1/*
2 *  Kernel Probes (KProbes)
3 *  arch/mips/kernel/kprobes.c
4 *
5 *  Copyright 2006 Sony Corp.
6 *  Copyright 2010 Cavium Networks
7 *
8 *  Some portions copied from the powerpc version.
9 *
10 *   Copyright (C) IBM Corporation, 2002, 2004
11 *
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; version 2 of the License.
15 *
16 *  This program is distributed in the hope that it will be useful,
17 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 *  GNU General Public License for more details.
20 *
21 *  You should have received a copy of the GNU General Public License
22 *  along with this program; if not, write to the Free Software
23 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24 */
25
26#include <linux/kprobes.h>
27#include <linux/preempt.h>
28#include <linux/uaccess.h>
29#include <linux/kdebug.h>
30#include <linux/slab.h>
31
32#include <asm/ptrace.h>
33#include <asm/branch.h>
34#include <asm/break.h>
35#include <asm/inst.h>
36
37static const union mips_instruction breakpoint_insn = {
38	.b_format = {
39		.opcode = spec_op,
40		.code = BRK_KPROBE_BP,
41		.func = break_op
42	}
43};
44
45static const union mips_instruction breakpoint2_insn = {
46	.b_format = {
47		.opcode = spec_op,
48		.code = BRK_KPROBE_SSTEPBP,
49		.func = break_op
50	}
51};
52
53DEFINE_PER_CPU(struct kprobe *, current_kprobe);
54DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
55
56static int __kprobes insn_has_delayslot(union mips_instruction insn)
57{
58	switch (insn.i_format.opcode) {
59
60		/*
61		 * This group contains:
62		 * jr and jalr are in r_format format.
63		 */
64	case spec_op:
65		switch (insn.r_format.func) {
66		case jr_op:
67		case jalr_op:
68			break;
69		default:
70			goto insn_ok;
71		}
72
73		/*
74		 * This group contains:
75		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77		 */
78	case bcond_op:
79
80		/*
81		 * These are unconditional and in j_format.
82		 */
83	case jal_op:
84	case j_op:
85
86		/*
87		 * These are conditional and in i_format.
88		 */
89	case beq_op:
90	case beql_op:
91	case bne_op:
92	case bnel_op:
93	case blez_op:
94	case blezl_op:
95	case bgtz_op:
96	case bgtzl_op:
97
98		/*
99		 * These are the FPA/cp1 branch instructions.
100		 */
101	case cop1_op:
102
103#ifdef CONFIG_CPU_CAVIUM_OCTEON
104	case lwc2_op: /* This is bbit0 on Octeon */
105	case ldc2_op: /* This is bbit032 on Octeon */
106	case swc2_op: /* This is bbit1 on Octeon */
107	case sdc2_op: /* This is bbit132 on Octeon */
108#endif
109		return 1;
110	default:
111		break;
112	}
113insn_ok:
114	return 0;
115}
116
117/*
118 * insn_has_ll_or_sc function checks whether instruction is ll or sc
119 * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120 * so we need to prevent it and refuse kprobes insertion for such
121 * instructions; cannot do much about breakpoint in the middle of
122 * ll/sc pair; it is upto user to avoid those places
123 */
124static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
125{
126	int ret = 0;
127
128	switch (insn.i_format.opcode) {
129	case ll_op:
130	case lld_op:
131	case sc_op:
132	case scd_op:
133		ret = 1;
134		break;
135	default:
136		break;
137	}
138	return ret;
139}
140
141int __kprobes arch_prepare_kprobe(struct kprobe *p)
142{
143	union mips_instruction insn;
144	union mips_instruction prev_insn;
145	int ret = 0;
146
147	insn = p->addr[0];
148
149	if (insn_has_ll_or_sc(insn)) {
150		pr_notice("Kprobes for ll and sc instructions are not"
151			  "supported\n");
152		ret = -EINVAL;
153		goto out;
154	}
155
156	if ((probe_kernel_read(&prev_insn, p->addr - 1,
157				sizeof(mips_instruction)) == 0) &&
158				insn_has_delayslot(prev_insn)) {
159		pr_notice("Kprobes for branch delayslot are not supported\n");
160		ret = -EINVAL;
161		goto out;
162	}
163
164	/* insn: must be on special executable page on mips. */
165	p->ainsn.insn = get_insn_slot();
166	if (!p->ainsn.insn) {
167		ret = -ENOMEM;
168		goto out;
169	}
170
171	/*
172	 * In the kprobe->ainsn.insn[] array we store the original
173	 * instruction at index zero and a break trap instruction at
174	 * index one.
