1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/sched.h>
26#include <linux/smp.h>
27#include <linux/spinlock.h>
28#include <linux/kallsyms.h>
29#include <linux/bootmem.h>
30#include <linux/interrupt.h>
31#include <linux/ptrace.h>
32#include <linux/kgdb.h>
33#include <linux/kdebug.h>
34#include <linux/kprobes.h>
35#include <linux/notifier.h>
36#include <linux/kdb.h>
37#include <linux/irq.h>
38#include <linux/perf_event.h>
39
40#include <asm/bootinfo.h>
41#include <asm/branch.h>
42#include <asm/break.h>
43#include <asm/cop2.h>
44#include <asm/cpu.h>
45#include <asm/cpu-type.h>
46#include <asm/dsp.h>
47#include <asm/fpu.h>
48#include <asm/fpu_emulator.h>
49#include <asm/idle.h>
50#include <asm/mips-r2-to-r6-emul.h>
51#include <asm/mipsregs.h>
52#include <asm/mipsmtregs.h>
53#include <asm/module.h>
54#include <asm/msa.h>
55#include <asm/pgtable.h>
56#include <asm/ptrace.h>
57#include <asm/sections.h>
58#include <asm/tlbdebug.h>
59#include <asm/traps.h>
60#include <asm/uaccess.h>
61#include <asm/watch.h>
62#include <asm/mmu_context.h>
63#include <asm/types.h>
64#include <asm/stacktrace.h>
65#include <asm/uasm.h>
66
67extern void check_wait(void);
68extern asmlinkage void rollback_handle_int(void);
69extern asmlinkage void handle_int(void);
70extern u32 handle_tlbl[];
71extern u32 handle_tlbs[];
72extern u32 handle_tlbm[];
73extern asmlinkage void handle_adel(void);
74extern asmlinkage void handle_ades(void);
75extern asmlinkage void handle_ibe(void);
76extern asmlinkage void handle_dbe(void);
77extern asmlinkage void handle_sys(void);
78extern asmlinkage void handle_bp(void);
79extern asmlinkage void handle_ri(void);
80extern asmlinkage void handle_ri_rdhwr_vivt(void);
81extern asmlinkage void handle_ri_rdhwr(void);
82extern asmlinkage void handle_cpu(void);
83extern asmlinkage void handle_ov(void);
84extern asmlinkage void handle_tr(void);
85extern asmlinkage void handle_msa_fpe(void);
86extern asmlinkage void handle_fpe(void);
87extern asmlinkage void handle_ftlb(void);
88extern asmlinkage void handle_msa(void);
89extern asmlinkage void handle_mdmx(void);
90extern asmlinkage void handle_watch(void);
91extern asmlinkage void handle_mt(void);
92extern asmlinkage void handle_dsp(void);
93extern asmlinkage void handle_mcheck(void);
94extern asmlinkage void handle_reserved(void);
95extern void tlb_do_page_fault_0(void);
96
97void (*board_be_init)(void);
98int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99void (*board_nmi_handler_setup)(void);
100void (*board_ejtag_handler_setup)(void);
101void (*board_bind_eic_interrupt)(int irq, int regset);
102void (*board_ebase_setup)(void);
103void(*board_cache_error_setup)(void);
104
105static void show_raw_backtrace(unsigned long reg29)
106{
107	unsigned long *sp = (unsigned long *)(reg29 & ~3);
108	unsigned long addr;
109
110	printk("Call Trace:");
111#ifdef CONFIG_KALLSYMS
112	printk("\n");
113#endif
114	while (!kstack_end(sp)) {
115		unsigned long __user *p =
116			(unsigned long __user *)(unsigned long)sp++;
117		if (__get_user(addr, p)) {
118			printk(" (Bad stack address)");
119			break;
120		}
121		if (__kernel_text_address(addr))
122			print_ip_sym(addr);
123	}
124	printk("\n");
125}
126
127#ifdef CONFIG_KALLSYMS
128int raw_show_trace;
129static int __init set_raw_show_trace(char *str)
130{
131	raw_show_trace = 1;
132	return 1;
133}
134__setup("raw_show_trace", set_raw_show_trace);
135#endif
136
137static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
138{
139	unsigned long sp = regs->regs[29];
140	unsigned long ra = regs->regs[31];
141	unsigned long pc = regs->cp0_epc;
142
143	if (!task)
144		task = current;
145
146	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
147		show_raw_backtrace(sp);
148		return;
149	}
150	printk("Call Trace:\n");
151	do {
152		print_ip_sym(pc);
153		pc = unwind_stack(task, &sp, pc, &ra);
154	} while (pc);
155	printk("\n");
156}
157
158/*
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
161 */
162static void show_stacktrace(struct task_struct *task,
163	const struct pt_regs *regs)
164{
165	const int field = 2 * sizeof(unsigned long);
166	long stackdata;
167	int i;
168	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
169
170	printk("Stack :");
171	i = 0;
172	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173		if (i && ((i % (64 / field)) == 0))
174			printk("\n	 ");
175		if (i > 39) {
176			printk(" ...");
177			break;
178		}
179
180		if (__get_user(stackdata, sp++)) {
181			printk(" (Bad stack address)");
182			break;
183		}
184
185		printk(" %0*lx", field, stackdata);
186		i++;
187	}
188	printk("\n");
189	show_backtrace(task, regs);
190}
191
192void show_stack(struct task_struct *task, unsigned long *sp)
193{
194	struct pt_regs regs;
195	mm_segment_t old_fs = get_fs();
196	if (sp) {
197		regs.regs[29] = (unsigned long)sp;
198		regs.regs[31] = 0;
199		regs.cp0_epc = 0;
200	} else {
201		if (task && task != current) {
202			regs.regs[29] = task->thread.reg29;
203			regs.regs[31] = 0;
204			regs.cp0_epc = task->thread.reg31;
205#ifdef CONFIG_KGDB_KDB
206		} else if (atomic_read(&kgdb_active) != -1 &&
207			   kdb_current_regs) {
208			memcpy(&regs, kdb_current_regs, sizeof(regs));
209#endif /* CONFIG_KGDB_KDB */
210		} else {
211			prepare_frametrace(&regs);
212		}
213	}
214	/*
215	 * show_stack() deals exclusively with kernel mode, so be sure to access
216	 * the stack in the kernel (not user) address space.
217	 */
218	set_fs(KERNEL_DS);
219	show_stacktrace(task, &regs);
220	set_fs(old_fs);
221}
222
223static void show_code(unsigned int __user *pc)
224{
225	long i;
226	unsigned short __user *pc16 = NULL;
227
228	printk("\nCode:");
229
230	if ((unsigned long)pc & 1)
231		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
232	for(i = -3 ; i < 6 ; i++) {
233		unsigned int insn;
234		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
235			printk(" (Bad address in epc)\n");
236			break;
237		}
238		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
239	}
240}
241
242static void __show_regs(const struct pt_regs *regs)
243{
244	const int field = 2 * sizeof(unsigned long);
245	unsigned int cause = regs->cp0_cause;
246	int i;
247
248	show_regs_print_info(KERN_DEFAULT);
249
250	/*
251	 * Saved main processor registers
252	 */
253	for (i = 0; i < 32; ) {
254		if ((i % 4) == 0)
255			printk("$%2d   :", i);
256		if (i == 0)
257			printk(" %0*lx", field, 0UL);
258		else if (i == 26 || i == 27)
259			printk(" %*s", field, "");
260		else
261			printk(" %0*lx", field, regs->regs[i]);
262
263		i++;
264		if ((i % 4) == 0)
265			printk("\n");
266	}
267
268#ifdef CONFIG_CPU_HAS_SMARTMIPS
269	printk("Acx    : %0*lx\n", field, regs->acx);
270#endif
271	printk("Hi    : %0*lx\n", field, regs->hi);
272	printk("Lo    : %0*lx\n", field, regs->lo);
273
274	/*
275	 * Saved cp0 registers
276	 */
277	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
278	       (void *) regs->cp0_epc);
279	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
280	       (void *) regs->regs[31]);
281
282	printk("Status: %08x	", (uint32_t) regs->cp0_status);
283
284	if (cpu_has_3kex) {
285		if (regs->cp0_status & ST0_KUO)
286			printk("KUo ");
287		if (regs->cp0_status & ST0_IEO)
288			printk("IEo ");
289		if (regs->cp0_status & ST0_KUP)
290			printk("KUp ");
291		if (regs->cp0_status & ST0_IEP)
292			printk("IEp ");
293		if (regs->cp0_status & ST0_KUC)
294			printk("KUc ");
295		if (regs->cp0_status & ST0_IEC)
296			printk("IEc ");
297	} else if (cpu_has_4kex) {
298		if (regs->cp0_status & ST0_KX)
299			printk("KX ");
300		if (regs->cp0_status & ST0_SX)
301			printk("SX ");
302		if (regs->cp0_status & ST0_UX)
303			printk("UX ");
304		switch (regs->cp0_status & ST0_KSU) {
305		case KSU_USER:
306			printk("USER ");
307			break;
308		case KSU_SUPERVISOR:
309			printk("SUPERVISOR ");
310			break;
311		case KSU_KERNEL:
312			printk("KERNEL ");
313			break;
314		default:
315			printk("BAD_MODE ");
316			break;
317		}
318		if (regs->cp0_status & ST0_ERL)
319			printk("ERL ");
320		if (regs->cp0_status & ST0_EXL)
321			printk("EXL ");
322		if (regs->cp0_status & ST0_IE)
323			printk("IE ");
324	}
325	printk("\n");
326
327	printk("Cause : %08x\n", cause);
328
329	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
330	if (1 <= cause && cause <= 5)
331		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
332
333	printk("PrId  : %08x (%s)\n", read_c0_prid(),
334	       cpu_name_string());
335}
336
337/*
338 * FIXME: really the generic show_regs should take a const pointer argument.
