1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
7 *
8 * SGI Altix topology and hardware performance monitoring API.
9 * Mark Goodwin <markgw@sgi.com>.
10 *
11 * Creates /proc/sgi_sn/sn_topology (read-only) to export
12 * info about Altix nodes, routers, CPUs and NumaLink
13 * interconnection/topology.
14 *
15 * Also creates a dynamic misc device named "sn_hwperf"
16 * that supports an ioctl interface to call down into SAL
17 * to discover hw objects, topology and to read/write
18 * memory mapped registers, e.g. for performance monitoring.
19 * The "sn_hwperf" device is registered only after the procfs
20 * file is first opened, i.e. only if/when it's needed.
21 *
22 * This API is used by SGI Performance Co-Pilot and other
23 * tools, see http://oss.sgi.com/projects/pcp
24 */
25
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/export.h>
29#include <linux/vmalloc.h>
30#include <linux/seq_file.h>
31#include <linux/miscdevice.h>
32#include <linux/utsname.h>
33#include <linux/cpumask.h>
34#include <linux/nodemask.h>
35#include <linux/smp.h>
36#include <linux/mutex.h>
37
38#include <asm/processor.h>
39#include <asm/topology.h>
40#include <asm/uaccess.h>
41#include <asm/sal.h>
42#include <asm/sn/io.h>
43#include <asm/sn/sn_sal.h>
44#include <asm/sn/module.h>
45#include <asm/sn/geo.h>
46#include <asm/sn/sn2/sn_hwperf.h>
47#include <asm/sn/addrs.h>
48
49static void *sn_hwperf_salheap = NULL;
50static int sn_hwperf_obj_cnt = 0;
51static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
52static int sn_hwperf_init(void);
53static DEFINE_MUTEX(sn_hwperf_init_mutex);
54
55#define cnode_possible(n)	((n) < num_cnodes)
56
57static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
58{
59	int e;
60	u64 sz;
61	struct sn_hwperf_object_info *objbuf = NULL;
62
63	if ((e = sn_hwperf_init()) < 0) {
64		printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
65		goto out;
66	}
67
68	sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
69	objbuf = vmalloc(sz);
70	if (objbuf == NULL) {
71		printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
72		e = -ENOMEM;
73		goto out;
74	}
75
76	e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
77		0, sz, (u64) objbuf, 0, 0, NULL);
78	if (e != SN_HWPERF_OP_OK) {
79		e = -EINVAL;
80		vfree(objbuf);
81	}
82
83out:
84	*nobj = sn_hwperf_obj_cnt;
85	*ret = objbuf;
86	return e;
87}
88
89static int sn_hwperf_location_to_bpos(char *location,
90	int *rack, int *bay, int *slot, int *slab)
91{
92	char type;
93
94	/* first scan for an old style geoid string */
95	if (sscanf(location, "%03d%c%02d#%d",
96		rack, &type, bay, slab) == 4)
97		*slot = 0;
98	else /* scan for a new bladed geoid string */
99	if (sscanf(location, "%03d%c%02d^%02d#%d",
100		rack, &type, bay, slot, slab) != 5)
101		return -1;
102	/* success */
103	return 0;
104}
105
106static int sn_hwperf_geoid_to_cnode(char *location)
107{
108	int cnode;
109	geoid_t geoid;
110	moduleid_t module_id;
111	int rack, bay, slot, slab;
112	int this_rack, this_bay, this_slot, this_slab;
113
114	if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
115		return -1;
116
117	/*
118	 * FIXME: replace with cleaner for_each_XXX macro which addresses
119	 * both compute and IO nodes once ACPI3.0 is available.
