1/* 2 * Copyright (C) 2009,2010,2011 Imagination Technologies Ltd. 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#include <linux/atomic.h> 11#include <linux/completion.h> 12#include <linux/delay.h> 13#include <linux/init.h> 14#include <linux/spinlock.h> 15#include <linux/sched.h> 16#include <linux/interrupt.h> 17#include <linux/cache.h> 18#include <linux/profile.h> 19#include <linux/errno.h> 20#include <linux/mm.h> 21#include <linux/err.h> 22#include <linux/cpu.h> 23#include <linux/smp.h> 24#include <linux/seq_file.h> 25#include <linux/irq.h> 26#include <linux/bootmem.h> 27 28#include <asm/cacheflush.h> 29#include <asm/cachepart.h> 30#include <asm/core_reg.h> 31#include <asm/cpu.h> 32#include <asm/global_lock.h> 33#include <asm/metag_mem.h> 34#include <asm/mmu_context.h> 35#include <asm/pgtable.h> 36#include <asm/pgalloc.h> 37#include <asm/processor.h> 38#include <asm/setup.h> 39#include <asm/tlbflush.h> 40#include <asm/hwthread.h> 41#include <asm/traps.h> 42 43#define SYSC_DCPART(n) (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n)) 44#define SYSC_ICPART(n) (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n)) 45 46DECLARE_PER_CPU(PTBI, pTBI); 47 48void *secondary_data_stack; 49 50/* 51 * structures for inter-processor calls 52 * - A collection of single bit ipi messages. 53 */ 54struct ipi_data { 55 spinlock_t lock; 56 unsigned long ipi_count; 57 unsigned long bits; 58}; 59 60static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 61 .lock = __SPIN_LOCK_UNLOCKED(ipi_data.lock), 62}; 63 64static DEFINE_SPINLOCK(boot_lock); 65 66static DECLARE_COMPLETION(cpu_running); 67 68/* 69 * "thread" is assumed to be a valid Meta hardware thread ID. 70 */ 71static int boot_secondary(unsigned int thread, struct task_struct *idle) 72{ 73 u32 val; 74 75 /* 76 * set synchronisation state between this boot processor 77 * and the secondary one 78 */ 79 spin_lock(&boot_lock); 80 81 core_reg_write(TXUPC_ID, 0, thread, (unsigned int)secondary_startup); 82 core_reg_write(TXUPC_ID, 1, thread, 0); 83 84 /* 85 * Give the thread privilege (PSTAT) and clear potentially problematic 86 * bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP). 87 */ 88 core_reg_write(TXUCT_ID, TXSTATUS_REGNUM, thread, TXSTATUS_PSTAT_BIT); 89 90 /* Clear the minim enable bit. */ 91 val = core_reg_read(TXUCT_ID, TXPRIVEXT_REGNUM, thread); 92 core_reg_write(TXUCT_ID, TXPRIVEXT_REGNUM, thread, val & ~0x80); 93 94 /* 95 * set the ThreadEnable bit (0x1) in the TXENABLE register 96 * for the specified thread - off it goes! 97 */ 98 val = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, thread); 99 core_reg_write(TXUCT_ID, TXENABLE_REGNUM, thread, val | 0x1); 100 101 /* 102 * now the secondary core is starting up let it run its 103 * calibrations, then wait for it to finish 104 */ 105 spin_unlock(&boot_lock); 106 107 return 0; 108} 109 110/** 111 * describe_cachepart_change: describe a change to cache partitions. 112 * @thread: Hardware thread number. 113 * @label: Label of cache type, e.g. "dcache" or "icache". 114 * @sz: Total size of the cache. 115 * @old: Old cache partition configuration (*CPART* register). 116 * @new: New cache partition configuration (*CPART* register). 117 * 118 * If the cache partition has changed, prints a message to the log describing 119 * those changes. 