339 */
340void show_regs(struct pt_regs *regs)
341{
342	__show_regs((struct pt_regs *)regs);
343}
344
345void show_registers(struct pt_regs *regs)
346{
347	const int field = 2 * sizeof(unsigned long);
348	mm_segment_t old_fs = get_fs();
349
350	__show_regs(regs);
351	print_modules();
352	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
353	       current->comm, current->pid, current_thread_info(), current,
354	      field, current_thread_info()->tp_value);
355	if (cpu_has_userlocal) {
356		unsigned long tls;
357
358		tls = read_c0_userlocal();
359		if (tls != current_thread_info()->tp_value)
360			printk("*HwTLS: %0*lx\n", field, tls);
361	}
362
363	if (!user_mode(regs))
364		/* Necessary for getting the correct stack content */
365		set_fs(KERNEL_DS);
366	show_stacktrace(current, regs);
367	show_code((unsigned int __user *) regs->cp0_epc);
368	printk("\n");
369	set_fs(old_fs);
370}
371
372static int regs_to_trapnr(struct pt_regs *regs)
373{
374	return (regs->cp0_cause >> 2) & 0x1f;
375}
376
377static DEFINE_RAW_SPINLOCK(die_lock);
378
379void __noreturn die(const char *str, struct pt_regs *regs)
380{
381	static int die_counter;
382	int sig = SIGSEGV;
383
384	oops_enter();
385
386	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
387		       SIGSEGV) == NOTIFY_STOP)
388		sig = 0;
389
390	console_verbose();
391	raw_spin_lock_irq(&die_lock);
392	bust_spinlocks(1);
393
394	printk("%s[#%d]:\n", str, ++die_counter);
395	show_registers(regs);
396	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
397	raw_spin_unlock_irq(&die_lock);
398
399	oops_exit();
400
401	if (in_interrupt())
402		panic("Fatal exception in interrupt");
403
404	if (panic_on_oops) {
405		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
406		ssleep(5);
407		panic("Fatal exception");
408	}
409
410	if (regs && kexec_should_crash(current))
411		crash_kexec(regs);
412
413	do_exit(sig);
414}
415
416extern struct exception_table_entry __start___dbe_table[];
417extern struct exception_table_entry __stop___dbe_table[];
418
419__asm__(
420"	.section	__dbe_table, \"a\"\n"
421"	.previous			\n");
422
423/* Given an address, look for it in the exception tables. */
424static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425{
426	const struct exception_table_entry *e;
427
428	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
429	if (!e)
430		e = search_module_dbetables(addr);
431	return e;
432}
433
434asmlinkage void do_be(struct pt_regs *regs)
435{
436	const int field = 2 * sizeof(unsigned long);
437	const struct exception_table_entry *fixup = NULL;
438	int data = regs->cp0_cause & 4;
439	int action = MIPS_BE_FATAL;
440	enum ctx_state prev_state;
441
442	prev_state = exception_enter();
443	/* XXX For now.	 Fixme, this searches the wrong table ...  */
444	if (data && !user_mode(regs))
445		fixup = search_dbe_tables(exception_epc(regs));
446
447	if (fixup)
448		action = MIPS_BE_FIXUP;
449
450	if (board_be_handler)
451		action = board_be_handler(regs, fixup != NULL);
452
453	switch (action) {
454	case MIPS_BE_DISCARD:
455		goto out;
456	case MIPS_BE_FIXUP:
457		if (fixup) {
458			regs->cp0_epc = fixup->nextinsn;
459			goto out;
460		}
461		break;
462	default:
463		break;
464	}
465
466	/*
467	 * Assume it would be too dangerous to continue ...
468	 */
469	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
470	       data ? "Data" : "Instruction",
471	       field, regs->cp0_epc, field, regs->regs[31]);
472	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
473		       SIGBUS) == NOTIFY_STOP)
474		goto out;
475
476	die_if_kernel("Oops", regs);
477	force_sig(SIGBUS, current);
478
479out:
480	exception_exit(prev_state);
481}
482
483/*
484 * ll/sc, rdhwr, sync emulation
485 */
486
487#define OPCODE 0xfc000000
488#define BASE   0x03e00000
489#define RT     0x001f0000
490#define OFFSET 0x0000ffff
491#define LL     0xc0000000
492#define SC     0xe0000000
493#define SPEC0  0x00000000
494#define SPEC3  0x7c000000
495#define RD     0x0000f800
496#define FUNC   0x0000003f
497#define SYNC   0x0000000f
498#define RDHWR  0x0000003b
499
500/*  microMIPS definitions   */
501#define MM_POOL32A_FUNC 0xfc00ffff
502#define MM_RDHWR        0x00006b3c
503#define MM_RS           0x001f0000
504#define MM_RT           0x03e00000
505
506/*
507 * The ll_bit is cleared by r*_switch.S
508 */
509
510unsigned int ll_bit;
511struct task_struct *ll_task;
512
513static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
514{
515	unsigned long value, __user *vaddr;
516	long offset;
517
518	/*
519	 * analyse the ll instruction that just caused a ri exception
520	 * and put the referenced address to addr.
521	 */
522
523	/* sign extend offset */
524	offset = opcode & OFFSET;
525	offset <<= 16;
526	offset >>= 16;
527
528	vaddr = (unsigned long __user *)
529		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
530
531	if ((unsigned long)vaddr & 3)
532		return SIGBUS;
533	if (get_user(value, vaddr))
534		return SIGSEGV;
535
536	preempt_disable();
537
538	if (ll_task == NULL || ll_task == current) {
539		ll_bit = 1;
540	} else {
541		ll_bit = 0;
542	}
543	ll_task = current;
544
545	preempt_enable();
546
547	regs->regs[(opcode & RT) >> 16] = value;
548
549	return 0;
550}
551
552static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
553{
554	unsigned long __user *vaddr;
555	unsigned long reg;
556	long offset;
557
558	/*
559	 * analyse the sc instruction that just caused a ri exception
560	 * and put the referenced address to addr.
561	 */
562
563	/* sign extend offset */
564	offset = opcode & OFFSET;
565	offset <<= 16;
566	offset >>= 16;
567
568	vaddr = (unsigned long __user *)
569		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
570	reg = (opcode & RT) >> 16;
571
572	if ((unsigned long)vaddr & 3)
573		return SIGBUS;
574
575	preempt_disable();
576
577	if (ll_bit == 0 || ll_task != current) {
578		regs->regs[reg] = 0;
579		preempt_enable();
580		return 0;
581	}
582
583	preempt_enable();
584
585	if (put_user(regs->regs[reg], vaddr))
586		return SIGSEGV;
587
588	regs->regs[reg] = 1;
589
590	return 0;
591}
592
593/*
594 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
595 * opcodes are supposed to result in coprocessor unusable exceptions if
596 * executed on ll/sc-less processors.  That's the theory.  In practice a
597 * few processors such as NEC's VR4100 throw reserved instruction exceptions
598 * instead, so we're doing the emulation thing in both exception handlers.
599 */
600static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
601{
602	if ((opcode & OPCODE) == LL) {
603		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
604				1, regs, 0);
605		return simulate_ll(regs, opcode);
606	}
607	if ((opcode & OPCODE) == SC) {
608		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
609				1, regs, 0);
610		return simulate_sc(regs, opcode);
611	}
612
613	return -1;			/* Must be something else ... */
614}
615
616/*
617 * Simulate trapping 'rdhwr' instructions to provide user accessible
618 * registers not implemented in hardware.
