;
383 
384 	oops_enter();
385 
386 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
387 		       SIGSEGV) == NOTIFY_STOP)
388 		sig = 0;
389 
390 	console_verbose();
391 	raw_spin_lock_irq(&die_lock);
392 	bust_spinlocks(1);
393 
394 	printk("%s[#%d]:\n", str, ++die_counter);
395 	show_registers(regs);
396 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
397 	raw_spin_unlock_irq(&die_lock);
398 
399 	oops_exit();
400 
401 	if (in_interrupt())
402 		panic("Fatal exception in interrupt");
403 
404 	if (panic_on_oops) {
405 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
406 		ssleep(5);
407 		panic("Fatal exception");
408 	}
409 
410 	if (regs && kexec_should_crash(current))
411 		crash_kexec(regs);
412 
413 	do_exit(sig);
414 }
415 
416 extern struct exception_table_entry __start___dbe_table[];
417 extern struct exception_table_entry __stop___dbe_table[];
418 
419 __asm__(
420 "	.section	__dbe_table, \"a\"\n"
421 "	.previous			\n");
422 
423 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425 {
426 	const struct exception_table_entry *e;
427 
428 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
429 	if (!e)
430 		e = search_module_dbetables(addr);
431 	return e;
432 }
433 
do_be(struct pt_regs * regs)434 asmlinkage void do_be(struct pt_regs *regs)
435 {
436 	const int field = 2 * sizeof(unsigned long);
437 	const struct exception_table_entry *fixup = NULL;
438 	int data = regs->cp0_cause & 4;
439 	int action = MIPS_BE_FATAL;
440 	enum ctx_state prev_state;
441 
442 	prev_state = exception_enter();
443 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
444 	if (data && !user_mode(regs))
445 		fixup = search_dbe_tables(exception_epc(regs));
446 
447 	if (fixup)
448 		action = MIPS_BE_FIXUP;
449 
450 	if (board_be_handler)
451 		action = board_be_handler(regs, fixup != NULL);
452 
453 	switch (action) {
454 	case MIPS_BE_DISCARD:
455 		goto out;
456 	case MIPS_BE_FIXUP:
457 		if (fixup) {
458 			regs->cp0_epc = fixup->nextinsn;
459 			goto out;
460 		}
461 		break;
462 	default:
463 		break;
464 	}
465 
466 	/*
467 	 * Assume it would be too dangerous to continue ...
468 	 */
469 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
470 	       data ? "Data" : "Instruction",
471 	       field, regs->cp0_epc, field, regs->regs[31]);
472 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
473 		       SIGBUS) == NOTIFY_STOP)
474 		goto out;
475 
476 	die_if_kernel("Oops", regs);
477 	force_sig(SIGBUS, current);
478 
479 out:
480 	exception_exit(prev_state);
481 }
482 
483 /*
484  * ll/sc, rdhwr, sync emulation
485  */
486 
487 #define OPCODE 0xfc000000
488 #define BASE   0x03e00000
489 #define RT     0x001f0000
490 #define OFFSET 0x0000ffff
491 #define LL     0xc0000000
492 #define SC     0xe0000000
493 #define SPEC0  0x00000000
494 #define SPEC3  0x7c000000
495 #define RD     0x0000f800
496 #define FUNC   0x0000003f
497 #define SYNC   0x0000000f
498 #define RDHWR  0x0000003b
499 
500 /*  microMIPS definitions   */
501 #define MM_POOL32A_FUNC 0xfc00ffff
502 #define MM_RDHWR        0x00006b3c
503 #define MM_RS           0x001f0000
504 #define MM_RT           0x03e00000
505 
506 /*
507  * The ll_bit is cleared by r*_switch.S
508  */
509 
510 unsigned int ll_bit;
511 struct task_struct *ll_task;
512 
simulate_ll(struct pt_regs * regs,unsigned int opcode)513 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
514 {
515 	unsigned long value, __user *vaddr;
516 	long offset;
517 
518 	/*
519 	 * analyse the ll instruction that just caused a ri exception
520 	 * and put the referenced address to addr.
521 	 */
522 
523 	/* sign extend offset */
524 	offset = opcode & OFFSET;
525 	offset <<= 16;
526 	offset >>= 16;
527 
528 	vaddr = (unsigned long __user *)
529 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
530 
531 	if ((unsigned long)vaddr & 3)
532 		return SIGBUS;
533 	if (get_user(value, vaddr))
534 		return SIGSEGV;
535 
536 	preempt_disable();
537 
538 	if (ll_task == NULL || ll_task == current) {
539 		ll_bit = 1;
540 	} else {
541 		ll_bit = 0;
542 	}
543 	ll_task = current;
544 
545 	preempt_enable();
546 
547 	regs->regs[(opcode & RT) >> 16] = value;
548 
549 	return 0;
550 }
551 
simulate_sc(struct pt_regs * regs,unsigned int opcode)552 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
553 {
554 	unsigned long __user *vaddr;
555 	unsigned long reg;
556 	long offset;
557 
558 	/*
559 	 * analyse the sc instruction that just caused a ri exception
560 	 * and put the referenced address to addr.
561 	 */
562 
563 	/* sign extend offset */
564 	offset = opcode & OFFSET;
565 	offset <<= 16;
566 	offset >>= 16;
567 
568 	vaddr = (unsigned long __user *)
569 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
570 	reg = (opcode & RT) >> 16;
571 
572 	if ((unsigned long)vaddr & 3)
573 		return SIGBUS;
574 
575 	preempt_disable();
576 
577 	if (ll_bit == 0 || ll_task != current) {
578 		regs->regs[reg] = 0;
579 		preempt_enable();
580 		return 0;
581 	}
582 
583 	preempt_enable();
584 
585 	if (put_user(regs->regs[reg], vaddr))
586 		return SIGSEGV;
587 
588 	regs->regs[reg] = 1;
589 
590 	return 0;
591 }
592 
593 /*
594  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
595  * opcodes are supposed to result in coprocessor unusable exceptions if
596  * executed on ll/sc-less processors.  That's the theory.  In practice a
597  * few processors such as NEC's VR4100 throw reserved instruction exceptions
598  * instead, so we're doing the emulation thing in both exception handlers.
599  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)600 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
601 {
602 	if ((opcode & OPCODE) == LL) {
603 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
604 				1, regs, 0);
605 		return simulate_ll(regs, opcode);
606 	}
607 	if ((opcode & OPCODE) == SC) {
608 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
609 				1, regs, 0);
610 		return simulate_sc(regs, opcode);
611 	}
612 
613 	return -1;			/* Must be something else ... */
614 }
615 
616 /*
617  * Simulate trapping 'rdhwr' instructions to provide user accessible
618  * registers not implemented in hardware.
619  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)620 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
621 {
622 	struct thread_info *ti = task_thread_info(current);
623 
624 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
625 			1, regs, 0);
626 	switch (rd) {
627 	case 0:		/* CPU number */
628 		regs->regs[rt] = smp_processor_id();
629 		return 0;
630 	case 1:		/* SYNCI length */
631 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
632 				     current_cpu_data.icache.linesz);
633 		return 0;
634 	case 2:		/* Read count register */
635 		regs->regs[rt] = read_c0_count();
636 		return 0;
637 	case 3:		/* Count register resolution */
638 		switch (current_cpu_type()) {
639 		case CPU_20KC:
640 		case CPU_25KF:
641 			regs->regs[rt] = 1;
642 			break;
643 		default:
644 			regs->regs[rt] = 2;
645 		}
646 		return 0;
647 	case 29:
648 		regs->regs[rt] = ti->tp_value;
649 		return 0;
650 	default:
651 		return -1;
652 	}
653 }
654 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)655 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
656 {
657 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
658 		int rd = (opcode & RD) >> 11;
659 		int rt = (opcode & RT) >> 16;
660 
661 		simulate_rdhwr(regs, rd, rt);
662 		return 0;
663 	}
664 
665 	/* Not ours.  */
666 	return -1;
667 }
668 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned short opcode)669 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
670 {
671 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
672 		int rd = (opcode & MM_RS) >> 16;
673 		int rt = (opcode & MM_RT) >> 21;
674 		simulate_rdhwr(regs, rd, rt);
675 		return 0;
676 	}
677 
678 	/* Not ours.  */
679 	return -1;
680 }
681 
simulate_sync(struct pt_regs * regs,unsigned int opcode)682 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
683 {
684 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
685 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
686 				1, regs, 0);
687 		return 0;
688 	}
689 
690 	return -1;			/* Must be something else ... */
691 }
692 
do_ov(struct pt_regs * regs)693 asmlinkage void do_ov(struct pt_regs *regs)
694 {
695 	enum ctx_state prev_state;
696 	siginfo_t info = {
697 		.si_signo = SIGFPE,
698 		.si_code = FPE_INTOVF,
699 		.si_addr = (void __user *)regs->cp0_epc,
700 	};
701 
702 	prev_state = exception_enter();
703 	die_if_kernel("Integer overflow", regs);
704 
705 	force_sig_info(SIGFPE, &info, current);
706 	exception_exit(prev_state);
707 }
708 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)709 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
710 {
711 	struct siginfo si = { 0 };
712 
713 	switch (sig) {
714 	case 0:
715 		return 0;
716 
717 	case SIGFPE:
718 		si.si_addr = fault_addr;
719 		si.si_signo = sig;
720 		/*
721 		 * Inexact can happen together with Overflow or Underflow.
