1/*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 *	David Mosberger-Tang <davidm@hpl.hp.com>
8 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14#include <linux/acpi.h>
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/pci.h>
18#include <linux/pci-acpi.h>
19#include <linux/init.h>
20#include <linux/ioport.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23#include <linux/bootmem.h>
24#include <linux/export.h>
25
26#include <asm/machvec.h>
27#include <asm/page.h>
28#include <asm/io.h>
29#include <asm/sal.h>
30#include <asm/smp.h>
31#include <asm/irq.h>
32#include <asm/hw_irq.h>
33
34/*
35 * Low-level SAL-based PCI configuration access functions. Note that SAL
36 * calls are already serialized (via sal_lock), so we don't need another
37 * synchronization mechanism here.
38 */
39
40#define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
41	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42
43/* SAL 3.2 adds support for extended config space. */
44
45#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
46	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47
48int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49	      int reg, int len, u32 *value)
50{
51	u64 addr, data = 0;
52	int mode, result;
53
54	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55		return -EINVAL;
56
57	if ((seg | reg) <= 255) {
58		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59		mode = 0;
60	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62		mode = 1;
63	} else {
64		return -EINVAL;
65	}
66
67	result = ia64_sal_pci_config_read(addr, mode, len, &data);
68	if (result != 0)
69		return -EINVAL;
70
71	*value = (u32) data;
72	return 0;
73}
74
75int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76	       int reg, int len, u32 value)
77{
78	u64 addr;
79	int mode, result;
80
81	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82		return -EINVAL;
83
84	if ((seg | reg) <= 255) {
85		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86		mode = 0;
87	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89		mode = 1;
90	} else {
91		return -EINVAL;
92	}
93	result = ia64_sal_pci_config_write(addr, mode, len, value);
94	if (result != 0)
95		return -EINVAL;
96	return 0;
97}
98
99static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100							int size, u32 *value)
101{
102	return raw_pci_read(pci_domain_nr(bus), bus->number,
103				 devfn, where, size, value);
104}
105
106static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107							int size, u32 value)
108{
109	return raw_pci_write(pci_domain_nr(bus), bus->number,
110				  devfn, where, size, value);
111}
112
113struct pci_ops pci_root_ops = {
114	.read = pci_read,
115	.write = pci_write,
116};
117
118/* Called by ACPI when it finds a new root bus.  */
119
120static struct pci_controller *alloc_pci_controller(int seg)
121{
122	struct pci_controller *controller;
123
124	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125	if (!controller)
126		return NULL;
127
128	controller->segment = seg;
129	return controller;
130}
131
132struct pci_root_info {
133	struct acpi_device *bridge;
134	struct pci_controller *controller;
135	struct list_head resources;
136	struct resource *res;
137	resource_size_t *res_offset;
138	unsigned int res_num;
139	struct list_head io_resources;
140	char *name;
141};
142
143static unsigned int
144new_space (u64 phys_base, int sparse)
145{
146	u64 mmio_base;
147	int i;
148
149	if (phys_base == 0)
150		return 0;	/* legacy I/O port space */
151
152	mmio_base = (u64) ioremap(phys_base, 0);
153	for (i = 0; i < num_io_spaces; i++)
154		if (io_space[i].mmio_base == mmio_base &&
155		    io_space[i].sparse == sparse)
156			return i;
157
158	if (num_io_spaces == MAX_IO_SPACES) {
159		pr_err("PCI: Too many IO port spaces "
160			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
161		return ~0;
162	}
163
164	i = num_io_spaces++;
165	io_space[i].mmio_base = mmio_base;
166	io_space[i].sparse = sparse;
167
168	return i;
169}
170
171static u64 add_io_space(struct pci_root_info *info,
172			struct acpi_resource_address64 *addr)
173{
174	struct iospace_resource *iospace;
175	struct resource *resource;
176	char *name;
177	unsigned long base, min, max, base_port;
178	unsigned int sparse = 0, space_nr, len;
179
180	len = strlen(info->name) + 32;
181	iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
182	if (!iospace) {
183		dev_err(&info->bridge->dev,
184				"PCI: No memory for %s I/O port space\n",
185				info->name);
186		goto out;
187	}
188
189	name = (char *)(iospace + 1);
190
191	min = addr->address.minimum;
192	max = min + addr->address.address_length - 1;
193	if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194		sparse = 1;
195
196	space_nr = new_space(addr->address.translation_offset, sparse);
197	if (space_nr == ~0)
198		goto free_resource;
199
200	base = __pa(io_space[space_nr].mmio_base);
201	base_port = IO_SPACE_BASE(space_nr);
202	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203		base_port + min, base_port + max);
204
205	/*
206	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207	 * mapping is done by the processor (not the bridge), ACPI may not
208	 * mark it as sparse.