619 */
620static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
621{
622	struct thread_info *ti = task_thread_info(current);
623
624	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
625			1, regs, 0);
626	switch (rd) {
627	case 0:		/* CPU number */
628		regs->regs[rt] = smp_processor_id();
629		return 0;
630	case 1:		/* SYNCI length */
631		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
632				     current_cpu_data.icache.linesz);
633		return 0;
634	case 2:		/* Read count register */
635		regs->regs[rt] = read_c0_count();
636		return 0;
637	case 3:		/* Count register resolution */
638		switch (current_cpu_type()) {
639		case CPU_20KC:
640		case CPU_25KF:
641			regs->regs[rt] = 1;
642			break;
643		default:
644			regs->regs[rt] = 2;
645		}
646		return 0;
647	case 29:
648		regs->regs[rt] = ti->tp_value;
649		return 0;
650	default:
651		return -1;
652	}
653}
654
655static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
656{
657	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
658		int rd = (opcode & RD) >> 11;
659		int rt = (opcode & RT) >> 16;
660
661		simulate_rdhwr(regs, rd, rt);
662		return 0;
663	}
664
665	/* Not ours.  */
666	return -1;
667}
668
669static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
670{
671	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
672		int rd = (opcode & MM_RS) >> 16;
673		int rt = (opcode & MM_RT) >> 21;
674		simulate_rdhwr(regs, rd, rt);
675		return 0;
676	}
677
678	/* Not ours.  */
679	return -1;
680}
681
682static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
683{
684	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
685		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
686				1, regs, 0);
687		return 0;
688	}
689
690	return -1;			/* Must be something else ... */
691}
692
693asmlinkage void do_ov(struct pt_regs *regs)
694{
695	enum ctx_state prev_state;
696	siginfo_t info = {
697		.si_signo = SIGFPE,
698		.si_code = FPE_INTOVF,
699		.si_addr = (void __user *)regs->cp0_epc,
700	};
701
702	prev_state = exception_enter();
703	die_if_kernel("Integer overflow", regs);
704
705	force_sig_info(SIGFPE, &info, current);
706	exception_exit(prev_state);
707}
708
709int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
710{
711	struct siginfo si = { 0 };
712
713	switch (sig) {
714	case 0:
715		return 0;
716
717	case SIGFPE:
718		si.si_addr = fault_addr;
719		si.si_signo = sig;
720		/*
721		 * Inexact can happen together with Overflow or Underflow.
722		 * Respect the mask to deliver the correct exception.
723		 */
724		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
725			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
726		if (fcr31 & FPU_CSR_INV_X)
727			si.si_code = FPE_FLTINV;
728		else if (fcr31 & FPU_CSR_DIV_X)
729			si.si_code = FPE_FLTDIV;
730		else if (fcr31 & FPU_CSR_OVF_X)
731			si.si_code = FPE_FLTOVF;
732		else if (fcr31 & FPU_CSR_UDF_X)
733			si.si_code = FPE_FLTUND;
734		else if (fcr31 & FPU_CSR_INE_X)
735			si.si_code = FPE_FLTRES;
736		else
737			si.si_code = __SI_FAULT;
738		force_sig_info(sig, &si, current);
739		return 1;
740
741	case SIGBUS:
742		si.si_addr = fault_addr;
743		si.si_signo = sig;
744		si.si_code = BUS_ADRERR;
745		force_sig_info(sig, &si, current);
746		return 1;
747
748	case SIGSEGV:
749		si.si_addr = fault_addr;
750		si.si_signo = sig;
751		down_read(&current->mm->mmap_sem);
752		if (find_vma(current->mm, (unsigned long)fault_addr))
753			si.si_code = SEGV_ACCERR;
754		else
755			si.si_code = SEGV_MAPERR;
756		up_read(&current->mm->mmap_sem);
757		force_sig_info(sig, &si, current);
758		return 1;
759
760	default:
761		force_sig(sig, current);
762		return 1;
763	}
764}
765
766static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
767		       unsigned long old_epc, unsigned long old_ra)
768{
769	union mips_instruction inst = { .word = opcode };
770	void __user *fault_addr;
771	unsigned long fcr31;
772	int sig;
773
774	/* If it's obviously not an FP instruction, skip it */
775	switch (inst.i_format.opcode) {
776	case cop1_op:
777	case cop1x_op:
778	case lwc1_op:
779	case ldc1_op:
780	case swc1_op:
781	case sdc1_op:
782		break;
783
784	default:
785		return -1;
786	}
787
788	/*
789	 * do_ri skipped over the instruction via compute_return_epc, undo
790	 * that for the FPU emulator.
791	 */
792	regs->cp0_epc = old_epc;
793	regs->regs[31] = old_ra;
794
795	/* Save the FP context to struct thread_struct */
796	lose_fpu(1);
797
798	/* Run the emulator */
799	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
800				       &fault_addr);
801	fcr31 = current->thread.fpu.fcr31;
802
803	/*
804	 * We can't allow the emulated instruction to leave any of
805	 * the cause bits set in $fcr31.
806	 */
807	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
808
809	/* Restore the hardware register state */
810	own_fpu(1);
811
812	/* Send a signal if required.  */
813	process_fpemu_return(sig, fault_addr, fcr31);
814
815	return 0;
816}
817
818/*
819 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
820 */
821asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
822{
823	enum ctx_state prev_state;
824	void __user *fault_addr;
825	int sig;
826
827	prev_state = exception_enter();
828	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
829		       SIGFPE) == NOTIFY_STOP)
830		goto out;
831
832	/* Clear FCSR.Cause before enabling interrupts */
833	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
834	local_irq_enable();
835
836	die_if_kernel("FP exception in kernel code", regs);
837
838	if (fcr31 & FPU_CSR_UNI_X) {
839		/*
840		 * Unimplemented operation exception.  If we've got the full
841		 * software emulator on-board, let's use it...
842		 *
843		 * Force FPU to dump state into task/thread context.  We're
844		 * moving a lot of data here for what is probably a single
845		 * instruction, but the alternative is to pre-decode the FP
846		 * register operands before invoking the emulator, which seems
847		 * a bit extreme for what should be an infrequent event.
848		 */
849		/* Ensure 'resume' not overwrite saved fp context again. */
850		lose_fpu(1);
851
852		/* Run the emulator */
853		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
854					       &fault_addr);
855		fcr31 = current->thread.fpu.fcr31;
856
857		/*
858		 * We can't allow the emulated instruction to leave any of
859		 * the cause bits set in $fcr31.
860		 */
861		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
862
863		/* Restore the hardware register state */
864		own_fpu(1);	/* Using the FPU again.	 */
865	} else {
866		sig = SIGFPE;
867		fault_addr = (void __user *) regs->cp0_epc;
868	}
869
870	/* Send a signal if required.  */
871	process_fpemu_return(sig, fault_addr, fcr31);
872
873out:
874	exception_exit(prev_state);
875}
876
877void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
878	const char *str)
879{
880	siginfo_t info = { 0 };
881	char b[40];
882
883#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
884	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
885		return;
886#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
887
888	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
889		       SIGTRAP) == NOTIFY_STOP)
890		return;
891
892	/*
893	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
894	 * insns, even for trap and break codes that indicate arithmetic
895	 * failures.  Weird ...
896	 * But should we continue the brokenness???  --macro
897	 */
898	switch (code) {
899	case BRK_OVERFLOW:
900	case BRK_DIVZERO:
901		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
902		die_if_kernel(b, regs);
903		if (code == BRK_DIVZERO)
904			info.si_code = FPE_INTDIV;
905		else
906			info.si_code = FPE_INTOVF;
907		info.si_signo = SIGFPE;
908		info.si_addr = (void __user *) regs->cp0_epc;
909		force_sig_info(SIGFPE, &info, current);
910		break;
911	case BRK_BUG:
912		die_if_kernel("Kernel bug detected", regs);
913		force_sig(SIGTRAP, current);
914		break;
915	case BRK_MEMU:
916		/*
917		 * This breakpoint code is used by the FPU emulator to retake
918		 * control of the CPU after executing the instruction from the
919		 * delay slot of an emulated branch.
920		 *
921		 * Terminate if exception was recognized as a delay slot return
922		 * otherwise handle as normal.
923		 */
924		if (do_dsemulret(regs))
925			return;
926
927		die_if_kernel("Math emu break/trap", regs);
928		force_sig(SIGTRAP, current);
929		break;
930	default:
931		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
932		die_if_kernel(b, regs);
933		force_sig(SIGTRAP, current);
934	}
935}
936
937asmlinkage void do_bp(struct pt_regs *regs)
938{
939	unsigned long epc = msk_isa16_mode(exception_epc(regs));
940	unsigned int opcode, bcode;
941	enum ctx_state prev_state;
942	mm_segment_t seg;
943
944	seg = get_fs();
945	if (!user_mode(regs))
946		set_fs(KERNEL_DS);
947
948	prev_state = exception_enter();
949	if (get_isa16_mode(regs->cp0_epc)) {
950		u16 instr[2];
951
952		if (__get_user(instr[0], (u16 __user *)epc))
953			goto out_sigsegv;
954
955		if (!cpu_has_mmips) {
956			/* MIPS16e mode */
957			bcode = (instr[0] >> 5) & 0x3f;
958		} else if (mm_insn_16bit(instr[0])) {
959			/* 16-bit microMIPS BREAK */
960			bcode = instr[0] & 0xf;
961		} else {
962			/* 32-bit microMIPS BREAK */
963			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
964				goto out_sigsegv;
965			opcode = (instr[0] << 16) | instr[1];
966			bcode = (opcode >> 6) & ((1 << 20) - 1);
967		}
968	} else {
969		if (__get_user(opcode, (unsigned int __user *)epc))
970			goto out_sigsegv;
971		bcode = (opcode >> 6) & ((1 << 20) - 1);
972	}
973
974	/*
975	 * There is the ancient bug in the MIPS assemblers that the break
976	 * code starts left to bit 16 instead to bit 6 in the opcode.