722 		 * Respect the mask to deliver the correct exception.
723 		 */
724 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
725 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
726 		if (fcr31 & FPU_CSR_INV_X)
727 			si.si_code = FPE_FLTINV;
728 		else if (fcr31 & FPU_CSR_DIV_X)
729 			si.si_code = FPE_FLTDIV;
730 		else if (fcr31 & FPU_CSR_OVF_X)
731 			si.si_code = FPE_FLTOVF;
732 		else if (fcr31 & FPU_CSR_UDF_X)
733 			si.si_code = FPE_FLTUND;
734 		else if (fcr31 & FPU_CSR_INE_X)
735 			si.si_code = FPE_FLTRES;
736 		else
737 			si.si_code = __SI_FAULT;
738 		force_sig_info(sig, &si, current);
739 		return 1;
740 
741 	case SIGBUS:
742 		si.si_addr = fault_addr;
743 		si.si_signo = sig;
744 		si.si_code = BUS_ADRERR;
745 		force_sig_info(sig, &si, current);
746 		return 1;
747 
748 	case SIGSEGV:
749 		si.si_addr = fault_addr;
750 		si.si_signo = sig;
751 		down_read(&current->mm->mmap_sem);
752 		if (find_vma(current->mm, (unsigned long)fault_addr))
753 			si.si_code = SEGV_ACCERR;
754 		else
755 			si.si_code = SEGV_MAPERR;
756 		up_read(&current->mm->mmap_sem);
757 		force_sig_info(sig, &si, current);
758 		return 1;
759 
760 	default:
761 		force_sig(sig, current);
762 		return 1;
763 	}
764 }
765 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)766 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
767 		       unsigned long old_epc, unsigned long old_ra)
768 {
769 	union mips_instruction inst = { .word = opcode };
770 	void __user *fault_addr;
771 	unsigned long fcr31;
772 	int sig;
773 
774 	/* If it's obviously not an FP instruction, skip it */
775 	switch (inst.i_format.opcode) {
776 	case cop1_op:
777 	case cop1x_op:
778 	case lwc1_op:
779 	case ldc1_op:
780 	case swc1_op:
781 	case sdc1_op:
782 		break;
783 
784 	default:
785 		return -1;
786 	}
787 
788 	/*
789 	 * do_ri skipped over the instruction via compute_return_epc, undo
790 	 * that for the FPU emulator.
791 	 */
792 	regs->cp0_epc = old_epc;
793 	regs->regs[31] = old_ra;
794 
795 	/* Save the FP context to struct thread_struct */
796 	lose_fpu(1);
797 
798 	/* Run the emulator */
799 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
800 				       &fault_addr);
801 	fcr31 = current->thread.fpu.fcr31;
802 
803 	/*
804 	 * We can't allow the emulated instruction to leave any of
805 	 * the cause bits set in $fcr31.
806 	 */
807 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
808 
809 	/* Restore the hardware register state */
810 	own_fpu(1);
811 
812 	/* Send a signal if required.  */
813 	process_fpemu_return(sig, fault_addr, fcr31);
814 
815 	return 0;
816 }
817 
818 /*
819  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
820  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)821 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
822 {
823 	enum ctx_state prev_state;
824 	void __user *fault_addr;
825 	int sig;
826 
827 	prev_state = exception_enter();
828 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
829 		       SIGFPE) == NOTIFY_STOP)
830 		goto out;
831 
832 	/* Clear FCSR.Cause before enabling interrupts */
833 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
834 	local_irq_enable();
835 
836 	die_if_kernel("FP exception in kernel code", regs);
837 
838 	if (fcr31 & FPU_CSR_UNI_X) {
839 		/*
840 		 * Unimplemented operation exception.  If we've got the full
841 		 * software emulator on-board, let's use it...
842 		 *
843 		 * Force FPU to dump state into task/thread context.  We're
844 		 * moving a lot of data here for what is probably a single
845 		 * instruction, but the alternative is to pre-decode the FP
846 		 * register operands before invoking the emulator, which seems
847 		 * a bit extreme for what should be an infrequent event.
848 		 */
849 		/* Ensure 'resume' not overwrite saved fp context again. */
850 		lose_fpu(1);
851 
852 		/* Run the emulator */
853 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
854 					       &fault_addr);
855 		fcr31 = current->thread.fpu.fcr31;
856 
857 		/*
858 		 * We can't allow the emulated instruction to leave any of
859 		 * the cause bits set in $fcr31.
860 		 */
861 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
862 
863 		/* Restore the hardware register state */
864 		own_fpu(1);	/* Using the FPU again.	 */
865 	} else {
866 		sig = SIGFPE;
867 		fault_addr = (void __user *) regs->cp0_epc;
868 	}
869 
870 	/* Send a signal if required.  */
871 	process_fpemu_return(sig, fault_addr, fcr31);
872 
873 out:
874 	exception_exit(prev_state);
875 }
876 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,const char * str)877 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
878 	const char *str)
879 {
880 	siginfo_t info = { 0 };
881 	char b[40];
882 
883 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
884 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
885 		return;
886 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
887 
888 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
889 		       SIGTRAP) == NOTIFY_STOP)
890 		return;
891 
892 	/*
893 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
894 	 * insns, even for trap and break codes that indicate arithmetic
895 	 * failures.  Weird ...
896 	 * But should we continue the brokenness???  --macro
897 	 */
898 	switch (code) {
899 	case BRK_OVERFLOW:
900 	case BRK_DIVZERO:
901 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
902 		die_if_kernel(b, regs);
903 		if (code == BRK_DIVZERO)
904 			info.si_code = FPE_INTDIV;
905 		else
906 			info.si_code = FPE_INTOVF;
907 		info.si_signo = SIGFPE;
908 		info.si_addr = (void __user *) regs->cp0_epc;
909 		force_sig_info(SIGFPE, &info, current);
910 		break;
911 	case BRK_BUG:
912 		die_if_kernel("Kernel bug detected", regs);
913 		force_sig(SIGTRAP, current);
914 		break;
915 	case BRK_MEMU:
916 		/*
917 		 * This breakpoint code is used by the FPU emulator to retake
918 		 * control of the CPU after executing the instruction from the
919 		 * delay slot of an emulated branch.
920 		 *
921 		 * Terminate if exception was recognized as a delay slot return
922 		 * otherwise handle as normal.