120	 */
121	for (cnode = 0; cnode < num_cnodes; cnode++) {
122		geoid = cnodeid_get_geoid(cnode);
123		module_id = geo_module(geoid);
124		this_rack = MODULE_GET_RACK(module_id);
125		this_bay = MODULE_GET_BPOS(module_id);
126		this_slot = geo_slot(geoid);
127		this_slab = geo_slab(geoid);
128		if (rack == this_rack && bay == this_bay &&
129			slot == this_slot && slab == this_slab) {
130			break;
131		}
132	}
133
134	return cnode_possible(cnode) ? cnode : -1;
135}
136
137static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
138{
139	if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
140		BUG();
141	if (SN_HWPERF_FOREIGN(obj))
142		return -1;
143	return sn_hwperf_geoid_to_cnode(obj->location);
144}
145
146static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
147				struct sn_hwperf_object_info *objs)
148{
149	int ordinal;
150	struct sn_hwperf_object_info *p;
151
152	for (ordinal=0, p=objs; p != obj; p++) {
153		if (SN_HWPERF_FOREIGN(p))
154			continue;
155		if (SN_HWPERF_SAME_OBJTYPE(p, obj))
156			ordinal++;
157	}
158
159	return ordinal;
160}
161
162static const char *slabname_node =	"node"; /* SHub asic */
163static const char *slabname_ionode =	"ionode"; /* TIO asic */
164static const char *slabname_router =	"router"; /* NL3R or NL4R */
165static const char *slabname_other =	"other"; /* unknown asic */
166
167static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
168			struct sn_hwperf_object_info *objs, int *ordinal)
169{
170	int isnode;
171	const char *slabname = slabname_other;
172
173	if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
174	    	slabname = isnode ? slabname_node : slabname_ionode;
175		*ordinal = sn_hwperf_obj_to_cnode(obj);
176	}
177	else {
178		*ordinal = sn_hwperf_generic_ordinal(obj, objs);
179		if (SN_HWPERF_IS_ROUTER(obj))
180			slabname = slabname_router;
181	}
182
183	return slabname;
184}
185
186static void print_pci_topology(struct seq_file *s)
187{
188	char *p;
189	size_t sz;
190	int e;
191
192	for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
193		if (!(p = kmalloc(sz, GFP_KERNEL)))
194			break;
195		e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
196		if (e == SALRET_OK)
197			seq_puts(s, p);
198		kfree(p);
199		if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
200			break;
201	}
202}
203
204static inline int sn_hwperf_has_cpus(cnodeid_t node)
205{
206	return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
207}
208
209static inline int sn_hwperf_has_mem(cnodeid_t node)
210{
211	return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
212}
213
214static struct sn_hwperf_object_info *
215sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
216	int nobj, int id)
217{
218	int i;
219	struct sn_hwperf_object_info *p = objbuf;
220
221	for (i=0; i < nobj; i++, p++) {
222		if (p->id == id)
223			return p;
224	}
225
226	return NULL;
227
228}
229
230static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
231	int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
232{
233	int e;
234	struct sn_hwperf_object_info *nodeobj = NULL;
235	struct sn_hwperf_object_info *op;
236	struct sn_hwperf_object_info *dest;
237	struct sn_hwperf_object_info *router;
238	struct sn_hwperf_port_info ptdata[16];
239	int sz, i, j;
240	cnodeid_t c;
241	int found_mem = 0;
242	int found_cpu = 0;
243
244	if (!cnode_possible(node))
245		return -EINVAL;
246
247	if (sn_hwperf_has_cpus(node)) {
248		if (near_cpu_node)
249			*near_cpu_node = node;
250		found_cpu++;
251	}
252
253	if (sn_hwperf_has_mem(node)) {
254		if (near_mem_node)
255			*near_mem_node = node;
256		found_mem++;
257	}
258
259	if (found_cpu && found_mem)
260		return 0; /* trivially successful */
261
262	/* find the argument node object */
263	for (i=0, op=objbuf; i < nobj; i++, op++) {
264		if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
265			continue;