977	 * Gas is bug-compatible, but not always, grrr...
978	 * We handle both cases with a simple heuristics.  --macro
979	 */
980	if (bcode >= (1 << 10))
981		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
982
983	/*
984	 * notify the kprobe handlers, if instruction is likely to
985	 * pertain to them.
986	 */
987	switch (bcode) {
988	case BRK_KPROBE_BP:
989		if (notify_die(DIE_BREAK, "debug", regs, bcode,
990			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
991			goto out;
992		else
993			break;
994	case BRK_KPROBE_SSTEPBP:
995		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
996			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
997			goto out;
998		else
999			break;
1000	default:
1001		break;
1002	}
1003
1004	do_trap_or_bp(regs, bcode, "Break");
1005
1006out:
1007	set_fs(seg);
1008	exception_exit(prev_state);
1009	return;
1010
1011out_sigsegv:
1012	force_sig(SIGSEGV, current);
1013	goto out;
1014}
1015
1016asmlinkage void do_tr(struct pt_regs *regs)
1017{
1018	u32 opcode, tcode = 0;
1019	enum ctx_state prev_state;
1020	u16 instr[2];
1021	mm_segment_t seg;
1022	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023
1024	seg = get_fs();
1025	if (!user_mode(regs))
1026		set_fs(get_ds());
1027
1028	prev_state = exception_enter();
1029	if (get_isa16_mode(regs->cp0_epc)) {
1030		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1031		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1032			goto out_sigsegv;
1033		opcode = (instr[0] << 16) | instr[1];
1034		/* Immediate versions don't provide a code.  */
1035		if (!(opcode & OPCODE))
1036			tcode = (opcode >> 12) & ((1 << 4) - 1);
1037	} else {
1038		if (__get_user(opcode, (u32 __user *)epc))
1039			goto out_sigsegv;
1040		/* Immediate versions don't provide a code.  */
1041		if (!(opcode & OPCODE))
1042			tcode = (opcode >> 6) & ((1 << 10) - 1);
1043	}
1044
1045	do_trap_or_bp(regs, tcode, "Trap");
1046
1047out:
1048	set_fs(seg);
1049	exception_exit(prev_state);
1050	return;
1051
1052out_sigsegv:
1053	force_sig(SIGSEGV, current);
1054	goto out;
1055}
1056
1057asmlinkage void do_ri(struct pt_regs *regs)
1058{
1059	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1060	unsigned long old_epc = regs->cp0_epc;
1061	unsigned long old31 = regs->regs[31];
1062	enum ctx_state prev_state;
1063	unsigned int opcode = 0;
1064	int status = -1;
1065
1066	/*
1067	 * Avoid any kernel code. Just emulate the R2 instruction
1068	 * as quickly as possible.
1069	 */
1070	if (mipsr2_emulation && cpu_has_mips_r6 &&
1071	    likely(user_mode(regs)) &&
1072	    likely(get_user(opcode, epc) >= 0)) {
1073		unsigned long fcr31 = 0;
1074
1075		status = mipsr2_decoder(regs, opcode, &fcr31);
1076		switch (status) {
1077		case 0:
1078		case SIGEMT:
1079			task_thread_info(current)->r2_emul_return = 1;
1080			return;
1081		case SIGILL:
1082			goto no_r2_instr;
1083		default:
1084			process_fpemu_return(status,
1085					     &current->thread.cp0_baduaddr,
1086					     fcr31);
1087			task_thread_info(current)->r2_emul_return = 1;
1088			return;
1089		}
1090	}
1091
1092no_r2_instr:
1093
1094	prev_state = exception_enter();
1095
1096	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1097		       SIGILL) == NOTIFY_STOP)
1098		goto out;
1099
1100	die_if_kernel("Reserved instruction in kernel code", regs);
1101
1102	if (unlikely(compute_return_epc(regs) < 0))
1103		goto out;
1104
1105	if (get_isa16_mode(regs->cp0_epc)) {
1106		unsigned short mmop[2] = { 0 };
1107
1108		if (unlikely(get_user(mmop[0], epc) < 0))
1109			status = SIGSEGV;
1110		if (unlikely(get_user(mmop[1], epc) < 0))
1111			status = SIGSEGV;
1112		opcode = (mmop[0] << 16) | mmop[1];
1113
1114		if (status < 0)
1115			status = simulate_rdhwr_mm(regs, opcode);
1116	} else {
1117		if (unlikely(get_user(opcode, epc) < 0))
1118			status = SIGSEGV;
1119
1120		if (!cpu_has_llsc && status < 0)
1121			status = simulate_llsc(regs, opcode);
1122
1123		if (status < 0)
1124			status = simulate_rdhwr_normal(regs, opcode);
1125
1126		if (status < 0)
1127			status = simulate_sync(regs, opcode);
1128
1129		if (status < 0)
1130			status = simulate_fp(regs, opcode, old_epc, old31);
1131	}
1132
1133	if (status < 0)
1134		status = SIGILL;
1135
1136	if (unlikely(status > 0)) {
1137		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1138		regs->regs[31] = old31;
1139		force_sig(status, current);
1140	}
1141
1142out:
1143	exception_exit(prev_state);
1144}
1145
1146/*
1147 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1148 * emulated more than some threshold number of instructions, force migration to
1149 * a "CPU" that has FP support.
1150 */
1151static void mt_ase_fp_affinity(void)
1152{
1153#ifdef CONFIG_MIPS_MT_FPAFF
1154	if (mt_fpemul_threshold > 0 &&
1155	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1156		/*
1157		 * If there's no FPU present, or if the application has already
1158		 * restricted the allowed set to exclude any CPUs with FPUs,
1159		 * we'll skip the procedure.
1160		 */
1161		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1162			cpumask_t tmask;
1163
1164			current->thread.user_cpus_allowed
1165				= current->cpus_allowed;
1166			cpumask_and(&tmask, &current->cpus_allowed,
1167				    &mt_fpu_cpumask);
1168			set_cpus_allowed_ptr(current, &tmask);
1169			set_thread_flag(TIF_FPUBOUND);
1170		}
1171	}
1172#endif /* CONFIG_MIPS_MT_FPAFF */
1173}
1174
1175/*
1176 * No lock; only written during early bootup by CPU 0.
1177 */
1178static RAW_NOTIFIER_HEAD(cu2_chain);
1179
1180int __ref register_cu2_notifier(struct notifier_block *nb)
1181{
1182	return raw_notifier_chain_register(&cu2_chain, nb);
1183}
1184
1185int cu2_notifier_call_chain(unsigned long val, void *v)
1186{
1187	return raw_notifier_call_chain(&cu2_chain, val, v);
1188}
1189
1190static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1191	void *data)
1192{
1193	struct pt_regs *regs = data;
1194
1195	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1196			      "instruction", regs);
1197	force_sig(SIGILL, current);
1198
1199	return NOTIFY_OK;
1200}
1201
1202static int wait_on_fp_mode_switch(atomic_t *p)
1203{
1204	/*
1205	 * The FP mode for this task is currently being switched. That may
1206	 * involve modifications to the format of this tasks FP context which
1207	 * make it unsafe to proceed with execution for the moment. Instead,
1208	 * schedule some other task.
1209	 */
1210	schedule();
1211	return 0;
1212}
1213
1214static int enable_restore_fp_context(int msa)
1215{
1216	int err, was_fpu_owner, prior_msa;
1217
1218	/*
1219	 * If an FP mode switch is currently underway, wait for it to
1220	 * complete before proceeding.
1221	 */
1222	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1223			 wait_on_fp_mode_switch, TASK_KILLABLE);
1224
1225	if (!used_math()) {
1226		/* First time FP context user. */
1227		preempt_disable();
1228		err = init_fpu();
1229		if (msa && !err) {
1230			enable_msa();
1231			init_msa_upper();
1232			set_thread_flag(TIF_USEDMSA);
1233			set_thread_flag(TIF_MSA_CTX_LIVE);
1234		}
1235		preempt_enable();
1236		if (!err)
1237			set_used_math();
1238		return err;
1239	}
1240
1241	/*
1242	 * This task has formerly used the FP context.