923 		 */
924 		if (do_dsemulret(regs))
925 			return;
926 
927 		die_if_kernel("Math emu break/trap", regs);
928 		force_sig(SIGTRAP, current);
929 		break;
930 	default:
931 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
932 		die_if_kernel(b, regs);
933 		force_sig(SIGTRAP, current);
934 	}
935 }
936 
do_bp(struct pt_regs * regs)937 asmlinkage void do_bp(struct pt_regs *regs)
938 {
939 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
940 	unsigned int opcode, bcode;
941 	enum ctx_state prev_state;
942 	mm_segment_t seg;
943 
944 	seg = get_fs();
945 	if (!user_mode(regs))
946 		set_fs(KERNEL_DS);
947 
948 	prev_state = exception_enter();
949 	if (get_isa16_mode(regs->cp0_epc)) {
950 		u16 instr[2];
951 
952 		if (__get_user(instr[0], (u16 __user *)epc))
953 			goto out_sigsegv;
954 
955 		if (!cpu_has_mmips) {
956 			/* MIPS16e mode */
957 			bcode = (instr[0] >> 5) & 0x3f;
958 		} else if (mm_insn_16bit(instr[0])) {
959 			/* 16-bit microMIPS BREAK */
960 			bcode = instr[0] & 0xf;
961 		} else {
962 			/* 32-bit microMIPS BREAK */
963 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
964 				goto out_sigsegv;
965 			opcode = (instr[0] << 16) | instr[1];
966 			bcode = (opcode >> 6) & ((1 << 20) - 1);
967 		}
968 	} else {
969 		if (__get_user(opcode, (unsigned int __user *)epc))
970 			goto out_sigsegv;
971 		bcode = (opcode >> 6) & ((1 << 20) - 1);
972 	}
973 
974 	/*
975 	 * There is the ancient bug in the MIPS assemblers that the break
976 	 * code starts left to bit 16 instead to bit 6 in the opcode.
977 	 * Gas is bug-compatible, but not always, grrr...
978 	 * We handle both cases with a simple heuristics.  --macro
979 	 */
980 	if (bcode >= (1 << 10))
981 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
982 
983 	/*
984 	 * notify the kprobe handlers, if instruction is likely to
985 	 * pertain to them.
986 	 */
987 	switch (bcode) {
988 	case BRK_KPROBE_BP:
989 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
990 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
991 			goto out;
992 		else
993 			break;
994 	case BRK_KPROBE_SSTEPBP:
995 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
996 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
997 			goto out;
998 		else
999 			break;
1000 	default:
1001 		break;
1002 	}
1003 
1004 	do_trap_or_bp(regs, bcode, "Break");
1005 
1006 out:
1007 	set_fs(seg);
1008 	exception_exit(prev_state);
1009 	return;
1010 
1011 out_sigsegv:
1012 	force_sig(SIGSEGV, current);
1013 	goto out;
1014 }
1015 
do_tr(struct pt_regs * regs)1016 asmlinkage void do_tr(struct pt_regs *regs)
1017 {
1018 	u32 opcode, tcode = 0;
1019 	enum ctx_state prev_state;
1020 	u16 instr[2];
1021 	mm_segment_t seg;
1022 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023 
1024 	seg = get_fs();
1025 	if (!user_mode(regs))
1026 		set_fs(get_ds());
1027 
1028 	prev_state = exception_enter();
1029 	if (get_isa16_mode(regs->cp0_epc)) {
1030 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1031 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1032 			goto out_sigsegv;
1033 		opcode = (instr[0] << 16) | instr[1];
1034 		/* Immediate versions don't provide a code.  */
1035 		if (!(opcode & OPCODE))
1036 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1037 	} else {
1038 		if (__get_user(opcode, (u32 __user *)epc))
1039 			goto out_sigsegv;
1040 		/* Immediate versions don't provide a code.  */
1041 		if (!(opcode & OPCODE))
1042 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1043 	}
1044 
1045 	do_trap_or_bp(regs, tcode, "Trap");
1046 
1047 out:
1048 	set_fs(seg);
1049 	exception_exit(prev_state);
1050 	return;
1051 
1052 out_sigsegv:
1053 	force_sig(SIGSEGV, current);
1054 	goto out;
1055 }
1056 
do_ri(struct pt_regs * regs)1057 asmlinkage void do_ri(struct pt_regs *regs)
1058 {
1059 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1060 	unsigned long old_epc = regs->cp0_epc;
1061 	unsigned long old31 = regs->regs[31];
1062 	enum ctx_state prev_state;
1063 	unsigned int opcode = 0;
1064 	int status = -1;
1065 
1066 	/*
1067 	 * Avoid any kernel code. Just emulate the R2 instruction
1068 	 * as quickly as possible.
1069 	 */
1070 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1071 	    likely(user_mode(regs)) &&
1072 	    likely(get_user(opcode, epc) >= 0)) {
1073 		unsigned long fcr31 = 0;
1074 
1075 		status = mipsr2_decoder(regs, opcode, &fcr31);
1076 		switch (status) {
1077 		case 0:
1078 		case SIGEMT:
1079 			task_thread_info(current)->r2_emul_return = 1;
1080 			return;
1081 		case SIGILL:
1082 			goto no_r2_instr;
1083 		default:
1084 			process_fpemu_return(status,
1085 					     &current->thread.cp0_baduaddr,
1086 					     fcr31);
1087 			task_thread_info(current)->r2_emul_return = 1;
1088 			return;
1089 		}
1090 	}
1091 
1092 no_r2_instr:
1093 
1094 	prev_state = exception_enter();
1095 
1096 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1097 		       SIGILL) == NOTIFY_STOP)
1098 		goto out;
1099 
1100 	die_if_kernel("Reserved instruction in kernel code", regs);
1101 
1102 	if (unlikely(compute_return_epc(regs) < 0))
1103 		goto out;
1104 
1105 	if (get_isa16_mode(regs->cp0_epc)) {
1106 		unsigned short mmop[2] = { 0 };
1107 
1108 		if (unlikely(get_user(mmop[0], epc) < 0))
1109 			status = SIGSEGV;
1110 		if (unlikely(get_user(mmop[1], epc) < 0))
1111 			status = SIGSEGV;
1112 		opcode = (mmop[0] << 16) | mmop[1];
1113 
1114 		if (status < 0)
1115 			status = simulate_rdhwr_mm(regs, opcode);
1116 	} else {
1117 		if (unlikely(get_user(opcode, epc) < 0))
1118 			status = SIGSEGV;
1119 
1120 		if (!cpu_has_llsc && status < 0)
1121 			status = simulate_llsc(regs, opcode);
1122 
1123 		if (status < 0)
1124 			status = simulate_rdhwr_normal(regs, opcode);
1125 
1126 		if (status < 0)
1127 			status = simulate_sync(regs, opcode);
1128 
1129 		if (status < 0)
1130 			status = simulate_fp(regs, opcode, old_epc, old31);
1131 	}
1132 
1133 	if (status < 0)
1134 		status = SIGILL;
1135 
1136 	if (unlikely(status > 0)) {
1137 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1138 		regs->regs[31] = old31;
1139 		force_sig(status, current);
1140 	}
1141 
1142 out:
1143 	exception_exit(prev_state);
1144 }
1145 
1146 /*
1147  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1148  * emulated more than some threshold number of instructions, force migration to
1149  * a "CPU" that has FP support.
1150  */
mt_ase_fp_affinity(void)1151 static void mt_ase_fp_affinity(void)
1152 {
1153 #ifdef CONFIG_MIPS_MT_FPAFF
1154 	if (mt_fpemul_threshold > 0 &&
1155 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1156 		/*
1157 		 * If there's no FPU present, or if the application has already
1158 		 * restricted the allowed set to exclude any CPUs with FPUs,
1159 		 * we'll skip the procedure.
1160 		 */
1161 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1162 			cpumask_t tmask;
1163 
1164 			current->thread.user_cpus_allowed
1165 				= current->cpus_allowed;
1166 			cpumask_and(&tmask, &current->cpus_allowed,
1167 				    &mt_fpu_cpumask);
1168 			set_cpus_allowed_ptr(current, &tmask);
1169 			set_thread_flag(TIF_FPUBOUND);
1170 		}
1171 	}
1172 #endif /* CONFIG_MIPS_MT_FPAFF */
1173 }
1174 
1175 /*
1176  * No lock; only written during early bootup by CPU 0.