120 */ 121static void describe_cachepart_change(unsigned int thread, const char *label, 122 unsigned int sz, unsigned int old, 123 unsigned int new) 124{ 125 unsigned int lor1, land1, gor1, gand1; 126 unsigned int lor2, land2, gor2, gand2; 127 unsigned int diff = old ^ new; 128 129 if (!diff) 130 return; 131 132 pr_info("Thread %d: %s partition changed:", thread, label); 133 if (diff & (SYSC_xCPARTL_OR_BITS | SYSC_xCPARTL_AND_BITS)) { 134 lor1 = (old & SYSC_xCPARTL_OR_BITS) >> SYSC_xCPARTL_OR_S; 135 lor2 = (new & SYSC_xCPARTL_OR_BITS) >> SYSC_xCPARTL_OR_S; 136 land1 = (old & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S; 137 land2 = (new & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S; 138 pr_cont(" L:%#x+%#x->%#x+%#x", 139 (lor1 * sz) >> 4, 140 ((land1 + 1) * sz) >> 4, 141 (lor2 * sz) >> 4, 142 ((land2 + 1) * sz) >> 4); 143 } 144 if (diff & (SYSC_xCPARTG_OR_BITS | SYSC_xCPARTG_AND_BITS)) { 145 gor1 = (old & SYSC_xCPARTG_OR_BITS) >> SYSC_xCPARTG_OR_S; 146 gor2 = (new & SYSC_xCPARTG_OR_BITS) >> SYSC_xCPARTG_OR_S; 147 gand1 = (old & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S; 148 gand2 = (new & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S; 149 pr_cont(" G:%#x+%#x->%#x+%#x", 150 (gor1 * sz) >> 4, 151 ((gand1 + 1) * sz) >> 4, 152 (gor2 * sz) >> 4, 153 ((gand2 + 1) * sz) >> 4); 154 } 155 if (diff & SYSC_CWRMODE_BIT) 156 pr_cont(" %sWR", 157 (new & SYSC_CWRMODE_BIT) ? "+" : "-"); 158 if (diff & SYSC_DCPART_GCON_BIT) 159 pr_cont(" %sGCOn", 160 (new & SYSC_DCPART_GCON_BIT) ? "+" : "-"); 161 pr_cont("\n"); 162} 163 164/** 165 * setup_smp_cache: ensure cache coherency for new SMP thread. 166 * @thread: New hardware thread number. 167 * 168 * Ensures that coherency is enabled and that the threads share the same cache 169 * partitions. 170 */ 171static void setup_smp_cache(unsigned int thread) 172{ 173 unsigned int this_thread, lflags; 174 unsigned int dcsz, dcpart_this, dcpart_old, dcpart_new; 175 unsigned int icsz, icpart_old, icpart_new; 176 177 /* 178 * Copy over the current thread's cache partition configuration to the 179 * new thread so that they share cache partitions. 180 */ 181 __global_lock2(lflags); 182 this_thread = hard_processor_id(); 183 /* Share dcache partition */ 184 dcpart_this = metag_in32(SYSC_DCPART(this_thread)); 185 dcpart_old = metag_in32(SYSC_DCPART(thread)); 186 dcpart_new = dcpart_this; 187#if PAGE_OFFSET < LINGLOBAL_BASE 188 /* 189 * For the local data cache to be coherent the threads must also have 190 * GCOn enabled. 191 */ 192 dcpart_new |= SYSC_DCPART_GCON_BIT; 193 metag_out32(dcpart_new, SYSC_DCPART(this_thread)); 194#endif 195 metag_out32(dcpart_new, SYSC_DCPART(thread)); 196 /* Share icache partition too */ 197 icpart_new = metag_in32(SYSC_ICPART(this_thread)); 198 icpart_old = metag_in32(SYSC_ICPART(thread)); 199 metag_out32(icpart_new, SYSC_ICPART(thread)); 200 __global_unlock2(lflags); 201 202 /* 203 * Log if the cache partitions were altered so the user is aware of any 204 * potential unintentional cache wastage. 205 */ 206 dcsz = get_dcache_size(); 207 icsz = get_dcache_size(); 208 describe_cachepart_change(this_thread, "dcache", dcsz, 209 dcpart_this, dcpart_new); 210 describe_cachepart_change(thread, "dcache", dcsz, 211 dcpart_old, dcpart_new); 212 describe_cachepart_change(thread, "icache", icsz, 213 icpart_old, icpart_new); 214} 215 216int __cpu_up(unsigned int cpu, struct task_struct *idle) 217{ 218 unsigned int thread = cpu_2_hwthread_id[cpu]; 219 int ret; 220 221 load_pgd(swapper_pg_dir, thread); 222 223 flush_tlb_all(); 224 225 setup_smp_cache(thread); 226 227 /* 228 * Tell the secondary CPU where to find its idle thread's stack. 