1243	 *
1244	 * If this thread has no live MSA vector context then we can simply
1245	 * restore the scalar FP context. If it has live MSA vector context
1246	 * (that is, it has or may have used MSA since last performing a
1247	 * function call) then we'll need to restore the vector context. This
1248	 * applies even if we're currently only executing a scalar FP
1249	 * instruction. This is because if we were to later execute an MSA
1250	 * instruction then we'd either have to:
1251	 *
1252	 *  - Restore the vector context & clobber any registers modified by
1253	 *    scalar FP instructions between now & then.
1254	 *
1255	 * or
1256	 *
1257	 *  - Not restore the vector context & lose the most significant bits
1258	 *    of all vector registers.
1259	 *
1260	 * Neither of those options is acceptable. We cannot restore the least
1261	 * significant bits of the registers now & only restore the most
1262	 * significant bits later because the most significant bits of any
1263	 * vector registers whose aliased FP register is modified now will have
1264	 * been zeroed. We'd have no way to know that when restoring the vector
1265	 * context & thus may load an outdated value for the most significant
1266	 * bits of a vector register.
1267	 */
1268	if (!msa && !thread_msa_context_live())
1269		return own_fpu(1);
1270
1271	/*
1272	 * This task is using or has previously used MSA. Thus we require
1273	 * that Status.FR == 1.
1274	 */
1275	preempt_disable();
1276	was_fpu_owner = is_fpu_owner();
1277	err = own_fpu_inatomic(0);
1278	if (err)
1279		goto out;
1280
1281	enable_msa();
1282	write_msa_csr(current->thread.fpu.msacsr);
1283	set_thread_flag(TIF_USEDMSA);
1284
1285	/*
1286	 * If this is the first time that the task is using MSA and it has
1287	 * previously used scalar FP in this time slice then we already nave
1288	 * FP context which we shouldn't clobber. We do however need to clear
1289	 * the upper 64b of each vector register so that this task has no
1290	 * opportunity to see data left behind by another.
1291	 */
1292	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1293	if (!prior_msa && was_fpu_owner) {
1294		init_msa_upper();
1295
1296		goto out;
1297	}
1298
1299	if (!prior_msa) {
1300		/*
1301		 * Restore the least significant 64b of each vector register
1302		 * from the existing scalar FP context.
1303		 */
1304		_restore_fp(current);
1305
1306		/*
1307		 * The task has not formerly used MSA, so clear the upper 64b
1308		 * of each vector register such that it cannot see data left
1309		 * behind by another task.
1310		 */
1311		init_msa_upper();
1312	} else {
1313		/* We need to restore the vector context. */
1314		restore_msa(current);
1315
1316		/* Restore the scalar FP control & status register */
1317		if (!was_fpu_owner)
1318			write_32bit_cp1_register(CP1_STATUS,
1319						 current->thread.fpu.fcr31);
1320	}
1321
1322out:
1323	preempt_enable();
1324
1325	return 0;
1326}
1327
1328asmlinkage void do_cpu(struct pt_regs *regs)
1329{
1330	enum ctx_state prev_state;
1331	unsigned int __user *epc;
1332	unsigned long old_epc, old31;
1333	void __user *fault_addr;
1334	unsigned int opcode;
1335	unsigned long fcr31;
1336	unsigned int cpid;
1337	int status, err;
1338	unsigned long __maybe_unused flags;
1339	int sig;
1340
1341	prev_state = exception_enter();
1342	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1343
1344	if (cpid != 2)
1345		die_if_kernel("do_cpu invoked from kernel context!", regs);
1346
1347	switch (cpid) {
1348	case 0:
1349		epc = (unsigned int __user *)exception_epc(regs);
1350		old_epc = regs->cp0_epc;
1351		old31 = regs->regs[31];
1352		opcode = 0;
1353		status = -1;
1354
1355		if (unlikely(compute_return_epc(regs) < 0))
1356			break;
1357
1358		if (get_isa16_mode(regs->cp0_epc)) {
1359			unsigned short mmop[2] = { 0 };
1360
1361			if (unlikely(get_user(mmop[0], epc) < 0))
1362				status = SIGSEGV;
1363			if (unlikely(get_user(mmop[1], epc) < 0))
1364				status = SIGSEGV;
1365			opcode = (mmop[0] << 16) | mmop[1];
1366
1367			if (status < 0)
1368				status = simulate_rdhwr_mm(regs, opcode);
1369		} else {
1370			if (unlikely(get_user(opcode, epc) < 0))
1371				status = SIGSEGV;
1372
1373			if (!cpu_has_llsc && status < 0)
1374				status = simulate_llsc(regs, opcode);
1375
1376			if (status < 0)
1377				status = simulate_rdhwr_normal(regs, opcode);
1378		}
1379
1380		if (status < 0)
1381			status = SIGILL;
1382
1383		if (unlikely(status > 0)) {
1384			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1385			regs->regs[31] = old31;
1386			force_sig(status, current);
1387		}
1388
1389		break;
1390
1391	case 3:
1392		/*
1393		 * The COP3 opcode space and consequently the CP0.Status.CU3
1394		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1395		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1396		 * up the space has been reused for COP1X instructions, that
1397		 * are enabled by the CP0.Status.CU1 bit and consequently
1398		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1399		 * exceptions.  Some FPU-less processors that implement one
1400		 * of these ISAs however use this code erroneously for COP1X
1401		 * instructions.  Therefore we redirect this trap to the FP
1402		 * emulator too.
1403		 */
1404		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1405			force_sig(SIGILL, current);
1406			break;
1407		}
1408		/* Fall through.  */
1409
1410	case 1:
1411		err = enable_restore_fp_context(0);
1412
1413		if (raw_cpu_has_fpu && !err)
1414			break;
1415
1416		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1417					       &fault_addr);
1418		fcr31 = current->thread.fpu.fcr31;
1419
1420		/*
1421		 * We can't allow the emulated instruction to leave
1422		 * any of the cause bits set in $fcr31.
1423		 */
1424		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1425
1426		/* Send a signal if required.  */
1427		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1428			mt_ase_fp_affinity();
1429
1430		break;
1431
1432	case 2:
1433		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1434		break;
1435	}
1436
1437	exception_exit(prev_state);
1438}
1439
1440asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1441{
1442	enum ctx_state prev_state;
1443
1444	prev_state = exception_enter();
1445	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1446		       regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1447		goto out;
1448
1449	/* Clear MSACSR.Cause before enabling interrupts */
1450	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1451	local_irq_enable();
1452
1453	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1454	force_sig(SIGFPE, current);
1455out:
1456	exception_exit(prev_state);
1457}
1458
1459asmlinkage void do_msa(struct pt_regs *regs)
1460{
1461	enum ctx_state prev_state;
1462	int err;
1463
1464	prev_state = exception_enter();
1465
1466	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1467		force_sig(SIGILL, current);
1468		goto out;
1469	}
1470
1471	die_if_kernel("do_msa invoked from kernel context!", regs);
1472
1473	err = enable_restore_fp_context(1);
1474	if (err)
1475		force_sig(SIGILL, current);
1476out:
1477	exception_exit(prev_state);
1478}
1479
1480asmlinkage void do_mdmx(struct pt_regs *regs)
1481{
1482	enum ctx_state prev_state;
1483
1484	prev_state = exception_enter();
1485	force_sig(SIGILL, current);
1486	exception_exit(prev_state);
1487}
1488
1489/*
1490 * Called with interrupts disabled.
1491 */
1492asmlinkage void do_watch(struct pt_regs *regs)
1493{
1494	enum ctx_state prev_state;
1495	u32 cause;
1496
1497	prev_state = exception_enter();
1498	/*
1499	 * Clear WP (bit 22) bit of cause register so we don't loop
1500	 * forever.
1501	 */
1502	cause = read_c0_cause();
1503	cause &= ~(1 << 22);
1504	write_c0_cause(cause);
1505
1506	/*
1507	 * If the current thread has the watch registers loaded, save
1508	 * their values and send SIGTRAP.  Otherwise another thread
1509	 * left the registers set, clear them and continue.