1177  */
1178 static RAW_NOTIFIER_HEAD(cu2_chain);
1179 
register_cu2_notifier(struct notifier_block * nb)1180 int __ref register_cu2_notifier(struct notifier_block *nb)
1181 {
1182 	return raw_notifier_chain_register(&cu2_chain, nb);
1183 }
1184 
cu2_notifier_call_chain(unsigned long val,void * v)1185 int cu2_notifier_call_chain(unsigned long val, void *v)
1186 {
1187 	return raw_notifier_call_chain(&cu2_chain, val, v);
1188 }
1189 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1190 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1191 	void *data)
1192 {
1193 	struct pt_regs *regs = data;
1194 
1195 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1196 			      "instruction", regs);
1197 	force_sig(SIGILL, current);
1198 
1199 	return NOTIFY_OK;
1200 }
1201 
wait_on_fp_mode_switch(atomic_t * p)1202 static int wait_on_fp_mode_switch(atomic_t *p)
1203 {
1204 	/*
1205 	 * The FP mode for this task is currently being switched. That may
1206 	 * involve modifications to the format of this tasks FP context which
1207 	 * make it unsafe to proceed with execution for the moment. Instead,
1208 	 * schedule some other task.
1209 	 */
1210 	schedule();
1211 	return 0;
1212 }
1213 
enable_restore_fp_context(int msa)1214 static int enable_restore_fp_context(int msa)
1215 {
1216 	int err, was_fpu_owner, prior_msa;
1217 
1218 	/*
1219 	 * If an FP mode switch is currently underway, wait for it to
1220 	 * complete before proceeding.
1221 	 */
1222 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1223 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1224 
1225 	if (!used_math()) {
1226 		/* First time FP context user. */
1227 		preempt_disable();
1228 		err = init_fpu();
1229 		if (msa && !err) {
1230 			enable_msa();
1231 			init_msa_upper();
1232 			set_thread_flag(TIF_USEDMSA);
1233 			set_thread_flag(TIF_MSA_CTX_LIVE);
1234 		}
1235 		preempt_enable();
1236 		if (!err)
1237 			set_used_math();
1238 		return err;
1239 	}
1240 
1241 	/*
1242 	 * This task has formerly used the FP context.
1243 	 *
1244 	 * If this thread has no live MSA vector context then we can simply
1245 	 * restore the scalar FP context. If it has live MSA vector context
1246 	 * (that is, it has or may have used MSA since last performing a
1247 	 * function call) then we'll need to restore the vector context. This
1248 	 * applies even if we're currently only executing a scalar FP
1249 	 * instruction. This is because if we were to later execute an MSA
1250 	 * instruction then we'd either have to:
1251 	 *
1252 	 *  - Restore the vector context & clobber any registers modified by
1253 	 *    scalar FP instructions between now & then.
1254 	 *
1255 	 * or
1256 	 *
1257 	 *  - Not restore the vector context & lose the most significant bits
1258 	 *    of all vector registers.
1259 	 *
1260 	 * Neither of those options is acceptable. We cannot restore the least
1261 	 * significant bits of the registers now & only restore the most
1262 	 * significant bits later because the most significant bits of any
1263 	 * vector registers whose aliased FP register is modified now will have
1264 	 * been zeroed. We'd have no way to know that when restoring the vector
1265 	 * context & thus may load an outdated value for the most significant
1266 	 * bits of a vector register.
1267 	 */
1268 	if (!msa && !thread_msa_context_live())
1269 		return own_fpu(1);
1270 
1271 	/*
1272 	 * This task is using or has previously used MSA. Thus we require
1273 	 * that Status.FR == 1.
1274 	 */
1275 	preempt_disable();
1276 	was_fpu_owner = is_fpu_owner();
1277 	err = own_fpu_inatomic(0);
1278 	if (err)
1279 		goto out;
1280 
1281 	enable_msa();
1282 	write_msa_csr(current->thread.fpu.msacsr);
1283 	set_thread_flag(TIF_USEDMSA);
1284 
1285 	/*
1286 	 * If this is the first time that the task is using MSA and it has
1287 	 * previously used scalar FP in this time slice then we already nave
1288 	 * FP context which we shouldn't clobber. We do however need to clear
1289 	 * the upper 64b of each vector register so that this task has no
1290 	 * opportunity to see data left behind by another.
1291 	 */
1292 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1293 	if (!prior_msa && was_fpu_owner) {
1294 		init_msa_upper();
1295 
1296 		goto out;
1297 	}
1298 
1299 	if (!prior_msa) {
1300 		/*
1301 		 * Restore the least significant 64b of each vector register
1302 		 * from the existing scalar FP context.
1303 		 */
1304 		_restore_fp(current);
1305 
1306 		/*
1307 		 * The task has not formerly used MSA, so clear the upper 64b
1308 		 * of each vector register such that it cannot see data left
1309 		 * behind by another task.
1310 		 */
1311 		init_msa_upper();
1312 	} else {
1313 		/* We need to restore the vector context. */
1314 		restore_msa(current);
1315 
1316 		/* Restore the scalar FP control & status register */
1317 		if (!was_fpu_owner)
1318 			write_32bit_cp1_register(CP1_STATUS,
1319 						 current->thread.fpu.fcr31);
1320 	}
1321 
1322 out:
1323 	preempt_enable();
1324 
1325 	return 0;
1326 }
1327 
do_cpu(struct pt_regs * regs)1328 asmlinkage void do_cpu(struct pt_regs *regs)
1329 {
1330 	enum ctx_state prev_state;
1331 	unsigned int __user *epc;
1332 	unsigned long old_epc, old31;
1333 	void __user *fault_addr;
1334 	unsigned int opcode;
1335 	unsigned long fcr31;
1336 	unsigned int cpid;
1337 	int status, err;
1338 	unsigned long __maybe_unused flags;
1339 	int sig;
1340 
1341 	prev_state = exception_enter();
1342 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1343 
1344 	if (cpid != 2)
1345 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1346 
1347 	switch (cpid) {
1348 	case 0:
1349 		epc = (unsigned int __user *)exception_epc(regs);
1350 		old_epc = regs->cp0_epc;
1351 		old31 = regs->regs[31];
1352 		opcode = 0;
1353 		status = -1;
1354 
1355 		if (unlikely(compute_return_epc(regs) < 0))
1356 			break;
1357 
1358 		if (get_isa16_mode(regs->cp0_epc)) {
1359 			unsigned short mmop[2] = { 0 };
1360 
1361 			if (unlikely(get_user(mmop[0], epc) < 0))
1362 				status = SIGSEGV;
1363 			if (unlikely(get_user(mmop[1], epc) < 0))
1364 				status = SIGSEGV;
1365 			opcode = (mmop[0] << 16) | mmop[1];
1366 
1367 			if (status < 0)
1368 				status = simulate_rdhwr_mm(regs, opcode);
1369 		} else {
1370 			if (unlikely(get_user(opcode, epc) < 0))
1371 				status = SIGSEGV;
1372 
1373 			if (!cpu_has_llsc && status < 0)
1374 				status = simulate_llsc(regs, opcode);
1375 
1376 			if (status < 0)
1377 				status = simulate_rdhwr_normal(regs, opcode);
1378 		}
1379 
1380 		if (status < 0)
1381 			status = SIGILL;
1382 
1383 		if (unlikely(status > 0)) {
1384 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1385 			regs->regs[31] = old31;
1386 			force_sig(status, current);
1387 		}
1388 
1389 		break;
1390 
1391 	case 3:
1392 		/*
1393 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1394 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1395 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1396 		 * up the space has been reused for COP1X instructions, that
1397 		 * are enabled by the CP0.Status.CU1 bit and consequently
1398 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1399 		 * exceptions.  Some FPU-less processors that implement one
1400 		 * of these ISAs however use this code erroneously for COP1X
1401 		 * instructions.  Therefore we redirect this trap to the FP
1402 		 * emulator too.