266		if (node == sn_hwperf_obj_to_cnode(op)) {
267			nodeobj = op;
268			break;
269		}
270	}
271	if (!nodeobj) {
272		e = -ENOENT;
273		goto err;
274	}
275
276	/* get it's interconnect topology */
277	sz = op->ports * sizeof(struct sn_hwperf_port_info);
278	BUG_ON(sz > sizeof(ptdata));
279	e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
280			      SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
281			      (u64)&ptdata, 0, 0, NULL);
282	if (e != SN_HWPERF_OP_OK) {
283		e = -EINVAL;
284		goto err;
285	}
286
287	/* find nearest node with cpus and nearest memory */
288	for (router=NULL, j=0; j < op->ports; j++) {
289		dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
290		if (dest && SN_HWPERF_IS_ROUTER(dest))
291			router = dest;
292		if (!dest || SN_HWPERF_FOREIGN(dest) ||
293		    !SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
294			continue;
295		}
296		c = sn_hwperf_obj_to_cnode(dest);
297		if (!found_cpu && sn_hwperf_has_cpus(c)) {
298			if (near_cpu_node)
299				*near_cpu_node = c;
300			found_cpu++;
301		}
302		if (!found_mem && sn_hwperf_has_mem(c)) {
303			if (near_mem_node)
304				*near_mem_node = c;
305			found_mem++;
306		}
307	}
308
309	if (router && (!found_cpu || !found_mem)) {
310		/* search for a node connected to the same router */
311		sz = router->ports * sizeof(struct sn_hwperf_port_info);
312		BUG_ON(sz > sizeof(ptdata));
313		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
314				      SN_HWPERF_ENUM_PORTS, router->id, sz,
315				      (u64)&ptdata, 0, 0, NULL);
316		if (e != SN_HWPERF_OP_OK) {
317			e = -EINVAL;
318			goto err;
319		}
320		for (j=0; j < router->ports; j++) {
321			dest = sn_hwperf_findobj_id(objbuf, nobj,
322				ptdata[j].conn_id);
323			if (!dest || dest->id == node ||
324			    SN_HWPERF_FOREIGN(dest) ||
325			    !SN_HWPERF_IS_NODE(dest) ||
326			    SN_HWPERF_IS_IONODE(dest)) {
327				continue;
328			}
329			c = sn_hwperf_obj_to_cnode(dest);
330			if (!found_cpu && sn_hwperf_has_cpus(c)) {
331				if (near_cpu_node)
332					*near_cpu_node = c;
333				found_cpu++;
334			}
335			if (!found_mem && sn_hwperf_has_mem(c)) {
336				if (near_mem_node)
337					*near_mem_node = c;
338				found_mem++;
339			}
340			if (found_cpu && found_mem)
341				break;
342		}
343	}
344
345	if (!found_cpu || !found_mem) {
346		/* resort to _any_ node with CPUs and memory */
347		for (i=0, op=objbuf; i < nobj; i++, op++) {
348			if (SN_HWPERF_FOREIGN(op) ||
349			    SN_HWPERF_IS_IONODE(op) ||
350			    !SN_HWPERF_IS_NODE(op)) {
351				continue;
352			}
353			c = sn_hwperf_obj_to_cnode(op);
354			if (!found_cpu && sn_hwperf_has_cpus(c)) {
355				if (near_cpu_node)
356					*near_cpu_node = c;
357				found_cpu++;
358			}
359			if (!found_mem && sn_hwperf_has_mem(c)) {
360				if (near_mem_node)
361					*near_mem_node = c;
362				found_mem++;
363			}
364			if (found_cpu && found_mem)
365				break;
366		}
367	}
368
369	if (!found_cpu || !found_mem)
370		e = -ENODATA;
371
372err:
373	return e;
374}
375
376
377static int sn_topology_show(struct seq_file *s, void *d)
378{
379	int sz;
380	int pt;
381	int e = 0;
382	int i;
383	int j;
384	const char *slabname;
385	int ordinal;
386	char slice;
387	struct cpuinfo_ia64 *c;
388	struct sn_hwperf_port_info *ptdata;
389	struct sn_hwperf_object_info *p;
390	struct sn_hwperf_object_info *obj = d;	/* this object */
391	struct sn_hwperf_object_info *objs = s->private; /* all objects */
392	u8 shubtype;
393	u8 system_size;
394	u8 sharing_size;
395	u8 partid;
396	u8 coher;
397	u8 nasid_shift;
398	u8 region_size;
399	u16 nasid_mask;
400	int nasid_msb;
401
402	if (obj == objs) {
403		seq_printf(s, "# sn_topology version 2\n");
404		seq_printf(s, "# objtype ordinal location partition"
405			" [attribute value [, ...]]\n");
406
407		if (ia64_sn_get_sn_info(0,
408			&shubtype, &nasid_mask, &nasid_shift, &system_size,