229 */ 230 secondary_data_stack = task_stack_page(idle); 231 232 wmb(); 233 234 /* 235 * Now bring the CPU into our world. 236 */ 237 ret = boot_secondary(thread, idle); 238 if (ret == 0) { 239 /* 240 * CPU was successfully started, wait for it 241 * to come online or time out. 242 */ 243 wait_for_completion_timeout(&cpu_running, 244 msecs_to_jiffies(1000)); 245 246 if (!cpu_online(cpu)) 247 ret = -EIO; 248 } 249 250 secondary_data_stack = NULL; 251 252 if (ret) { 253 pr_crit("CPU%u: processor failed to boot\n", cpu); 254 255 /* 256 * FIXME: We need to clean up the new idle thread. --rmk 257 */ 258 } 259 260 return ret; 261} 262 263#ifdef CONFIG_HOTPLUG_CPU 264 265/* 266 * __cpu_disable runs on the processor to be shutdown. 267 */ 268int __cpu_disable(void) 269{ 270 unsigned int cpu = smp_processor_id(); 271 272 /* 273 * Take this CPU offline. Once we clear this, we can't return, 274 * and we must not schedule until we're ready to give up the cpu. 275 */ 276 set_cpu_online(cpu, false); 277 278 /* 279 * OK - migrate IRQs away from this CPU 280 */ 281 migrate_irqs(); 282 283 /* 284 * Flush user cache and TLB mappings, and then remove this CPU 285 * from the vm mask set of all processes. 286 */ 287 flush_cache_all(); 288 local_flush_tlb_all(); 289 290 clear_tasks_mm_cpumask(cpu); 291 292 return 0; 293} 294 295/* 296 * called on the thread which is asking for a CPU to be shutdown - 297 * waits until shutdown has completed, or it is timed out. 298 */ 299void __cpu_die(unsigned int cpu) 300{ 301 if (!cpu_wait_death(cpu, 1)) 302 pr_err("CPU%u: unable to kill\n", cpu); 303} 304 305/* 306 * Called from the idle thread for the CPU which has been shutdown. 307 * 308 * Note that we do not return from this function. If this cpu is 309 * brought online again it will need to run secondary_startup(). 310 */ 311void cpu_die(void) 312{ 313 local_irq_disable(); 314 idle_task_exit(); 315 316 (void)cpu_report_death(); 317 318 asm ("XOR TXENABLE, D0Re0,D0Re0\n"); 319} 320#endif /* CONFIG_HOTPLUG_CPU */ 321 322/* 323 * Called by both boot and secondaries to move global data into 324 * per-processor storage. 325 */ 326void smp_store_cpu_info(unsigned int cpuid) 327{ 328 struct cpuinfo_metag *cpu_info = &per_cpu(cpu_data, cpuid); 329 330 cpu_info->loops_per_jiffy = loops_per_jiffy; 331} 332 333/* 334 * This is the secondary CPU boot entry. We're using this CPUs 335 * idle thread stack and the global page tables. 336 */ 337asmlinkage void secondary_start_kernel(void) 338{ 339 struct mm_struct *mm = &init_mm; 340 unsigned int cpu = smp_processor_id(); 341 342 /* 343 * All kernel threads share the same mm context; grab a 344 * reference and switch to it. 345 */ 346 atomic_inc(&mm->mm_users); 347 atomic_inc(&mm->mm_count); 348 current->active_mm = mm; 349 cpumask_set_cpu(cpu, mm_cpumask(mm)); 350 enter_lazy_tlb(mm, current); 351 local_flush_tlb_all(); 352 353 /* 354 * TODO: Some day it might be useful for each Linux CPU to 355 * have its own TBI structure. That would allow each Linux CPU 356 * to run different interrupt handlers for the same IRQ 357 * number. 358 * 359 * For now, simply copying the pointer to the boot CPU's TBI 360 * structure is sufficient because we always want to run the 361 * same interrupt handler whatever CPU takes the interrupt. 