1403 		 */
1404 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1405 			force_sig(SIGILL, current);
1406 			break;
1407 		}
1408 		/* Fall through.  */
1409 
1410 	case 1:
1411 		err = enable_restore_fp_context(0);
1412 
1413 		if (raw_cpu_has_fpu && !err)
1414 			break;
1415 
1416 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1417 					       &fault_addr);
1418 		fcr31 = current->thread.fpu.fcr31;
1419 
1420 		/*
1421 		 * We can't allow the emulated instruction to leave
1422 		 * any of the cause bits set in $fcr31.
1423 		 */
1424 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1425 
1426 		/* Send a signal if required.  */
1427 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1428 			mt_ase_fp_affinity();
1429 
1430 		break;
1431 
1432 	case 2:
1433 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1434 		break;
1435 	}
1436 
1437 	exception_exit(prev_state);
1438 }
1439 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1440 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1441 {
1442 	enum ctx_state prev_state;
1443 
1444 	prev_state = exception_enter();
1445 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1446 		       regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1447 		goto out;
1448 
1449 	/* Clear MSACSR.Cause before enabling interrupts */
1450 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1451 	local_irq_enable();
1452 
1453 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1454 	force_sig(SIGFPE, current);
1455 out:
1456 	exception_exit(prev_state);
1457 }
1458 
do_msa(struct pt_regs * regs)1459 asmlinkage void do_msa(struct pt_regs *regs)
1460 {
1461 	enum ctx_state prev_state;
1462 	int err;
1463 
1464 	prev_state = exception_enter();
1465 
1466 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1467 		force_sig(SIGILL, current);
1468 		goto out;
1469 	}
1470 
1471 	die_if_kernel("do_msa invoked from kernel context!", regs);
1472 
1473 	err = enable_restore_fp_context(1);
1474 	if (err)
1475 		force_sig(SIGILL, current);
1476 out:
1477 	exception_exit(prev_state);
1478 }
1479 
do_mdmx(struct pt_regs * regs)1480 asmlinkage void do_mdmx(struct pt_regs *regs)
1481 {
1482 	enum ctx_state prev_state;
1483 
1484 	prev_state = exception_enter();
1485 	force_sig(SIGILL, current);
1486 	exception_exit(prev_state);
1487 }
1488 
1489 /*
1490  * Called with interrupts disabled.
1491  */
do_watch(struct pt_regs * regs)1492 asmlinkage void do_watch(struct pt_regs *regs)
1493 {
1494 	enum ctx_state prev_state;
1495 	u32 cause;
1496 
1497 	prev_state = exception_enter();
1498 	/*
1499 	 * Clear WP (bit 22) bit of cause register so we don't loop
1500 	 * forever.
1501 	 */
1502 	cause = read_c0_cause();
1503 	cause &= ~(1 << 22);
1504 	write_c0_cause(cause);
1505 
1506 	/*
1507 	 * If the current thread has the watch registers loaded, save
1508 	 * their values and send SIGTRAP.  Otherwise another thread
1509 	 * left the registers set, clear them and continue.
1510 	 */
1511 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1512 		mips_read_watch_registers();
1513 		local_irq_enable();
1514 		force_sig(SIGTRAP, current);
1515 	} else {
1516 		mips_clear_watch_registers();
1517 		local_irq_enable();
1518 	}
1519 	exception_exit(prev_state);
1520 }
1521 
do_mcheck(struct pt_regs * regs)1522 asmlinkage void do_mcheck(struct pt_regs *regs)
1523 {
1524 	const int field = 2 * sizeof(unsigned long);
1525 	int multi_match = regs->cp0_status & ST0_TS;
1526 	enum ctx_state prev_state;
1527 	mm_segment_t old_fs = get_fs();
1528 
1529 	prev_state = exception_enter();
1530 	show_regs(regs);
1531 
1532 	if (multi_match) {
1533 		pr_err("Index	: %0x\n", read_c0_index());
1534 		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1535 		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1536 		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1537 		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1538 		pr_err("Wired   : %0x\n", read_c0_wired());
1539 		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1540 		if (cpu_has_htw) {
1541 			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1542 			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1543 			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1544 		}
1545 		pr_err("\n");
1546 		dump_tlb_all();
1547 	}
1548 
1549 	if (!user_mode(regs))
1550 		set_fs(KERNEL_DS);
1551 
1552 	show_code((unsigned int __user *) regs->cp0_epc);
1553 
1554 	set_fs(old_fs);
1555 
1556 	/*
1557 	 * Some chips may have other causes of machine check (e.g. SB1
1558 	 * graduation timer)
1559 	 */
1560 	panic("Caught Machine Check exception - %scaused by multiple "
1561 	      "matching entries in the TLB.",
1562 	      (multi_match) ? "" : "not ");
1563 }
1564 
do_mt(struct pt_regs * regs)1565 asmlinkage void do_mt(struct pt_regs *regs)
1566 {
1567 	int subcode;
1568 
1569 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1570 			>> VPECONTROL_EXCPT_SHIFT;
1571 	switch (subcode) {
1572 	case 0:
1573 		printk(KERN_DEBUG "Thread Underflow\n");
1574 		break;
1575 	case 1:
1576 		printk(KERN_DEBUG "Thread Overflow\n");
1577 		break;
1578 	case 2:
1579 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1580 		break;
1581 	case 3:
1582 		printk(KERN_DEBUG "Gating Storage Exception\n");
1583 		break;
1584 	case 4:
1585 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1586 		break;
1587 	case 5:
1588 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1589 		break;
1590 	default:
1591 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1592 			subcode);
1593 		break;
1594 	}
1595 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1596 
1597 	force_sig(SIGILL, current);
1598 }
1599 
1600 
do_dsp(struct pt_regs * regs)1601 asmlinkage void do_dsp(struct pt_regs *regs)
1602 {
1603 	if (cpu_has_dsp)
1604 		panic("Unexpected DSP exception");
1605 
1606 	force_sig(SIGILL, current);
1607 }
1608 
do_reserved(struct pt_regs * regs)1609 asmlinkage void do_reserved(struct pt_regs *regs)
1610 {
1611 	/*
1612 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1613 	 * caused by a new unknown cpu type or after another deadly
1614 	 * hard/software error.
1615 	 */
1616 	show_regs(regs);
1617 	panic("Caught reserved exception %ld - should not happen.",
1618 	      (regs->cp0_cause & 0x7f) >> 2);
1619 }
1620 
1621 static int __initdata l1parity = 1;
nol1parity(char * s)1622 static int __init nol1parity(char *s)
1623 {
1624 	l1parity = 0;
1625 	return 1;
1626 }
1627 __setup("nol1par", nol1parity);
1628 static int __initdata l2parity = 1;
nol2parity(char * s)1629 static int __init nol2parity(char *s)
1630 {
1631 	l2parity = 0;
1632 	return 1;
1633 }
1634 __setup("nol2par", nol2parity);
1635 
1636 /*
1637  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1638  * it different ways.