409			&sharing_size, &partid, &coher, &region_size))
410			BUG();
411		for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
412			if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
413				break;
414		}
415		seq_printf(s, "partition %u %s local "
416			"shubtype %s, "
417			"nasid_mask 0x%016llx, "
418			"nasid_bits %d:%d, "
419			"system_size %d, "
420			"sharing_size %d, "
421			"coherency_domain %d, "
422			"region_size %d\n",
423
424			partid, utsname()->nodename,
425			shubtype ? "shub2" : "shub1",
426			(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
427			system_size, sharing_size, coher, region_size);
428
429		print_pci_topology(s);
430	}
431
432	if (SN_HWPERF_FOREIGN(obj)) {
433		/* private in another partition: not interesting */
434		return 0;
435	}
436
437	for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
438		if (obj->name[i] == ' ')
439			obj->name[i] = '_';
440	}
441
442	slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
443	seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
444		obj->sn_hwp_this_part ? "local" : "shared", obj->name);
445
446	if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
447		seq_putc(s, '\n');
448	else {
449		cnodeid_t near_mem = -1;
450		cnodeid_t near_cpu = -1;
451
452		seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
453
454		if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
455			ordinal, &near_mem, &near_cpu) == 0) {
456			seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
457				near_mem, near_cpu);
458		}
459
460		if (!SN_HWPERF_IS_IONODE(obj)) {
461			for_each_online_node(i) {
462				seq_printf(s, i ? ":%d" : ", dist %d",
463					node_distance(ordinal, i));
464			}
465		}
466
467		seq_putc(s, '\n');
468
469		/*
470		 * CPUs on this node, if any
471		 */
472		if (!SN_HWPERF_IS_IONODE(obj)) {
473			for_each_cpu_and(i, cpu_online_mask,
474					 cpumask_of_node(ordinal)) {
475				slice = 'a' + cpuid_to_slice(i);
476				c = cpu_data(i);
477				seq_printf(s, "cpu %d %s%c local"
478					   " freq %luMHz, arch ia64",
479					   i, obj->location, slice,
480					   c->proc_freq / 1000000);
481				for_each_online_cpu(j) {
482					seq_printf(s, j ? ":%d" : ", dist %d",
483						   node_distance(
484						    	cpu_to_node(i),
485						    	cpu_to_node(j)));
486				}
487				seq_putc(s, '\n');
488			}
489		}
490	}
491
492	if (obj->ports) {
493		/*
494		 * numalink ports
495		 */
496		sz = obj->ports * sizeof(struct sn_hwperf_port_info);
497		if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
498			return -ENOMEM;
499		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
500				      SN_HWPERF_ENUM_PORTS, obj->id, sz,
501				      (u64) ptdata, 0, 0, NULL);
502		if (e != SN_HWPERF_OP_OK)
503			return -EINVAL;
504		for (ordinal=0, p=objs; p != obj; p++) {
505			if (!SN_HWPERF_FOREIGN(p))
506				ordinal += p->ports;
507		}
508		for (pt = 0; pt < obj->ports; pt++) {
509			for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
510				if (ptdata[pt].conn_id == p->id) {
511					break;
512				}
513			}
514			seq_printf(s, "numalink %d %s-%d",
515			    ordinal+pt, obj->location, ptdata[pt].port);
516
517			if (i >= sn_hwperf_obj_cnt) {
518				/* no connection */
519				seq_puts(s, " local endpoint disconnected"
520					    ", protocol unknown\n");
521				continue;
522			}
523
524			if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
525				/* both ends local to this partition */
526				seq_puts(s, " local");
527			else if (SN_HWPERF_FOREIGN(p))
528				/* both ends of the link in foreign partiton */
529				seq_puts(s, " foreign");
530			else
531				/* link straddles a partition */
532				seq_puts(s, " shared");
533
534			/*
535			 * Unlikely, but strictly should query the LLP config
536			 * registers because an NL4R can be configured to run
537			 * NL3 protocol, even when not talking to an NL3 router.
538			 * Ditto for node-node.