1510	 */
1511	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1512		mips_read_watch_registers();
1513		local_irq_enable();
1514		force_sig(SIGTRAP, current);
1515	} else {
1516		mips_clear_watch_registers();
1517		local_irq_enable();
1518	}
1519	exception_exit(prev_state);
1520}
1521
1522asmlinkage void do_mcheck(struct pt_regs *regs)
1523{
1524	const int field = 2 * sizeof(unsigned long);
1525	int multi_match = regs->cp0_status & ST0_TS;
1526	enum ctx_state prev_state;
1527	mm_segment_t old_fs = get_fs();
1528
1529	prev_state = exception_enter();
1530	show_regs(regs);
1531
1532	if (multi_match) {
1533		pr_err("Index	: %0x\n", read_c0_index());
1534		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1535		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1536		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1537		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1538		pr_err("Wired   : %0x\n", read_c0_wired());
1539		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1540		if (cpu_has_htw) {
1541			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1542			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1543			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1544		}
1545		pr_err("\n");
1546		dump_tlb_all();
1547	}
1548
1549	if (!user_mode(regs))
1550		set_fs(KERNEL_DS);
1551
1552	show_code((unsigned int __user *) regs->cp0_epc);
1553
1554	set_fs(old_fs);
1555
1556	/*
1557	 * Some chips may have other causes of machine check (e.g. SB1
1558	 * graduation timer)
1559	 */
1560	panic("Caught Machine Check exception - %scaused by multiple "
1561	      "matching entries in the TLB.",
1562	      (multi_match) ? "" : "not ");
1563}
1564
1565asmlinkage void do_mt(struct pt_regs *regs)
1566{
1567	int subcode;
1568
1569	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1570			>> VPECONTROL_EXCPT_SHIFT;
1571	switch (subcode) {
1572	case 0:
1573		printk(KERN_DEBUG "Thread Underflow\n");
1574		break;
1575	case 1:
1576		printk(KERN_DEBUG "Thread Overflow\n");
1577		break;
1578	case 2:
1579		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1580		break;
1581	case 3:
1582		printk(KERN_DEBUG "Gating Storage Exception\n");
1583		break;
1584	case 4:
1585		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1586		break;
1587	case 5:
1588		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1589		break;
1590	default:
1591		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1592			subcode);
1593		break;
1594	}
1595	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1596
1597	force_sig(SIGILL, current);
1598}
1599
1600
1601asmlinkage void do_dsp(struct pt_regs *regs)
1602{
1603	if (cpu_has_dsp)
1604		panic("Unexpected DSP exception");
1605
1606	force_sig(SIGILL, current);
1607}
1608
1609asmlinkage void do_reserved(struct pt_regs *regs)
1610{
1611	/*
1612	 * Game over - no way to handle this if it ever occurs.	 Most probably
1613	 * caused by a new unknown cpu type or after another deadly
1614	 * hard/software error.
1615	 */
1616	show_regs(regs);
1617	panic("Caught reserved exception %ld - should not happen.",
1618	      (regs->cp0_cause & 0x7f) >> 2);
1619}
1620
1621static int __initdata l1parity = 1;
1622static int __init nol1parity(char *s)
1623{
1624	l1parity = 0;
1625	return 1;
1626}
1627__setup("nol1par", nol1parity);
1628static int __initdata l2parity = 1;
1629static int __init nol2parity(char *s)
1630{
1631	l2parity = 0;
1632	return 1;
1633}
1634__setup("nol2par", nol2parity);
1635
1636/*
1637 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1638 * it different ways.
1639 */
1640static inline void parity_protection_init(void)
1641{
1642	switch (current_cpu_type()) {
1643	case CPU_24K:
1644	case CPU_34K:
1645	case CPU_74K:
1646	case CPU_1004K:
1647	case CPU_1074K:
1648	case CPU_INTERAPTIV:
1649	case CPU_PROAPTIV:
1650	case CPU_P5600:
1651	case CPU_QEMU_GENERIC:
1652		{
1653#define ERRCTL_PE	0x80000000
1654#define ERRCTL_L2P	0x00800000
1655			unsigned long errctl;
1656			unsigned int l1parity_present, l2parity_present;
1657
1658			errctl = read_c0_ecc();
1659			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1660
1661			/* probe L1 parity support */
1662			write_c0_ecc(errctl | ERRCTL_PE);
1663			back_to_back_c0_hazard();
1664			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1665
1666			/* probe L2 parity support */
1667			write_c0_ecc(errctl|ERRCTL_L2P);
1668			back_to_back_c0_hazard();
1669			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1670
1671			if (l1parity_present && l2parity_present) {
1672				if (l1parity)
1673					errctl |= ERRCTL_PE;
1674				if (l1parity ^ l2parity)
1675					errctl |= ERRCTL_L2P;
1676			} else if (l1parity_present) {
1677				if (l1parity)
1678					errctl |= ERRCTL_PE;
1679			} else if (l2parity_present) {
1680				if (l2parity)
1681					errctl |= ERRCTL_L2P;
1682			} else {
1683				/* No parity available */
1684			}
1685
1686			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1687
1688			write_c0_ecc(errctl);
1689			back_to_back_c0_hazard();
1690			errctl = read_c0_ecc();
1691			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1692
1693			if (l1parity_present)
1694				printk(KERN_INFO "Cache parity protection %sabled\n",
1695				       (errctl & ERRCTL_PE) ? "en" : "dis");
1696
1697			if (l2parity_present) {
1698				if (l1parity_present && l1parity)
1699					errctl ^= ERRCTL_L2P;
1700				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1701				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1702			}
1703		}
1704		break;
1705
1706	case CPU_5KC:
1707	case CPU_5KE:
1708	case CPU_LOONGSON1:
1709		write_c0_ecc(0x80000000);
1710		back_to_back_c0_hazard();
1711		/* Set the PE bit (bit 31) in the c0_errctl register. */
1712		printk(KERN_INFO "Cache parity protection %sabled\n",
1713		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1714		break;
1715	case CPU_20KC:
1716	case CPU_25KF:
1717		/* Clear the DE bit (bit 16) in the c0_status register. */
1718		printk(KERN_INFO "Enable cache parity protection for "
1719		       "MIPS 20KC/25KF CPUs.\n");
1720		clear_c0_status(ST0_DE);
1721		break;
1722	default:
1723		break;
1724	}
1725}
1726
1727asmlinkage void cache_parity_error(void)
1728{
1729	const int field = 2 * sizeof(unsigned long);
1730	unsigned int reg_val;
1731
1732	/* For the moment, report the problem and hang. */
1733	printk("Cache error exception:\n");
1734	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1735	reg_val = read_c0_cacheerr();
1736	printk("c0_cacheerr == %08x\n", reg_val);
1737
1738	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1739	       reg_val & (1<<30) ? "secondary" : "primary",
1740	       reg_val & (1<<31) ? "data" : "insn");
1741	if ((cpu_has_mips_r2_r6) &&
1742	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1743		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1744			reg_val & (1<<29) ? "ED " : "",
1745			reg_val & (1<<28) ? "ET " : "",
1746			reg_val & (1<<27) ? "ES " : "",
1747			reg_val & (1<<26) ? "EE " : "",
1748			reg_val & (1<<25) ? "EB " : "",
1749			reg_val & (1<<24) ? "EI " : "",
1750			reg_val & (1<<23) ? "E1 " : "",
1751			reg_val & (1<<22) ? "E0 " : "");
1752	} else {
1753		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1754			reg_val & (1<<29) ? "ED " : "",
1755			reg_val & (1<<28) ? "ET " : "",
1756			reg_val & (1<<26) ? "EE " : "",
1757			reg_val & (1<<25) ? "EB " : "",
1758			reg_val & (1<<24) ? "EI " : "",
1759			reg_val & (1<<23) ? "E1 " : "",
1760			reg_val & (1<<22) ? "E0 " : "");
1761	}
1762	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1763
1764#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1765	if (reg_val & (1<<22))
1766		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1767
1768	if (reg_val & (1<<23))
1769		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1770#endif
1771
1772	panic("Can't handle the cache error!");
1773}
1774
1775asmlinkage void do_ftlb(void)
1776{
1777	const int field = 2 * sizeof(unsigned long);
1778	unsigned int reg_val;
1779
1780	/* For the moment, report the problem and hang. */
1781	if ((cpu_has_mips_r2_r6) &&
1782	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1783		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1784		       read_c0_ecc());
1785		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1786		reg_val = read_c0_cacheerr();
1787		pr_err("c0_cacheerr == %08x\n", reg_val);
1788
1789		if ((reg_val & 0xc0000000) == 0xc0000000) {
1790			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1791		} else {
1792			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1793			       reg_val & (1<<30) ? "secondary" : "primary",
1794			       reg_val & (1<<31) ? "data" : "insn");
1795		}
1796	} else {
1797		pr_err("FTLB error exception\n");
1798	}
1799	/* Just print the cacheerr bits for now */
1800	cache_parity_error();
1801}
1802
1803/*
1804 * SDBBP EJTAG debug exception handler.
1805 * We skip the instruction and return to the next instruction.
1806 */
1807void ejtag_exception_handler(struct pt_regs *regs)
1808{
1809	const int field = 2 * sizeof(unsigned long);
1810	unsigned long depc, old_epc, old_ra;
1811	unsigned int debug;
1812
1813	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1814	depc = read_c0_depc();
1815	debug = read_c0_debug();
1816	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1817	if (debug & 0x80000000) {
1818		/*
1819		 * In branch delay slot.
1820		 * We cheat a little bit here and use EPC to calculate the
1821		 * debug return address (DEPC). EPC is restored after the
1822		 * calculation.