362 */ 363 per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT); 364 365 if (!per_cpu(pTBI, cpu)) 366 panic("No TBI found!"); 367 368 per_cpu_trap_init(cpu); 369 370 preempt_disable(); 371 372 setup_priv(); 373 374 notify_cpu_starting(cpu); 375 376 pr_info("CPU%u (thread %u): Booted secondary processor\n", 377 cpu, cpu_2_hwthread_id[cpu]); 378 379 calibrate_delay(); 380 smp_store_cpu_info(cpu); 381 382 /* 383 * OK, now it's safe to let the boot CPU continue 384 */ 385 set_cpu_online(cpu, true); 386 complete(&cpu_running); 387 388 /* 389 * Enable local interrupts. 390 */ 391 tbi_startup_interrupt(TBID_SIGNUM_TRT); 392 local_irq_enable(); 393 394 /* 395 * OK, it's off to the idle thread for us 396 */ 397 cpu_startup_entry(CPUHP_ONLINE); 398} 399 400void __init smp_cpus_done(unsigned int max_cpus) 401{ 402 int cpu; 403 unsigned long bogosum = 0; 404 405 for_each_online_cpu(cpu) 406 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 407 408 pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 409 num_online_cpus(), 410 bogosum / (500000/HZ), 411 (bogosum / (5000/HZ)) % 100); 412} 413 414void __init smp_prepare_cpus(unsigned int max_cpus) 415{ 416 unsigned int cpu = smp_processor_id(); 417 418 init_new_context(current, &init_mm); 419 current_thread_info()->cpu = cpu; 420 421 smp_store_cpu_info(cpu); 422 init_cpu_present(cpu_possible_mask); 423} 424 425void __init smp_prepare_boot_cpu(void) 426{ 427 unsigned int cpu = smp_processor_id(); 428 429 per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT); 430 431 if (!per_cpu(pTBI, cpu)) 432 panic("No TBI found!"); 433} 434 435static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg); 436 437static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg) 438{ 439 unsigned long flags; 440 unsigned int cpu; 441 cpumask_t map; 442 443 cpumask_clear(&map); 444 local_irq_save(flags); 445 446 for_each_cpu(cpu, mask) { 447 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 448 449 spin_lock(&ipi->lock); 450 451 /* 452 * KICK interrupts are queued in hardware so we'll get 453 * multiple interrupts if we call smp_cross_call() 454 * multiple times for one msg. The problem is that we 455 * only have one bit for each message - we can't queue 456 * them in software. 457 * 458 * The first time through ipi_handler() we'll clear 459 * the msg bit, having done all the work. But when we 460 * return we'll get _another_ interrupt (and another, 461 * and another until we've handled all the queued 462 * KICKs). Running ipi_handler() when there's no work 463 * to do is bad because that's how kick handler 464 * chaining detects who the KICK was intended for. 465 * See arch/metag/kernel/kick.c for more details. 466 * 467 * So only add 'cpu' to 'map' if we haven't already 468 * queued a KICK interrupt for 'msg'. 469 */ 470 if (!(ipi->bits & (1 << msg))) { 471 ipi->bits |= 1 << msg; 472 cpumask_set_cpu(cpu, &map); 473 } 474 475 spin_unlock(&ipi->lock); 476 } 477 478 /* 479 * Call the platform specific cross-CPU call function. 480 */ 481 smp_cross_call(map, msg); 482 483 local_irq_restore(flags); 484} 485 486void arch_send_call_function_ipi_mask(const struct cpumask *mask) 487{ 488 send_ipi_message(mask, IPI_CALL_FUNC); 489} 490 491void arch_send_call_function_single_ipi(int cpu) 492{ 493 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC); 494} 495 496void show_ipi_list(struct seq_file *p) 497{ 498 unsigned int cpu; 499 500 seq_puts(p, "IPI:"); 501 502 for_each_present_cpu(cpu) 503 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 504 505 seq_putc(p, '\n'); 506} 507 508static