539			 */
540			seq_printf(s, " endpoint %s-%d, protocol %s\n",
541				p->location, ptdata[pt].conn_port,
542				(SN_HWPERF_IS_NL3ROUTER(obj) ||
543				SN_HWPERF_IS_NL3ROUTER(p)) ?  "LLP3" : "LLP4");
544		}
545		kfree(ptdata);
546	}
547
548	return 0;
549}
550
551static void *sn_topology_start(struct seq_file *s, loff_t * pos)
552{
553	struct sn_hwperf_object_info *objs = s->private;
554
555	if (*pos < sn_hwperf_obj_cnt)
556		return (void *)(objs + *pos);
557
558	return NULL;
559}
560
561static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
562{
563	++*pos;
564	return sn_topology_start(s, pos);
565}
566
567static void sn_topology_stop(struct seq_file *m, void *v)
568{
569	return;
570}
571
572/*
573 * /proc/sgi_sn/sn_topology, read-only using seq_file
574 */
575static const struct seq_operations sn_topology_seq_ops = {
576	.start = sn_topology_start,
577	.next = sn_topology_next,
578	.stop = sn_topology_stop,
579	.show = sn_topology_show
580};
581
582struct sn_hwperf_op_info {
583	u64 op;
584	struct sn_hwperf_ioctl_args *a;
585	void *p;
586	int *v0;
587	int ret;
588};
589
590static void sn_hwperf_call_sal(void *info)
591{
592	struct sn_hwperf_op_info *op_info = info;
593	int r;
594
595	r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
596		      op_info->a->arg, op_info->a->sz,
597		      (u64) op_info->p, 0, 0, op_info->v0);
598	op_info->ret = r;
599}
600
601static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
602{
603	u32 cpu;
604	u32 use_ipi;
605	int r = 0;
606	cpumask_t save_allowed;
607
608	cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
609	use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
610	op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
611
612	if (cpu != SN_HWPERF_ARG_ANY_CPU) {
613		if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
614			r = -EINVAL;
615			goto out;
616		}
617	}
618
619	if (cpu == SN_HWPERF_ARG_ANY_CPU) {
620		/* don't care which cpu */
621		sn_hwperf_call_sal(op_info);
622	} else if (cpu == get_cpu()) {
623		/* already on correct cpu */
624		sn_hwperf_call_sal(op_info);
625		put_cpu();
626	} else {
627		put_cpu();
628		if (use_ipi) {
629			/* use an interprocessor interrupt to call SAL */
630			smp_call_function_single(cpu, sn_hwperf_call_sal,
631				op_info, 1);
632		}
633		else {
634			/* migrate the task before calling SAL */
635			save_allowed = current->cpus_allowed;
636			set_cpus_allowed_ptr(current, cpumask_of(cpu));
637			sn_hwperf_call_sal(op_info);
638			set_cpus_allowed_ptr(current, &save_allowed);
639		}
640	}
641	r = op_info->ret;
642
643out:
644	return r;
645}
646
647/* map SAL hwperf error code to system error code */
648static int sn_hwperf_map_err(int hwperf_err)
649{
650	int e;
651
652	switch(hwperf_err) {
653	case SN_HWPERF_OP_OK:
654		e = 0;
655		break;
656
657	case SN_HWPERF_OP_NOMEM:
658		e = -ENOMEM;
659		break;
660
661	case SN_HWPERF_OP_NO_PERM:
662		e = -EPERM;
663		break;
664
665	case SN_HWPERF_OP_IO_ERROR:
666		e = -EIO;
667		break;
668
669	case SN_HWPERF_OP_BUSY:
670		e = -EBUSY;
671		break;
672
673	case SN_HWPERF_OP_RECONFIGURE:
674		e = -EAGAIN;
675		break;
676
677	case SN_HWPERF_OP_INVAL:
678	default:
679		e = -EINVAL;
680		break;
681	}
682
683	return e;
684}
685
686/*
687 * ioctl for "sn_hwperf" misc device
688 */
689static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
690{
691	struct sn_hwperf_ioctl_args a;
692	struct cpuinfo_ia64 *cdata;
693	struct sn_hwperf_object_info *objs;
694	struct sn_hwperf_object_info *cpuobj;
695	struct sn_hwperf_op_info op_info;
696	void *p = NULL;
697	int nobj;
698	char slice;
699	int node;
700	int r;
701	int v0;
702	int i;
703	int j;
704
705	/* only user requests are allowed here */
706	if ((op & SN_HWPERF_OP_MASK) < 10) {
707		r = -EINVAL;
708		goto error;
709	}
710	r = copy_from_user(&a, (const void __user *)arg,
711		sizeof(struct sn_hwperf_ioctl_args));
712	if (r != 0) {
713		r = -EFAULT;
714		goto error;
715	}
716
717	/*
718	 * Allocate memory to hold a kernel copy of the user buffer. The
719	 * buffer contents are either copied in or out (or both) of user
720	 * space depending on the flags encoded in the requested operation.