1823		 */
1824		old_epc = regs->cp0_epc;
1825		old_ra = regs->regs[31];
1826		regs->cp0_epc = depc;
1827		compute_return_epc(regs);
1828		depc = regs->cp0_epc;
1829		regs->cp0_epc = old_epc;
1830		regs->regs[31] = old_ra;
1831	} else
1832		depc += 4;
1833	write_c0_depc(depc);
1834
1835#if 0
1836	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1837	write_c0_debug(debug | 0x100);
1838#endif
1839}
1840
1841/*
1842 * NMI exception handler.
1843 * No lock; only written during early bootup by CPU 0.
1844 */
1845static RAW_NOTIFIER_HEAD(nmi_chain);
1846
1847int register_nmi_notifier(struct notifier_block *nb)
1848{
1849	return raw_notifier_chain_register(&nmi_chain, nb);
1850}
1851
1852void __noreturn nmi_exception_handler(struct pt_regs *regs)
1853{
1854	char str[100];
1855
1856	raw_notifier_call_chain(&nmi_chain, 0, regs);
1857	bust_spinlocks(1);
1858	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1859		 smp_processor_id(), regs->cp0_epc);
1860	regs->cp0_epc = read_c0_errorepc();
1861	die(str, regs);
1862}
1863
1864#define VECTORSPACING 0x100	/* for EI/VI mode */
1865
1866unsigned long ebase;
1867unsigned long exception_handlers[32];
1868unsigned long vi_handlers[64];
1869
1870void __init *set_except_vector(int n, void *addr)
1871{
1872	unsigned long handler = (unsigned long) addr;
1873	unsigned long old_handler;
1874
1875#ifdef CONFIG_CPU_MICROMIPS
1876	/*
1877	 * Only the TLB handlers are cache aligned with an even
1878	 * address. All other handlers are on an odd address and
1879	 * require no modification. Otherwise, MIPS32 mode will
1880	 * be entered when handling any TLB exceptions. That
1881	 * would be bad...since we must stay in microMIPS mode.
1882	 */
1883	if (!(handler & 0x1))
1884		handler |= 1;
1885#endif
1886	old_handler = xchg(&exception_handlers[n], handler);
1887
1888	if (n == 0 && cpu_has_divec) {
1889#ifdef CONFIG_CPU_MICROMIPS
1890		unsigned long jump_mask = ~((1 << 27) - 1);
1891#else
1892		unsigned long jump_mask = ~((1 << 28) - 1);
1893#endif
1894		u32 *buf = (u32 *)(ebase + 0x200);
1895		unsigned int k0 = 26;
1896		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1897			uasm_i_j(&buf, handler & ~jump_mask);
1898			uasm_i_nop(&buf);
1899		} else {
1900			UASM_i_LA(&buf, k0, handler);
1901			uasm_i_jr(&buf, k0);
1902			uasm_i_nop(&buf);
1903		}
1904		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1905	}
1906	return (void *)old_handler;
1907}
1908
1909static void do_default_vi(void)
1910{
1911	show_regs(get_irq_regs());
1912	panic("Caught unexpected vectored interrupt.");
1913}
1914
1915static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1916{
1917	unsigned long handler;
1918	unsigned long old_handler = vi_handlers[n];
1919	int srssets = current_cpu_data.srsets;
1920	u16 *h;
1921	unsigned char *b;
1922
1923	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1924
1925	if (addr == NULL) {
1926		handler = (unsigned long) do_default_vi;
1927		srs = 0;
1928	} else
1929		handler = (unsigned long) addr;
1930	vi_handlers[n] = handler;
1931
1932	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1933
1934	if (srs >= srssets)
1935		panic("Shadow register set %d not supported", srs);
1936
1937	if (cpu_has_veic) {
1938		if (board_bind_eic_interrupt)
1939			board_bind_eic_interrupt(n, srs);
1940	} else if (cpu_has_vint) {
1941		/* SRSMap is only defined if shadow sets are implemented */
1942		if (srssets > 1)
1943			change_c0_srsmap(0xf << n*4, srs << n*4);
1944	}
1945
1946	if (srs == 0) {
1947		/*
1948		 * If no shadow set is selected then use the default handler
1949		 * that does normal register saving and standard interrupt exit
1950		 */
1951		extern char except_vec_vi, except_vec_vi_lui;
1952		extern char except_vec_vi_ori, except_vec_vi_end;
1953		extern char rollback_except_vec_vi;
1954		char *vec_start = using_rollback_handler() ?
1955			&rollback_except_vec_vi : &except_vec_vi;
1956#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1957		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1958		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1959#else
1960		const int lui_offset = &except_vec_vi_lui - vec_start;
1961		const int ori_offset = &except_vec_vi_ori - vec_start;
1962#endif
1963		const int handler_len = &except_vec_vi_end - vec_start;
1964
1965		if (handler_len > VECTORSPACING) {
1966			/*
1967			 * Sigh... panicing won't help as the console
1968			 * is probably not configured :(
1969			 */
1970			panic("VECTORSPACING too small");
1971		}
1972
1973		set_handler(((unsigned long)b - ebase), vec_start,
1974#ifdef CONFIG_CPU_MICROMIPS
1975				(handler_len - 1));
1976#else
1977				handler_len);
1978#endif
1979		h = (u16 *)(b + lui_offset);
1980		*h = (handler >> 16) & 0xffff;
1981		h = (u16 *)(b + ori_offset);
1982		*h = (handler & 0xffff);
1983		local_flush_icache_range((unsigned long)b,
1984					 (unsigned long)(b+handler_len));
1985	}
1986	else {
1987		/*
1988		 * In other cases jump directly to the interrupt handler. It
1989		 * is the handler's responsibility to save registers if required
1990		 * (eg hi/lo) and return from the exception using "eret".
1991		 */
1992		u32 insn;
1993
1994		h = (u16 *)b;
1995		/* j handler */
1996#ifdef CONFIG_CPU_MICROMIPS
1997		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1998#else
1999		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2000#endif
2001		h[0] = (insn >> 16) & 0xffff;
2002		h[1] = insn & 0xffff;
2003		h[2] = 0;
2004		h[3] = 0;
2005		local_flush_icache_range((unsigned long)b,
2006					 (unsigned long)(b+8));
2007	}
2008
2009	return (void *)old_handler;
2010}
2011
2012void *set_vi_handler(int n, vi_handler_t addr)
2013{
2014	return set_vi_srs_handler(n, addr, 0);
2015}
2016
2017extern void tlb_init(void);
2018
2019/*
2020 * Timer interrupt
2021 */
2022int cp0_compare_irq;
2023EXPORT_SYMBOL_GPL(cp0_compare_irq);
2024int cp0_compare_irq_shift;
2025
2026/*
2027 * Performance counter IRQ or -1 if shared with timer
2028 */
2029int cp0_perfcount_irq;
2030EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2031
2032/*
2033 * Fast debug channel IRQ or -1 if not present
2034 */
2035int cp0_fdc_irq;
2036EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2037
2038static int noulri;
2039
2040static int __init ulri_disable(char *s)
2041{
2042	pr_info("Disabling ulri\n");
2043	noulri = 1;
2044
2045	return 1;
2046}
2047__setup("noulri", ulri_disable);
2048
2049/* configure STATUS register */
2050static void configure_status(void)
2051{
2052	/*
2053	 * Disable coprocessors and select 32-bit or 64-bit addressing
2054	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2055	 * flag that some firmware may have left set and the TS bit (for
2056	 * IP27).  Set XX for ISA IV code to work.