1639  */
parity_protection_init(void)1640 static inline void parity_protection_init(void)
1641 {
1642 	switch (current_cpu_type()) {
1643 	case CPU_24K:
1644 	case CPU_34K:
1645 	case CPU_74K:
1646 	case CPU_1004K:
1647 	case CPU_1074K:
1648 	case CPU_INTERAPTIV:
1649 	case CPU_PROAPTIV:
1650 	case CPU_P5600:
1651 	case CPU_QEMU_GENERIC:
1652 		{
1653 #define ERRCTL_PE	0x80000000
1654 #define ERRCTL_L2P	0x00800000
1655 			unsigned long errctl;
1656 			unsigned int l1parity_present, l2parity_present;
1657 
1658 			errctl = read_c0_ecc();
1659 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1660 
1661 			/* probe L1 parity support */
1662 			write_c0_ecc(errctl | ERRCTL_PE);
1663 			back_to_back_c0_hazard();
1664 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1665 
1666 			/* probe L2 parity support */
1667 			write_c0_ecc(errctl|ERRCTL_L2P);
1668 			back_to_back_c0_hazard();
1669 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1670 
1671 			if (l1parity_present && l2parity_present) {
1672 				if (l1parity)
1673 					errctl |= ERRCTL_PE;
1674 				if (l1parity ^ l2parity)
1675 					errctl |= ERRCTL_L2P;
1676 			} else if (l1parity_present) {
1677 				if (l1parity)
1678 					errctl |= ERRCTL_PE;
1679 			} else if (l2parity_present) {
1680 				if (l2parity)
1681 					errctl |= ERRCTL_L2P;
1682 			} else {
1683 				/* No parity available */
1684 			}
1685 
1686 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1687 
1688 			write_c0_ecc(errctl);
1689 			back_to_back_c0_hazard();
1690 			errctl = read_c0_ecc();
1691 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1692 
1693 			if (l1parity_present)
1694 				printk(KERN_INFO "Cache parity protection %sabled\n",
1695 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1696 
1697 			if (l2parity_present) {
1698 				if (l1parity_present && l1parity)
1699 					errctl ^= ERRCTL_L2P;
1700 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1701 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1702 			}
1703 		}
1704 		break;
1705 
1706 	case CPU_5KC:
1707 	case CPU_5KE:
1708 	case CPU_LOONGSON1:
1709 		write_c0_ecc(0x80000000);
1710 		back_to_back_c0_hazard();
1711 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1712 		printk(KERN_INFO "Cache parity protection %sabled\n",
1713 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1714 		break;
1715 	case CPU_20KC:
1716 	case CPU_25KF:
1717 		/* Clear the DE bit (bit 16) in the c0_status register. */
1718 		printk(KERN_INFO "Enable cache parity protection for "
1719 		       "MIPS 20KC/25KF CPUs.\n");
1720 		clear_c0_status(ST0_DE);
1721 		break;
1722 	default:
1723 		break;
1724 	}
1725 }
1726 
cache_parity_error(void)1727 asmlinkage void cache_parity_error(void)
1728 {
1729 	const int field = 2 * sizeof(unsigned long);
1730 	unsigned int reg_val;
1731 
1732 	/* For the moment, report the problem and hang. */
1733 	printk("Cache error exception:\n");
1734 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1735 	reg_val = read_c0_cacheerr();
1736 	printk("c0_cacheerr == %08x\n", reg_val);
1737 
1738 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1739 	       reg_val & (1<<30) ? "secondary" : "primary",
1740 	       reg_val & (1<<31) ? "data" : "insn");
1741 	if ((cpu_has_mips_r2_r6) &&
1742 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1743 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1744 			reg_val & (1<<29) ? "ED " : "",
1745 			reg_val & (1<<28) ? "ET " : "",
1746 			reg_val & (1<<27) ? "ES " : "",
1747 			reg_val & (1<<26) ? "EE " : "",
1748 			reg_val & (1<<25) ? "EB " : "",
1749 			reg_val & (1<<24) ? "EI " : "",
1750 			reg_val & (1<<23) ? "E1 " : "",
1751 			reg_val & (1<<22) ? "E0 " : "");
1752 	} else {
1753 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1754 			reg_val & (1<<29) ? "ED " : "",
1755 			reg_val & (1<<28) ? "ET " : "",
1756 			reg_val & (1<<26) ? "EE " : "",
1757 			reg_val & (1<<25) ? "EB " : "",
1758 			reg_val & (1<<24) ? "EI " : "",
1759 			reg_val & (1<<23) ? "E1 " : "",
1760 			reg_val & (1<<22) ? "E0 " : "");
1761 	}
1762 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1763 
1764 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1765 	if (reg_val & (1<<22))
1766 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1767 
1768 	if (reg_val & (1<<23))
1769 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1770 #endif
1771 
1772 	panic("Can't handle the cache error!");
1773 }
1774 
do_ftlb(void)1775 asmlinkage void do_ftlb(void)
1776 {
1777 	const int field = 2 * sizeof(unsigned long);
1778 	unsigned int reg_val;
1779 
1780 	/* For the moment, report the problem and hang. */
1781 	if ((cpu_has_mips_r2_r6) &&
1782 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1783 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1784 		       read_c0_ecc());
1785 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1786 		reg_val = read_c0_cacheerr();
1787 		pr_err("c0_cacheerr == %08x\n", reg_val);
1788 
1789 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1790 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1791 		} else {
1792 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1793 			       reg_val & (1<<30) ? "secondary" : "primary",
1794 			       reg_val & (1<<31) ? "data" : "insn");
1795 		}
1796 	} else {
1797 		pr_err("FTLB error exception\n");
1798 	}
1799 	/* Just print the cacheerr bits for now */
1800 	cache_parity_error();
1801 }
1802 
1803 /*
1804  * SDBBP EJTAG debug exception handler.
1805  * We skip the instruction and return to the next instruction.
1806  */
ejtag_exception_handler(struct pt_regs * regs)1807 void ejtag_exception_handler(struct pt_regs *regs)
1808 {
1809 	const int field = 2 * sizeof(unsigned long);
1810 	unsigned long depc, old_epc, old_ra;
1811 	unsigned int debug;
1812 
1813 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1814 	depc = read_c0_depc();
1815 	debug = read_c0_debug();
1816 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1817 	if (debug & 0x80000000) {
1818 		/*
1819 		 * In branch delay slot.
1820 		 * We cheat a little bit here and use EPC to calculate the
1821 		 * debug return address (DEPC). EPC is restored after the
1822 		 * calculation.
1823 		 */
1824 		old_epc = regs->cp0_epc;
1825 		old_ra = regs->regs[31];
1826 		regs->cp0_epc = depc;
1827 		compute_return_epc(regs);
1828 		depc = regs->cp0_epc;
1829 		regs->cp0_epc = old_epc;
1830 		regs->regs[31] = old_ra;
1831 	} else
1832 		depc += 4;
1833 	write_c0_depc(depc);
1834 
1835 #if 0
1836 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1837 	write_c0_debug(debug | 0x100);
1838 #endif
1839 }
1840 
1841 /*
1842  * NMI exception handler.
1843  * No lock; only written during early bootup by CPU 0.
1844  */
1845 static RAW_NOTIFIER_HEAD(nmi_chain);
1846 
register_nmi_notifier(struct notifier_block * nb)1847 int register_nmi_notifier(struct notifier_block *nb)
1848 {
1849 	return raw_notifier_chain_register(&nmi_chain, nb);
1850 }
1851 
nmi_exception_handler(struct pt_regs * regs)1852 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1853 {
1854 	char str[100];
1855 
1856 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1857 	bust_spinlocks(1);
1858 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1859 		 smp_processor_id(), regs->cp0_epc);
1860 	regs->cp0_epc = read_c0_errorepc();
1861 	die(str, regs);
1862 }
1863 
1864 #define VECTORSPACING 0x100	/* for EI/VI mode */
1865 
1866 unsigned long ebase;
1867 unsigned long exception_handlers[32];
1868 unsigned long vi_handlers[64];
1869 
set_except_vector(int n,void * addr)1870 void __init *set_except_vector(int n, void *addr)
1871 {
1872 	unsigned long handler = (unsigned long) addr;
1873 	unsigned long old_handler;
1874 
1875 #ifdef CONFIG_CPU_MICROMIPS
1876 	/*
1877 	 * Only the TLB handlers are cache aligned with an even
1878 	 * address. All other handlers are on an odd address and
1879 	 * require no modification. Otherwise, MIPS32 mode will
1880 	 * be entered when handling any TLB exceptions. That
1881 	 * would be bad...since we must stay in microMIPS mode.