DEFINE_SPINLOCK(stop_lock); 509 510/* 511 * Main handler for inter-processor interrupts 512 * 513 * For Meta, the ipimask now only identifies a single 514 * category of IPI (Bit 1 IPIs have been replaced by a 515 * different mechanism): 516 * 517 * Bit 0 - Inter-processor function call 518 */ 519static int do_IPI(void) 520{ 521 unsigned int cpu = smp_processor_id(); 522 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 523 unsigned long msgs, nextmsg; 524 int handled = 0; 525 526 ipi->ipi_count++; 527 528 spin_lock(&ipi->lock); 529 msgs = ipi->bits; 530 nextmsg = msgs & -msgs; 531 ipi->bits &= ~nextmsg; 532 spin_unlock(&ipi->lock); 533 534 if (nextmsg) { 535 handled = 1; 536 537 nextmsg = ffz(~nextmsg); 538 switch (nextmsg) { 539 case IPI_RESCHEDULE: 540 scheduler_ipi(); 541 break; 542 543 case IPI_CALL_FUNC: 544 generic_smp_call_function_interrupt(); 545 break; 546 547 default: 548 pr_crit("CPU%u: Unknown IPI message 0x%lx\n", 549 cpu, nextmsg); 550 break; 551 } 552 } 553 554 return handled; 555} 556 557void smp_send_reschedule(int cpu) 558{ 559 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE); 560} 561 562static void stop_this_cpu(void *data) 563{ 564 unsigned int cpu = smp_processor_id(); 565 566 if (system_state == SYSTEM_BOOTING || 567 system_state == SYSTEM_RUNNING) { 568 spin_lock(&stop_lock); 569 pr_crit("CPU%u: stopping\n", cpu); 570 dump_stack(); 571 spin_unlock(&stop_lock); 572 } 573 574 set_cpu_online(cpu, false); 575 576 local_irq_disable(); 577 578 hard_processor_halt(HALT_OK); 579} 580 581void smp_send_stop(void) 582{ 583 smp_call_function(stop_this_cpu, NULL, 0); 584} 585 586/* 587 * not supported here 588 */ 589int setup_profiling_timer(unsigned int multiplier) 590{ 591 return -EINVAL; 592} 593 594/* 595 * We use KICKs for inter-processor interrupts. 596 * 597 * For every CPU in "callmap" the IPI data must already have been 598 * stored in that CPU's "ipi_data" member prior to calling this 599 * function. 600 */ 601static void kick_raise_softirq(cpumask_t callmap, unsigned int irq) 602{ 603 int cpu; 604 605 for_each_cpu(cpu, &callmap) { 606 unsigned int thread; 607 608 thread = cpu_2_hwthread_id[cpu]; 609 610 BUG_ON(thread == BAD_HWTHREAD_ID); 611 612 metag_out32(1, T0KICKI + (thread * TnXKICK_STRIDE)); 613 } 614} 615 616static TBIRES ipi_handler(TBIRES State, int SigNum, int Triggers, 617 int Inst, PTBI pTBI, int *handled) 618{ 619 *handled = do_IPI(); 620 621 return State; 622} 623 624static struct kick_irq_handler ipi_irq = { 625 .func = ipi_handler, 626}; 627 628static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg) 629{ 630 kick_raise_softirq(callmap, 1); 631} 632 633static inline unsigned int get_core_count(void) 634{ 635 int i; 636 unsigned int ret = 0; 637 638 for (i = 0; i < CONFIG_NR_CPUS; i++) { 639 if (core_reg_read(TXUCT_ID, TXENABLE_REGNUM, i)) 640 ret++; 641 } 642 643 return ret; 644} 645 646/* 647 * Initialise the CPU possible map early - this describes the CPUs 648 * which may be present or become present in the system. 649 */ 650void __init smp_init_cpus(void) 651{ 652 unsigned int i, ncores = get_core_count(); 653 654 /* If no hwthread_map early param was set use default mapping */ 655 for (i = 0; i < NR_CPUS; i++) 656 if (cpu_2_hwthread_id[i] == BAD_HWTHREAD_ID) { 657 cpu_2_hwthread_id[i] = i; 658 hwthread_id_2_cpu[i] = i; 659 } 660 661 for (i = 0; i < ncores; i++) 662 set_cpu_possible(i, true); 663 664 kick_register_func(&ipi_irq); 665} 666