2057	 */
2058	unsigned int status_set = ST0_CU0;
2059#ifdef CONFIG_64BIT
2060	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2061#endif
2062	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2063		status_set |= ST0_XX;
2064	if (cpu_has_dsp)
2065		status_set |= ST0_MX;
2066
2067	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2068			 status_set);
2069}
2070
2071/* configure HWRENA register */
2072static void configure_hwrena(void)
2073{
2074	unsigned int hwrena = cpu_hwrena_impl_bits;
2075
2076	if (cpu_has_mips_r2_r6)
2077		hwrena |= 0x0000000f;
2078
2079	if (!noulri && cpu_has_userlocal)
2080		hwrena |= (1 << 29);
2081
2082	if (hwrena)
2083		write_c0_hwrena(hwrena);
2084}
2085
2086static void configure_exception_vector(void)
2087{
2088	if (cpu_has_veic || cpu_has_vint) {
2089		unsigned long sr = set_c0_status(ST0_BEV);
2090		write_c0_ebase(ebase);
2091		write_c0_status(sr);
2092		/* Setting vector spacing enables EI/VI mode  */
2093		change_c0_intctl(0x3e0, VECTORSPACING);
2094	}
2095	if (cpu_has_divec) {
2096		if (cpu_has_mipsmt) {
2097			unsigned int vpflags = dvpe();
2098			set_c0_cause(CAUSEF_IV);
2099			evpe(vpflags);
2100		} else
2101			set_c0_cause(CAUSEF_IV);
2102	}
2103}
2104
2105void per_cpu_trap_init(bool is_boot_cpu)
2106{
2107	unsigned int cpu = smp_processor_id();
2108
2109	configure_status();
2110	configure_hwrena();
2111
2112	configure_exception_vector();
2113
2114	/*
2115	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2116	 *
2117	 *  o read IntCtl.IPTI to determine the timer interrupt
2118	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2119	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2120	 */
2121	if (cpu_has_mips_r2_r6) {
2122		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2123		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2124		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2125		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2126		if (!cp0_fdc_irq)
2127			cp0_fdc_irq = -1;
2128
2129	} else {
2130		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2131		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2132		cp0_perfcount_irq = -1;
2133		cp0_fdc_irq = -1;
2134	}
2135
2136	if (!cpu_data[cpu].asid_cache)
2137		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2138
2139	atomic_inc(&init_mm.mm_count);
2140	current->active_mm = &init_mm;
2141	BUG_ON(current->mm);
2142	enter_lazy_tlb(&init_mm, current);
2143
2144		/* Boot CPU's cache setup in setup_arch(). */
2145		if (!is_boot_cpu)
2146			cpu_cache_init();
2147		tlb_init();
2148	TLBMISS_HANDLER_SETUP();
2149}
2150
2151/* Install CPU exception handler */
2152void set_handler(unsigned long offset, void *addr, unsigned long size)
2153{
2154#ifdef CONFIG_CPU_MICROMIPS
2155	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2156#else
2157	memcpy((void *)(ebase + offset), addr, size);
2158#endif
2159	local_flush_icache_range(ebase + offset, ebase + offset + size);
2160}
2161
2162static char panic_null_cerr[] =
2163	"Trying to set NULL cache error exception handler";
2164
2165/*
2166 * Install uncached CPU exception handler.
2167 * This is suitable only for the cache error exception which is the only
2168 * exception handler that is being run uncached.
2169 */
2170void set_uncached_handler(unsigned long offset, void *addr,
2171	unsigned long size)
2172{
2173	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2174
2175	if (!addr)
2176		panic(panic_null_cerr);
2177
2178	memcpy((void *)(uncached_ebase + offset), addr, size);
2179}
2180
2181static int __initdata rdhwr_noopt;
2182static int __init set_rdhwr_noopt(char *str)
2183{
2184	rdhwr_noopt = 1;
2185	return 1;
2186}
2187
2188__setup("rdhwr_noopt", set_rdhwr_noopt);
2189
2190void __init trap_init(void)
2191{
2192	extern char except_vec3_generic;
2193	extern char except_vec4;
2194	extern char except_vec3_r4000;
2195	unsigned long i;
2196
2197	check_wait();
2198
2199#if defined(CONFIG_KGDB)
2200	if (kgdb_early_setup)
2201		return; /* Already done */
2202#endif
2203
2204	if (cpu_has_veic || cpu_has_vint) {
2205		unsigned long size = 0x200 + VECTORSPACING*64;
2206		ebase = (unsigned long)
2207			__alloc_bootmem(size, 1 << fls(size), 0);
2208	} else {
2209#ifdef CONFIG_KVM_GUEST
2210#define KVM_GUEST_KSEG0     0x40000000
2211        ebase = KVM_GUEST_KSEG0;
2212#else
2213        ebase = CKSEG0;
2214#endif
2215		if (cpu_has_mips_r2_r6)
2216			ebase += (read_c0_ebase() & 0x3ffff000);
2217	}
2218
2219	if (cpu_has_mmips) {
2220		unsigned int config3 = read_c0_config3();
2221
2222		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2223			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2224		else
2225			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2226	}
2227
2228	if (board_ebase_setup)
2229		board_ebase_setup();
2230	per_cpu_trap_init(true);
2231
2232	/*
2233	 * Copy the generic exception handlers to their final destination.
2234	 * This will be overriden later as suitable for a particular
2235	 * configuration.
2236	 */
2237	set_handler(0x180, &except_vec3_generic, 0x80);
2238
2239	/*
2240	 * Setup default vectors
2241	 */
2242	for (i = 0; i <= 31; i++)
2243		set_except_vector(i, handle_reserved);
2244
2245	/*
2246	 * Copy the EJTAG debug exception vector handler code to it's final
2247	 * destination.
2248	 */
2249	if (cpu_has_ejtag && board_ejtag_handler_setup)
2250		board_ejtag_handler_setup();
2251
2252	/*
2253	 * Only some CPUs have the watch exceptions.
2254	 */
2255	if (cpu_has_watch)
2256		set_except_vector(23, handle_watch);
2257
2258	/*
2259	 * Initialise interrupt handlers
2260	 */
2261	if (cpu_has_veic || cpu_has_vint) {
2262		int nvec = cpu_has_veic ? 64 : 8;
2263		for (i = 0; i < nvec; i++)
2264			set_vi_handler(i, NULL);
2265	}
2266	else if (cpu_has_divec)
2267		set_handler(0x200, &except_vec4, 0x8);
2268
2269	/*
2270	 * Some CPUs can enable/disable for cache parity detection, but does
2271	 * it different ways.
2272	 */
2273	parity_protection_init();
2274
2275	/*
2276	 * The Data Bus Errors / Instruction Bus Errors are signaled
2277	 * by external hardware.  Therefore these two exceptions
2278	 * may have board specific handlers.
2279	 */
2280	if (board_be_init)
2281		board_be_init();
2282
2283	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2284						      : handle_int);
2285	set_except_vector(1, handle_tlbm);
2286	set_except_vector(2, handle_tlbl);
2287	set_except_vector(3, handle_tlbs);
2288
2289	set_except_vector(4, handle_adel);
2290	set_except_vector(5, handle_ades);
2291
2292	set_except_vector(6, handle_ibe);
2293	set_except_vector(7, handle_dbe);
2294
2295	set_except_vector(8, handle_sys);
2296	set_except_vector(9, handle_bp);
2297	set_except_vector(10, rdhwr_noopt ? handle_ri :
2298			  (cpu_has_vtag_icache ?
2299			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2300	set_except_vector(11, handle_cpu);
2301	set_except_vector(12, handle_ov);
2302	set_except_vector(13, handle_tr);
2303	set_except_vector(14, handle_msa_fpe);
2304
2305	if (current_cpu_type() == CPU_R6000 ||
2306	    current_cpu_type() == CPU_R6000A) {
2307		/*
2308		 * The R6000 is the only R-series CPU that features a machine
2309		 * check exception (similar to the R4000 cache error) and
2310		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2311		 * written yet.	 Well, anyway there is no R6000 machine on the
2312		 * current list of targets for Linux/MIPS.
2313		 * (Duh, crap, there is someone with a triple R6k machine)
2314		 */
2315		//set_except_vector(14, handle_mc);
2316		//set_except_vector(15, handle_ndc);
2317	}
2318
2319
2320	if (board_nmi_handler_setup)
2321		board_nmi_handler_setup();
2322
2323	if (cpu_has_fpu && !cpu_has_nofpuex)
2324		set_except_vector(15, handle_fpe);
2325
2326	set_except_vector(16, handle_ftlb);
2327
2328	if (cpu_has_rixiex) {
2329		set_except_vector(19, tlb_do_page_fault_0);
2330		set_except_vector(20, tlb_do_page_fault_0);
2331	}
2332
2333	set_except_vector(21, handle_msa);
2334	set_except_vector(22, handle_mdmx);
2335
2336	if (cpu_has_mcheck)
2337		set_except_vector(24, handle_mcheck);
2338
2339	if (cpu_has_mipsmt)
2340		set_except_vector(25, handle_mt);
2341
2342	set_except_vector(26, handle_dsp);
2343
2344	if (board_cache_error_setup)
2345		board_cache_error_setup();
2346
2347	if (cpu_has_vce)
2348		/* Special exception: R4[04]00 uses also the divec space. */
2349		set_handler(0x180, &except_vec3_r4000, 0x100);
2350	else if (cpu_has_4kex)
2351		set_handler(0x180, &except_vec3_generic, 0x80);
2352	else
2353		set_handler(0x080, &except_vec3_generic, 0x80);
2354
2355	local_flush_icache_range(ebase, ebase + 0x400);
2356
2357	sort_extable(__start___dbe_table, __stop___dbe_table);
2358
2359	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2360}
2361
2362static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2363			    void *v)
2364{
2365	switch (cmd) {
2366	case CPU_PM_ENTER_FAILED:
2367	case CPU_PM_EXIT:
2368		configure_status();
2369		configure_hwrena();
2370		configure_exception_vector();
2371
2372		/* Restore register with CPU number for TLB handlers */
2373		TLBMISS_HANDLER_RESTORE();
2374
2375		break;
2376	}
2377
2378	return NOTIFY_OK;
2379}
2380
2381static struct notifier_block trap_pm_notifier_block = {
2382	.notifier_call = trap_pm_notifier,
2383};
2384
2385static int __init trap_pm_init(void)
2386{
2387	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2388}
2389arch_initcall(trap_pm_init);
2390