1882 	 */
1883 	if (!(handler & 0x1))
1884 		handler |= 1;
1885 #endif
1886 	old_handler = xchg(&exception_handlers[n], handler);
1887 
1888 	if (n == 0 && cpu_has_divec) {
1889 #ifdef CONFIG_CPU_MICROMIPS
1890 		unsigned long jump_mask = ~((1 << 27) - 1);
1891 #else
1892 		unsigned long jump_mask = ~((1 << 28) - 1);
1893 #endif
1894 		u32 *buf = (u32 *)(ebase + 0x200);
1895 		unsigned int k0 = 26;
1896 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1897 			uasm_i_j(&buf, handler & ~jump_mask);
1898 			uasm_i_nop(&buf);
1899 		} else {
1900 			UASM_i_LA(&buf, k0, handler);
1901 			uasm_i_jr(&buf, k0);
1902 			uasm_i_nop(&buf);
1903 		}
1904 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1905 	}
1906 	return (void *)old_handler;
1907 }
1908 
do_default_vi(void)1909 static void do_default_vi(void)
1910 {
1911 	show_regs(get_irq_regs());
1912 	panic("Caught unexpected vectored interrupt.");
1913 }
1914 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1915 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1916 {
1917 	unsigned long handler;
1918 	unsigned long old_handler = vi_handlers[n];
1919 	int srssets = current_cpu_data.srsets;
1920 	u16 *h;
1921 	unsigned char *b;
1922 
1923 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1924 
1925 	if (addr == NULL) {
1926 		handler = (unsigned long) do_default_vi;
1927 		srs = 0;
1928 	} else
1929 		handler = (unsigned long) addr;
1930 	vi_handlers[n] = handler;
1931 
1932 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1933 
1934 	if (srs >= srssets)
1935 		panic("Shadow register set %d not supported", srs);
1936 
1937 	if (cpu_has_veic) {
1938 		if (board_bind_eic_interrupt)
1939 			board_bind_eic_interrupt(n, srs);
1940 	} else if (cpu_has_vint) {
1941 		/* SRSMap is only defined if shadow sets are implemented */
1942 		if (srssets > 1)
1943 			change_c0_srsmap(0xf << n*4, srs << n*4);
1944 	}
1945 
1946 	if (srs == 0) {
1947 		/*
1948 		 * If no shadow set is selected then use the default handler
1949 		 * that does normal register saving and standard interrupt exit
1950 		 */
1951 		extern char except_vec_vi, except_vec_vi_lui;
1952 		extern char except_vec_vi_ori, except_vec_vi_end;
1953 		extern char rollback_except_vec_vi;
1954 		char *vec_start = using_rollback_handler() ?
1955 			&rollback_except_vec_vi : &except_vec_vi;
1956 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1957 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1958 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1959 #else
1960 		const int lui_offset = &except_vec_vi_lui - vec_start;
1961 		const int ori_offset = &except_vec_vi_ori - vec_start;
1962 #endif
1963 		const int handler_len = &except_vec_vi_end - vec_start;
1964 
1965 		if (handler_len > VECTORSPACING) {
1966 			/*
1967 			 * Sigh... panicing won't help as the console
1968 			 * is probably not configured :(
1969 			 */
1970 			panic("VECTORSPACING too small");
1971 		}
1972 
1973 		set_handler(((unsigned long)b - ebase), vec_start,
1974 #ifdef CONFIG_CPU_MICROMIPS
1975 				(handler_len - 1));
1976 #else
1977 				handler_len);
1978 #endif
1979 		h = (u16 *)(b + lui_offset);
1980 		*h = (handler >> 16) & 0xffff;
1981 		h = (u16 *)(b + ori_offset);
1982 		*h = (handler & 0xffff);
1983 		local_flush_icache_range((unsigned long)b,
1984 					 (unsigned long)(b+handler_len));
1985 	}
1986 	else {
1987 		/*
1988 		 * In other cases jump directly to the interrupt handler. It
1989 		 * is the handler's responsibility to save registers if required
1990 		 * (eg hi/lo) and return from the exception using "eret".
1991 		 */
1992 		u32 insn;
1993 
1994 		h = (u16 *)b;
1995 		/* j handler */
1996 #ifdef CONFIG_CPU_MICROMIPS
1997 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1998 #else
1999 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2000 #endif
2001 		h[0] = (insn >> 16) & 0xffff;
2002 		h[1] = insn & 0xffff;
2003 		h[2] = 0;
2004 		h[3] = 0;
2005 		local_flush_icache_range((unsigned long)b,
2006 					 (unsigned long)(b+8));
2007 	}
2008 
2009 	return (void *)old_handler;
2010 }
2011 
set_vi_handler(int n,vi_handler_t addr)2012 void *set_vi_handler(int n, vi_handler_t addr)
2013 {
2014 	return set_vi_srs_handler(n, addr, 0);
2015 }
2016 
2017 extern void tlb_init(void);
2018 
2019 /*
2020  * Timer interrupt
2021  */
2022 int cp0_compare_irq;
2023 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2024 int cp0_compare_irq_shift;
2025 
2026 /*
2027  * Performance counter IRQ or -1 if shared with timer
2028  */
2029 int cp0_perfcount_irq;
2030 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2031 
2032 /*
2033  * Fast debug channel IRQ or -1 if not present
2034  */
2035 int cp0_fdc_irq;
2036 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2037 
2038 static int noulri;
2039 
ulri_disable(char * s)2040 static int __init ulri_disable(char *s)
2041 {
2042 	pr_info("Disabling ulri\n");
2043 	noulri = 1;
2044 
2045 	return 1;
2046 }
2047 __setup("noulri", ulri_disable);
2048 
2049 /* configure STATUS register */
configure_status(void)2050 static void configure_status(void)
2051 {
2052 	/*
2053 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2054 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2055 	 * flag that some firmware may have left set and the TS bit (for
2056 	 * IP27).  Set XX for ISA IV code to work.
2057 	 */
2058 	unsigned int status_set = ST0_CU0;
2059 #ifdef CONFIG_64BIT
2060 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2061 #endif
2062 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2063 		status_set |= ST0_XX;
2064 	if (cpu_has_dsp)
2065 		status_set |= ST0_MX;
2066 
2067 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2068 			 status_set);
2069 }
2070 
2071 /* configure HWRENA register */
configure_hwrena(void)2072 static void configure_hwrena(void)
2073 {
2074 	unsigned int hwrena = cpu_hwrena_impl_bits;
2075 
2076 	if (cpu_has_mips_r2_r6)
2077 		hwrena |= 0x0000000f;
2078 
2079 	if (!noulri && cpu_has_userlocal)
2080 		hwrena |= (1 << 29);
2081 
2082 	if (hwrena)
2083 		write_c0_hwrena(hwrena);
2084 }
2085 
configure_exception_vector(void)2086 static void configure_exception_vector(void)
2087 {
2088 	if (cpu_has_veic || cpu_has_vint) {
2089 		unsigned long sr = set_c0_status(ST0_BEV);
2090 		write_c0_ebase(ebase);
2091 		write_c0_status(sr);
2092 		/* Setting vector spacing enables EI/VI mode  */
2093 		change_c0_intctl(0x3e0, VECTORSPACING);
2094 	}
2095 	if (cpu_has_divec) {
2096 		if (cpu_has_mipsmt) {
2097 			unsigned int vpflags = dvpe();
2098 			set_c0_cause(CAUSEF_IV);
2099 			evpe(vpflags);
2100 		} else
2101 			set_c0_cause(CAUSEF_IV);
2102 	}
2103 }
2104 
per_cpu_trap_init(bool is_boot_cpu)2105 void per_cpu_trap_init(bool is_boot_cpu)
2106 {
2107 	unsigned int cpu = smp_processor_id();
2108 
2109 	configure_status();
2110 	configure_hwrena();
2111 
2112 	configure_exception_vector();
2113 
2114 	/*
2115 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2116 	 *
2117 	 *  o read IntCtl.IPTI to determine the timer interrupt
2118 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2119 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2120 	 */
2121 	if (cpu_has_mips_r2_r6) {
2122 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2123 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2124 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2125 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2126 		if (!cp0_fdc_irq)
2127 			cp0_fdc_irq = -1;
2128 
2129 	} else {
2130 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2131 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2132 		cp0_perfcount_irq = -1;
2133 		cp0_fdc_irq = -1;
2134 	}
2135 
2136 	if (!cpu_data[cpu].asid_cache)
2137 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2138 
2139 	atomic_inc(&init_mm.mm_count);
2140 	current->active_mm = &init_mm;
2141 	BUG_ON(current->mm);
2142 	enter_lazy_tlb(&init_mm, current);
2143 
2144 		/* Boot CPU's cache setup in setup_arch(). */
2145 		if (!is_boot_cpu)
2146 			cpu_cache_init();
2147 		tlb_init();
2148 	TLBMISS_HANDLER_SETUP();
2149 }
2150 
2151 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2152 void set_handler(unsigned long offset, void *addr, unsigned long size)
2153 {
2154 #ifdef CONFIG_CPU_MICROMIPS
2155 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2156 #else
2157 	memcpy((void *)(ebase + offset), addr, size);
2158 #endif
2159 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2160 }
2161 
2162 static char panic_null_cerr[] =
2163 	"Trying to set NULL cache error exception handler";
2164 
2165 /*
2166  * Install uncached CPU exception handler.