175	 *
176	 * On MIPS arch if the instruction at probed address is a
177	 * branch instruction, we need to execute the instruction at
178	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179	 * doesn't have single stepping support, the BD instruction can
180	 * not be executed in-line and it would be executed on SSOL slot
181	 * using a normal breakpoint instruction in the next slot.
182	 * So, read the instruction and save it for later execution.
183	 */
184	if (insn_has_delayslot(insn))
185		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186	else
187		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
188
189	p->ainsn.insn[1] = breakpoint2_insn;
190	p->opcode = *p->addr;
191
192out:
193	return ret;
194}
195
196void __kprobes arch_arm_kprobe(struct kprobe *p)
197{
198	*p->addr = breakpoint_insn;
199	flush_insn_slot(p);
200}
201
202void __kprobes arch_disarm_kprobe(struct kprobe *p)
203{
204	*p->addr = p->opcode;
205	flush_insn_slot(p);
206}
207
208void __kprobes arch_remove_kprobe(struct kprobe *p)
209{
210	if (p->ainsn.insn) {
211		free_insn_slot(p->ainsn.insn, 0);
212		p->ainsn.insn = NULL;
213	}
214}
215
216static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
217{
218	kcb->prev_kprobe.kp = kprobe_running();
219	kcb->prev_kprobe.status = kcb->kprobe_status;
220	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
221	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
222	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
223}
224
225static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
226{
227	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
228	kcb->kprobe_status = kcb->prev_kprobe.status;
229	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
230	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
231	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
232}
233
234static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
235			       struct kprobe_ctlblk *kcb)
236{
237	__this_cpu_write(current_kprobe, p);
238	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
239	kcb->kprobe_saved_epc = regs->cp0_epc;
240}
241
242/**
243 * evaluate_branch_instrucion -
244 *
245 * Evaluate the branch instruction at probed address during probe hit. The
246 * result of evaluation would be the updated epc. The insturction in delayslot
247 * would actually be single stepped using a normal breakpoint) on SSOL slot.
248 *
249 * The result is also saved in the kprobe control block for later use,
250 * in case we need to execute the delayslot instruction. The latter will be
251 * false for NOP instruction in dealyslot and the branch-likely instructions
252 * when the branch is taken. And for those cases we set a flag as
253 * SKIP_DELAYSLOT in the kprobe control block
254 */
255static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
256					struct kprobe_ctlblk *kcb)
257{
258	union mips_instruction insn = p->opcode;
259	long epc;
260	int ret = 0;
261
262	epc = regs->cp0_epc;
263	if (epc & 3)
264		goto unaligned;
265
266	if (p->ainsn.insn->word == 0)
267		kcb->flags |= SKIP_DELAYSLOT;
268	else
269		kcb->flags &= ~SKIP_DELAYSLOT;
270
271	ret = __compute_return_epc_for_insn(regs, insn);
272	if (ret < 0)
273		return ret;
274
275	if (ret == BRANCH_LIKELY_TAKEN)
276		kcb->flags |= SKIP_DELAYSLOT;
277
278	kcb->target_epc = regs->cp0_epc;
279
280	return 0;
281
282unaligned:
283	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
284	force_sig(SIGBUS, current);
285	return -EFAULT;
286
287}
288
289static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
290						struct kprobe_ctlblk *kcb)
291{
292	int ret = 0;
293
294	regs->cp0_status &= ~ST0_IE;
295
296	/* single step inline if the instruction is a break */
297	if (p->opcode.word == breakpoint_insn.word ||
298	    p->opcode.word == breakpoint2_insn.word)
299		regs->cp0_epc = (unsigned long)p->addr;
300	else if (insn_has_delayslot(p->opcode)) {
301		ret = evaluate_branch_instruction(p, regs, kcb);
302		if (ret < 0) {
303			pr_notice("Kprobes: Error in evaluating branch\n");
304			return;
305		}
306	}
307	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
308}
309
310/*
311 * Called after single-stepping.  p->addr is the address of the
312 * instruction whose first byte has been replaced by the "break 0"
313 * instruction.	 To avoid the SMP problems that can occur when we
314 * temporarily put back the original opcode to single-step, we
315 * single-stepped a copy of the instruction.  The address of this
316 * copy is p->ainsn.insn.