721	 */
722	if (a.ptr) {
723		p = vmalloc(a.sz);
724		if (!p) {
725			r = -ENOMEM;
726			goto error;
727		}
728	}
729
730	if (op & SN_HWPERF_OP_MEM_COPYIN) {
731		r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
732		if (r != 0) {
733			r = -EFAULT;
734			goto error;
735		}
736	}
737
738	switch (op) {
739	case SN_HWPERF_GET_CPU_INFO:
740		if (a.sz == sizeof(u64)) {
741			/* special case to get size needed */
742			*(u64 *) p = (u64) num_online_cpus() *
743				sizeof(struct sn_hwperf_object_info);
744		} else
745		if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
746			r = -ENOMEM;
747			goto error;
748		} else
749		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
750			int cpuobj_index = 0;
751
752			memset(p, 0, a.sz);
753			for (i = 0; i < nobj; i++) {
754				if (!SN_HWPERF_IS_NODE(objs + i))
755					continue;
756				node = sn_hwperf_obj_to_cnode(objs + i);
757				for_each_online_cpu(j) {
758					if (node != cpu_to_node(j))
759						continue;
760					cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
761					slice = 'a' + cpuid_to_slice(j);
762					cdata = cpu_data(j);
763					cpuobj->id = j;
764					snprintf(cpuobj->name,
765						 sizeof(cpuobj->name),
766						 "CPU %luMHz %s",
767						 cdata->proc_freq / 1000000,
768						 cdata->vendor);
769					snprintf(cpuobj->location,
770						 sizeof(cpuobj->location),
771						 "%s%c", objs[i].location,
772						 slice);
773				}
774			}
775
776			vfree(objs);
777		}
778		break;
779
780	case SN_HWPERF_GET_NODE_NASID:
781		if (a.sz != sizeof(u64) ||
782		   (node = a.arg) < 0 || !cnode_possible(node)) {
783			r = -EINVAL;
784			goto error;
785		}
786		*(u64 *)p = (u64)cnodeid_to_nasid(node);
787		break;
788
789	case SN_HWPERF_GET_OBJ_NODE:
790		i = a.arg;
791		if (a.sz != sizeof(u64) || i < 0) {
792			r = -EINVAL;
793			goto error;
794		}
795		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
796			if (i >= nobj) {
797				r = -EINVAL;
798				vfree(objs);
799				goto error;
800			}
801			if (objs[i].id != a.arg) {
802				for (i = 0; i < nobj; i++) {
803					if (objs[i].id == a.arg)
804						break;
805				}
806			}
807			if (i == nobj) {
808				r = -EINVAL;
809				vfree(objs);
810				goto error;
811			}
812
813			if (!SN_HWPERF_IS_NODE(objs + i) &&
814			    !SN_HWPERF_IS_IONODE(objs + i)) {
815			    	r = -ENOENT;
816				vfree(objs);
817				goto error;
818			}
819
820			*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
821			vfree(objs);
822		}
823		break;
824
825	case SN_HWPERF_GET_MMRS:
826	case SN_HWPERF_SET_MMRS:
827	case SN_HWPERF_OBJECT_DISTANCE:
828		op_info.p = p;
829		op_info.a = &a;
830		op_info.v0 = &v0;
831		op_info.op = op;
832		r = sn_hwperf_op_cpu(&op_info);
833		if (r) {
834			r = sn_hwperf_map_err(r);
835			a.v0 = v0;
836			goto error;
837		}
838		break;
839
840	default:
841		/* all other ops are a direct SAL call */
842		r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
843			      a.arg, a.sz, (u64) p, 0, 0, &v0);
844		if (r) {
845			r = sn_hwperf_map_err(r);
846			goto error;
847		}
848		a.v0 = v0;
849		break;
850	}
851
852	if (op & SN_HWPERF_OP_MEM_COPYOUT) {
853		r = copy_to_user((void __user *)a.ptr, p, a.sz);
854		if (r != 0) {
855			r = -EFAULT;
856			goto error;
857		}
858	}
859
860error:
861	vfree(p);
862
863	return r;
864}
865
866static const struct file_operations sn_hwperf_fops = {
867	.unlocked_ioctl = sn_hwperf_ioctl,
868	.llseek = noop_llseek,
869};
870
871static struct miscdevice sn_hwperf_dev = {
872	MISC_DYNAMIC_MINOR,
873	"sn_hwperf",
874	&sn_hwperf_fops
875};
876
877static int sn_hwperf_init(void)
878{
879	u64 v;
880	int salr;
881	int e = 0;
882
883	/* single threaded, once-only initialization */
884	mutex_lock(&sn_hwperf_init_mutex);
885
886	if (sn_hwperf_salheap) {
887		mutex_unlock(&sn_hwperf_init_mutex);
888		return e;
889	}
890
891	/*
892	 * The PROM code needs a fixed reference node. For convenience the
893	 * same node as the console I/O is used.