2167  * This is suitable only for the cache error exception which is the only
2168  * exception handler that is being run uncached.
2169  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2170 void set_uncached_handler(unsigned long offset, void *addr,
2171 	unsigned long size)
2172 {
2173 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2174 
2175 	if (!addr)
2176 		panic(panic_null_cerr);
2177 
2178 	memcpy((void *)(uncached_ebase + offset), addr, size);
2179 }
2180 
2181 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2182 static int __init set_rdhwr_noopt(char *str)
2183 {
2184 	rdhwr_noopt = 1;
2185 	return 1;
2186 }
2187 
2188 __setup("rdhwr_noopt", set_rdhwr_noopt);
2189 
trap_init(void)2190 void __init trap_init(void)
2191 {
2192 	extern char except_vec3_generic;
2193 	extern char except_vec4;
2194 	extern char except_vec3_r4000;
2195 	unsigned long i;
2196 
2197 	check_wait();
2198 
2199 #if defined(CONFIG_KGDB)
2200 	if (kgdb_early_setup)
2201 		return; /* Already done */
2202 #endif
2203 
2204 	if (cpu_has_veic || cpu_has_vint) {
2205 		unsigned long size = 0x200 + VECTORSPACING*64;
2206 		ebase = (unsigned long)
2207 			__alloc_bootmem(size, 1 << fls(size), 0);
2208 	} else {
2209 #ifdef CONFIG_KVM_GUEST
2210 #define KVM_GUEST_KSEG0     0x40000000
2211         ebase = KVM_GUEST_KSEG0;
2212 #else
2213         ebase = CKSEG0;
2214 #endif
2215 		if (cpu_has_mips_r2_r6)
2216 			ebase += (read_c0_ebase() & 0x3ffff000);
2217 	}
2218 
2219 	if (cpu_has_mmips) {
2220 		unsigned int config3 = read_c0_config3();
2221 
2222 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2223 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2224 		else
2225 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2226 	}
2227 
2228 	if (board_ebase_setup)
2229 		board_ebase_setup();
2230 	per_cpu_trap_init(true);
2231 
2232 	/*
2233 	 * Copy the generic exception handlers to their final destination.
2234 	 * This will be overriden later as suitable for a particular
2235 	 * configuration.
2236 	 */
2237 	set_handler(0x180, &except_vec3_generic, 0x80);
2238 
2239 	/*
2240 	 * Setup default vectors
2241 	 */
2242 	for (i = 0; i <= 31; i++)
2243 		set_except_vector(i, handle_reserved);
2244 
2245 	/*
2246 	 * Copy the EJTAG debug exception vector handler code to it's final
2247 	 * destination.
2248 	 */
2249 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2250 		board_ejtag_handler_setup();
2251 
2252 	/*
2253 	 * Only some CPUs have the watch exceptions.
2254 	 */
2255 	if (cpu_has_watch)
2256 		set_except_vector(23, handle_watch);
2257 
2258 	/*
2259 	 * Initialise interrupt handlers
2260 	 */
2261 	if (cpu_has_veic || cpu_has_vint) {
2262 		int nvec = cpu_has_veic ? 64 : 8;
2263 		for (i = 0; i < nvec; i++)
2264 			set_vi_handler(i, NULL);
2265 	}
2266 	else if (cpu_has_divec)
2267 		set_handler(0x200, &except_vec4, 0x8);
2268 
2269 	/*
2270 	 * Some CPUs can enable/disable for cache parity detection, but does
2271 	 * it different ways.
2272 	 */
2273 	parity_protection_init();
2274 
2275 	/*
2276 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2277 	 * by external hardware.  Therefore these two exceptions
2278 	 * may have board specific handlers.
2279 	 */
2280 	if (board_be_init)
2281 		board_be_init();
2282 
2283 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2284 						      : handle_int);
2285 	set_except_vector(1, handle_tlbm);
2286 	set_except_vector(2, handle_tlbl);
2287 	set_except_vector(3, handle_tlbs);
2288 
2289 	set_except_vector(4, handle_adel);
2290 	set_except_vector(5, handle_ades);
2291 
2292 	set_except_vector(6, handle_ibe);
2293 	set_except_vector(7, handle_dbe);
2294 
2295 	set_except_vector(8, handle_sys);
2296 	set_except_vector(9, handle_bp);
2297 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2298 			  (cpu_has_vtag_icache ?
2299 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2300 	set_except_vector(11, handle_cpu);
2301 	set_except_vector(12, handle_ov);
2302 	set_except_vector(13, handle_tr);
2303 	set_except_vector(14, handle_msa_fpe);
2304 
2305 	if (current_cpu_type() == CPU_R6000 ||
2306 	    current_cpu_type() == CPU_R6000A) {
2307 		/*
2308 		 * The R6000 is the only R-series CPU that features a machine
2309 		 * check exception (similar to the R4000 cache error) and
2310 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2311 		 * written yet.	 Well, anyway there is no R6000 machine on the
2312 		 * current list of targets for Linux/MIPS.
2313 		 * (Duh, crap, there is someone with a triple R6k machine)
2314 		 */
2315 		//set_except_vector(14, handle_mc);
2316 		//set_except_vector(15, handle_ndc);
2317 	}
2318 
2319 
2320 	if (board_nmi_handler_setup)
2321 		board_nmi_handler_setup();
2322 
2323 	if (cpu_has_fpu && !cpu_has_nofpuex)
2324 		set_except_vector(15, handle_fpe);
2325 
2326 	set_except_vector(16, handle_ftlb);
2327 
2328 	if (cpu_has_rixiex) {
2329 		set_except_vector(19, tlb_do_page_fault_0);
2330 		set_except_vector(20, tlb_do_page_fault_0);
2331 	}
2332 
2333 	set_except_vector(21, handle_msa);
2334 	set_except_vector(22, handle_mdmx);
2335 
2336 	if (cpu_has_mcheck)
2337 		set_except_vector(24, handle_mcheck);
2338 
2339 	if (cpu_has_mipsmt)
2340 		set_except_vector(25, handle_mt);
2341 
2342 	set_except_vector(26, handle_dsp);
2343 
2344 	if (board_cache_error_setup)
2345 		board_cache_error_setup();
2346 
2347 	if (cpu_has_vce)
2348 		/* Special exception: R4[04]00 uses also the divec space. */
2349 		set_handler(0x180, &except_vec3_r4000, 0x100);
2350 	else if (cpu_has_4kex)
2351 		set_handler(0x180, &except_vec3_generic, 0x80);
2352 	else
2353 		set_handler(0x080, &except_vec3_generic, 0x80);
2354 
2355 	local_flush_icache_range(ebase, ebase + 0x400);
2356 
2357 	sort_extable(__start___dbe_table, __stop___dbe_table);
2358 
2359 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2360 }
2361 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2362 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2363 			    void *v)
2364 {
2365 	switch (cmd) {
2366 	case CPU_PM_ENTER_FAILED:
2367 	case CPU_PM_EXIT:
2368 		configure_status();
2369 		configure_hwrena();
2370 		configure_exception_vector();
2371 
2372 		/* Restore register with CPU number for TLB handlers */
2373 		TLBMISS_HANDLER_RESTORE();
2374 
2375 		break;
2376 	}
2377 
2378 	return NOTIFY_OK;
2379 }
2380 
2381 static struct notifier_block trap_pm_notifier_block = {
2382 	.notifier_call = trap_pm_notifier,
2383 };
2384 
trap_pm_init(void)2385 static int __init trap_pm_init(void)
2386 {
2387 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2388 }
2389 arch_initcall(trap_pm_init);
2390