317 *
318 * This function prepares to return from the post-single-step
319 * breakpoint trap. In case of branch instructions, the target
320 * epc to be restored.
321 */
322static void __kprobes resume_execution(struct kprobe *p,
323				       struct pt_regs *regs,
324				       struct kprobe_ctlblk *kcb)
325{
326	if (insn_has_delayslot(p->opcode))
327		regs->cp0_epc = kcb->target_epc;
328	else {
329		unsigned long orig_epc = kcb->kprobe_saved_epc;
330		regs->cp0_epc = orig_epc + 4;
331	}
332}
333
334static int __kprobes kprobe_handler(struct pt_regs *regs)
335{
336	struct kprobe *p;
337	int ret = 0;
338	kprobe_opcode_t *addr;
339	struct kprobe_ctlblk *kcb;
340
341	addr = (kprobe_opcode_t *) regs->cp0_epc;
342
343	/*
344	 * We don't want to be preempted for the entire
345	 * duration of kprobe processing
346	 */
347	preempt_disable();
348	kcb = get_kprobe_ctlblk();
349
350	/* Check we're not actually recursing */
351	if (kprobe_running()) {
352		p = get_kprobe(addr);
353		if (p) {
354			if (kcb->kprobe_status == KPROBE_HIT_SS &&
355			    p->ainsn.insn->word == breakpoint_insn.word) {
356				regs->cp0_status &= ~ST0_IE;
357				regs->cp0_status |= kcb->kprobe_saved_SR;
358				goto no_kprobe;
359			}
360			/*
361			 * We have reentered the kprobe_handler(), since
362			 * another probe was hit while within the handler.
363			 * We here save the original kprobes variables and
364			 * just single step on the instruction of the new probe
365			 * without calling any user handlers.
366			 */
367			save_previous_kprobe(kcb);
368			set_current_kprobe(p, regs, kcb);
369			kprobes_inc_nmissed_count(p);
370			prepare_singlestep(p, regs, kcb);
371			kcb->kprobe_status = KPROBE_REENTER;
372			if (kcb->flags & SKIP_DELAYSLOT) {
373				resume_execution(p, regs, kcb);
374				restore_previous_kprobe(kcb);
375				preempt_enable_no_resched();
376			}
377			return 1;
378		} else {
379			if (addr->word != breakpoint_insn.word) {
380				/*
381				 * The breakpoint instruction was removed by
382				 * another cpu right after we hit, no further
383				 * handling of this interrupt is appropriate
384				 */
385				ret = 1;
386				goto no_kprobe;
387			}
388			p = __this_cpu_read(current_kprobe);
389			if (p->break_handler && p->break_handler(p, regs))
390				goto ss_probe;
391		}
392		goto no_kprobe;
393	}
394
395	p = get_kprobe(addr);
396	if (!p) {
397		if (addr->word != breakpoint_insn.word) {
398			/*
399			 * The breakpoint instruction was removed right
400			 * after we hit it.  Another cpu has removed
401			 * either a probepoint or a debugger breakpoint
402			 * at this address.  In either case, no further
403			 * handling of this interrupt is appropriate.