894	 */
895	sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
896
897	/*
898	 * Request the needed size and install the PROM scratch area.
899	 * The PROM keeps various tracking bits in this memory area.
900	 */
901	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
902				 (u64) SN_HWPERF_GET_HEAPSIZE, 0,
903				 (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
904	if (salr != SN_HWPERF_OP_OK) {
905		e = -EINVAL;
906		goto out;
907	}
908
909	if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
910		e = -ENOMEM;
911		goto out;
912	}
913	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
914				 SN_HWPERF_INSTALL_HEAP, 0, v,
915				 (u64) sn_hwperf_salheap, 0, 0, NULL);
916	if (salr != SN_HWPERF_OP_OK) {
917		e = -EINVAL;
918		goto out;
919	}
920
921	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
922				 SN_HWPERF_OBJECT_COUNT, 0,
923				 sizeof(u64), (u64) &v, 0, 0, NULL);
924	if (salr != SN_HWPERF_OP_OK) {
925		e = -EINVAL;
926		goto out;
927	}
928	sn_hwperf_obj_cnt = (int)v;
929
930out:
931	if (e < 0 && sn_hwperf_salheap) {
932		vfree(sn_hwperf_salheap);
933		sn_hwperf_salheap = NULL;
934		sn_hwperf_obj_cnt = 0;
935	}
936	mutex_unlock(&sn_hwperf_init_mutex);
937	return e;
938}
939
940int sn_topology_open(struct inode *inode, struct file *file)
941{
942	int e;
943	struct seq_file *seq;
944	struct sn_hwperf_object_info *objbuf;
945	int nobj;
946
947	if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
948		e = seq_open(file, &sn_topology_seq_ops);
949		seq = file->private_data;
950		seq->private = objbuf;
951	}
952
953	return e;
954}
955
956int sn_topology_release(struct inode *inode, struct file *file)
957{
958	struct seq_file *seq = file->private_data;
959
960	vfree(seq->private);
961	return seq_release(inode, file);
962}
963
964int sn_hwperf_get_nearest_node(cnodeid_t node,
965	cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
966{
967	int e;
968	int nobj;
969	struct sn_hwperf_object_info *objbuf;
970
971	if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
972		e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
973			node, near_mem_node, near_cpu_node);
974		vfree(objbuf);
975	}
976
977	return e;
978}
979
980static int sn_hwperf_misc_register_init(void)
981{
982	int e;
983
984	if (!ia64_platform_is("sn2"))
985		return 0;
986
987	sn_hwperf_init();
988
989	/*
990	 * Register a dynamic misc device for hwperf ioctls. Platforms
991	 * supporting hotplug will create /dev/sn_hwperf, else user
992	 * can to look up the minor number in /proc/misc.
993	 */
994	if ((e = misc_register(&sn_hwperf_dev)) != 0) {
995		printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
996		"register misc device for \"%s\"\n", sn_hwperf_dev.name);
997	}
998
999	return e;
1000}
1001
1002device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
1003EXPORT_SYMBOL(sn_hwperf_get_nearest_node);
1004