404			 */
405			ret = 1;
406		}
407		/* Not one of ours: let kernel handle it */
408		goto no_kprobe;
409	}
410
411	set_current_kprobe(p, regs, kcb);
412	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
413
414	if (p->pre_handler && p->pre_handler(p, regs)) {
415		/* handler has already set things up, so skip ss setup */
416		return 1;
417	}
418
419ss_probe:
420	prepare_singlestep(p, regs, kcb);
421	if (kcb->flags & SKIP_DELAYSLOT) {
422		kcb->kprobe_status = KPROBE_HIT_SSDONE;
423		if (p->post_handler)
424			p->post_handler(p, regs, 0);
425		resume_execution(p, regs, kcb);
426		preempt_enable_no_resched();
427	} else
428		kcb->kprobe_status = KPROBE_HIT_SS;
429
430	return 1;
431
432no_kprobe:
433	preempt_enable_no_resched();
434	return ret;
435
436}
437
438static inline int post_kprobe_handler(struct pt_regs *regs)
439{
440	struct kprobe *cur = kprobe_running();
441	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
442
443	if (!cur)
444		return 0;
445
446	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
447		kcb->kprobe_status = KPROBE_HIT_SSDONE;
448		cur->post_handler(cur, regs, 0);
449	}
450
451	resume_execution(cur, regs, kcb);
452
453	regs->cp0_status |= kcb->kprobe_saved_SR;
454
455	/* Restore back the original saved kprobes variables and continue. */
456	if (kcb->kprobe_status == KPROBE_REENTER) {
457		restore_previous_kprobe(kcb);
458		goto out;
459	}
460	reset_current_kprobe();
461out:
462	preempt_enable_no_resched();
463
464	return 1;
465}
466
467static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
468{
469	struct kprobe *cur = kprobe_running();
470	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
471
472	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
473		return 1;
474
475	if (kcb->kprobe_status & KPROBE_HIT_SS) {
476		resume_execution(cur, regs, kcb);
477		regs->cp0_status |= kcb->kprobe_old_SR;
478
479		reset_current_kprobe();
480		preempt_enable_no_resched();
481	}
482	return 0;
483}
484
485/*
486 * Wrapper routine for handling exceptions.
487 */
488int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
489				       unsigned long val, void *data)
490{
491
492	struct die_args *args = (struct die_args *)data;
493	int ret = NOTIFY_DONE;
494
495	switch (val) {
496	case DIE_BREAK:
497		if (kprobe_handler(args->regs))
498			ret = NOTIFY_STOP;
499		break;
500	case DIE_SSTEPBP:
501		if (post_kprobe_handler(args->regs))
502			ret = NOTIFY_STOP;
503		break;
504
505	case DIE_PAGE_FAULT:
506		/* kprobe_running() needs smp_processor_id() */
507		preempt_disable();
508
509		if (kprobe_running()
510		    && kprobe_fault_handler(args->regs, args->trapnr))
511			ret = NOTIFY_STOP;
512		preempt_enable();
513		break;
514	default:
515		break;
516	}
517	return ret;
518}
519
520int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
521{
522	struct jprobe *jp = container_of(p, struct jprobe, kp);
523	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
524
525	kcb->jprobe_saved_regs = *regs;
526	kcb->jprobe_saved_sp = regs->regs[29];
527
528	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
529	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
530
531	regs->cp0_epc = (unsigned long)(jp->entry);
532
533	return 1;
534}
535
536/* Defined in the inline asm below. */
537void jprobe_return_end(void);
538
539void __kprobes jprobe_return(void)
540{
541	/* Assembler quirk necessitates this '0,code' business.	 */
542	asm volatile(
543		"break 0,%0\n\t"
544		".globl jprobe_return_end\n"
545		"jprobe_return_end:\n"
546		: : "n" (BRK_KPROBE_BP) : "memory");
547}
548
549int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
550{
551	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
552
553	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
554	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
555		*regs = kcb->jprobe_saved_regs;
556		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
557		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
558		preempt_enable_no_resched();
559
560		return 1;
561	}
562	return 0;
563}
564
565/*
566 * Function return probe trampoline:
567 *	- init_kprobes() establishes a probepoint here
568 *	- When the probed function returns, this probe causes the
569 *	  handlers to fire
570 */
571static void __used kretprobe_trampoline_holder(void)
572{
573	asm volatile(
574		".set push\n\t"
575		/* Keep the assembler from reordering and placing JR here. */
576		".set noreorder\n\t"
577		"nop\n\t"
578		".global kretprobe_trampoline\n"
579		"kretprobe_trampoline:\n\t"
580		"nop\n\t"
581		".set pop"
582		: : : "memory");
583}
584
585void kretprobe_trampoline(void);
586
587void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
588				      struct pt_regs *regs)
589{
590	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
591
592	/* Replace the return addr with trampoline addr */
593	regs->regs[31] = (unsigned long)kretprobe_trampoline;
594}
595
596/*
597 * Called when the probe at kretprobe trampoline is hit
598 */
599static int __kprobes trampoline_probe_handler(struct kprobe *p,
600						struct pt_regs *regs)
601{
602	struct kretprobe_instance *ri = NULL;
603	struct hlist_head *head, empty_rp;
604	struct hlist_node *tmp;
605	unsigned long flags, orig_ret_address = 0;
606	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
607
608	INIT_HLIST_HEAD(&empty_rp);
609	kretprobe_hash_lock(current, &head, &flags);
610
611	/*
612	 * It is possible to have multiple instances associated with a given
613	 * task either because an multiple functions in the call path
614	 * have a return probe installed on them, and/or more than one return
615	 * return probe was registered for a target function.
616	 *
617	 * We can handle this because:
618	 *     - instances are always inserted at the head of the list
619	 *     - when multiple return probes are registered for the same
620	 *	 function, the first instance's ret_addr will point to the
621	 *	 real return address, and all the rest will point to
622	 *	 kretprobe_trampoline
623	 */
624	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
625		if (ri->task != current)
626			/* another task is sharing our hash bucket */
627			continue;
628
629		if (ri->rp && ri->rp->handler)
630			ri->rp->handler(ri, regs);
631
632		orig_ret_address = (unsigned long)ri->ret_addr;
633		recycle_rp_inst(ri, &empty_rp);
634
635		if (orig_ret_address != trampoline_address)
636			/*
637			 * This is the real return address. Any other
638			 * instances associated with this task are for
639			 * other calls deeper on the call stack
640			 */
641			break;
642	}
643
644	kretprobe_assert(ri, orig_ret_address, trampoline_address);
645	instruction_pointer(regs) = orig_ret_address;
646
647	reset_current_kprobe();
648	kretprobe_hash_unlock(current, &flags);
649	preempt_enable_no_resched();
650
651	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
652		hlist_del(&ri->hlist);
653		kfree(ri);
654	}
655	/*
656	 * By returning a non-zero value, we are telling
657	 * kprobe_handler() that we don't want the post_handler
658	 * to run (and have re-enabled preemption)
659	 */
660	return 1;
661}
662
663int __kprobes arch_trampoline_kprobe(struct kprobe *p)
664{
665	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
666		return 1;
667
668	return 0;
669}
670
671static struct kprobe trampoline_p = {
672	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
673	.pre_handler = trampoline_probe_handler
674};
675
676int __init arch_init_kprobes(void)
677{
678	return register_kprobe(&trampoline_p);
679}
680