209	 */
210	if (space_nr == 0)
211		sparse = 1;
212
213	resource = &iospace->res;
214	resource->name  = name;
215	resource->flags = IORESOURCE_MEM;
216	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218	if (insert_resource(&iomem_resource, resource)) {
219		dev_err(&info->bridge->dev,
220				"can't allocate host bridge io space resource  %pR\n",
221				resource);
222		goto free_resource;
223	}
224
225	list_add_tail(&iospace->list, &info->io_resources);
226	return base_port;
227
228free_resource:
229	kfree(iospace);
230out:
231	return ~0;
232}
233
234static acpi_status resource_to_window(struct acpi_resource *resource,
235				      struct acpi_resource_address64 *addr)
236{
237	acpi_status status;
238
239	/*
240	 * We're only interested in _CRS descriptors that are
241	 *	- address space descriptors for memory or I/O space
242	 *	- non-zero size
243	 */
244	status = acpi_resource_to_address64(resource, addr);
245	if (ACPI_SUCCESS(status) &&
246	    (addr->resource_type == ACPI_MEMORY_RANGE ||
247	     addr->resource_type == ACPI_IO_RANGE) &&
248	    addr->address.address_length)
249		return AE_OK;
250
251	return AE_ERROR;
252}
253
254static acpi_status count_window(struct acpi_resource *resource, void *data)
255{
256	unsigned int *windows = (unsigned int *) data;
257	struct acpi_resource_address64 addr;
258	acpi_status status;
259
260	status = resource_to_window(resource, &addr);
261	if (ACPI_SUCCESS(status))
262		(*windows)++;
263
264	return AE_OK;
265}
266
267static acpi_status add_window(struct acpi_resource *res, void *data)
268{
269	struct pci_root_info *info = data;
270	struct resource *resource;
271	struct acpi_resource_address64 addr;
272	acpi_status status;
273	unsigned long flags, offset = 0;
274	struct resource *root;
275
276	/* Return AE_OK for non-window resources to keep scanning for more */
277	status = resource_to_window(res, &addr);
278	if (!ACPI_SUCCESS(status))
279		return AE_OK;
280
281	if (addr.resource_type == ACPI_MEMORY_RANGE) {
282		flags = IORESOURCE_MEM;
283		root = &iomem_resource;
284		offset = addr.address.translation_offset;
285	} else if (addr.resource_type == ACPI_IO_RANGE) {
286		flags = IORESOURCE_IO;
287		root = &ioport_resource;
288		offset = add_io_space(info, &addr);
289		if (offset == ~0)
290			return AE_OK;
291	} else
292		return AE_OK;
293
294	resource = &info->res[info->res_num];
295	resource->name = info->name;
296	resource->flags = flags;
297	resource->start = addr.address.minimum + offset;
298	resource->end = resource->start + addr.address.address_length - 1;
299	info->res_offset[info->res_num] = offset;
300
301	if (insert_resource(root, resource)) {
302		dev_err(&info->bridge->dev,
303			"can't allocate host bridge window %pR\n",
304			resource);
305	} else {
306		if (offset)
307			dev_info(&info->bridge->dev, "host bridge window %pR "
308				 "(PCI address [%#llx-%#llx])\n",
309				 resource,
310				 resource->start - offset,
311				 resource->end - offset);
312		else
313			dev_info(&info->bridge->dev,
314				 "host bridge window %pR\n", resource);
315	}
316	/* HP's firmware has a hack to work around a Windows bug.
317	 * Ignore these tiny memory ranges */
318	if (!((resource->flags & IORESOURCE_MEM) &&
319	      (resource->end - resource->start < 16)))
320		pci_add_resource_offset(&info->resources, resource,
321					info->res_offset[info->res_num]);
322
323	info->res_num++;
324	return AE_OK;
325}
326
327static void free_pci_root_info_res(struct pci_root_info *info)
328{
329	struct iospace_resource *iospace, *tmp;
330
331	list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
332		kfree(iospace);
333
334	kfree(info->name);
335	kfree(info->res);
336	info->res = NULL;
337	kfree(info->res_offset);
338	info->res_offset = NULL;
339	info->res_num = 0;
340	kfree(info->controller);
341	info->controller = NULL;
342}
343
344static void __release_pci_root_info(struct pci_root_info *info)
345{
346	int i;
347	struct resource *res;
348	struct iospace_resource *iospace;
349
350	list_for_each_entry(iospace, &info->io_resources, list)
351		release_resource(&iospace->res);
352
353	for (i = 0; i < info->res_num; i++) {
354		res = &info->res[i];
355
356		if (!res->parent)
357			continue;
358
359		if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
360			continue;
361
362		release_resource(res);
363	}
364
365	free_pci_root_info_res(info);
366	kfree(info);
367}
368
369static void release_pci_root_info(struct pci_host_bridge *bridge)
370{
371	struct pci_root_info *info = bridge->release_data;
372
373	__release_pci_root_info(info);
374}
375
376static int
377probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
378		int busnum, int domain)
379{
380	char *name;
381
382	name = kmalloc(16, GFP_KERNEL);
383	if (!name)
384		return -ENOMEM;
385
386	sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
387	info->bridge = device;
388	info->name = name;
389
390	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
391			&info->res_num);
392	if (info->res_num) {
393		info->res =
394			kzalloc_node(sizeof(*info->res) * info->res_num,
395				     GFP_KERNEL, info->controller->node);
396		if (!info->res) {
397			kfree(name);
398			return -ENOMEM;
399		}
400
401		info->res_offset =
402			kzalloc_node(sizeof(*info->res_offset) * info->res_num,
403					GFP_KERNEL, info->controller->node);
404		if (!info->res_offset) {
405			kfree(name);
406			kfree(info->res);
407			info->res = NULL;
408			return -ENOMEM;
409		}
410
411		info->res_num = 0;
412		acpi_walk_resources(device->handle, METHOD_NAME__CRS,
413			add_window, info);
414	} else
415		kfree(name);
416
417	return 0;
418}
419
420struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
421{
422	struct acpi_device *device = root->device;
423	int domain = root->segment;
424	int bus = root->secondary.start;
425	struct pci_controller *controller;
426	struct pci_root_info *info = NULL;
427	int busnum = root->secondary.start;
428	struct pci_bus *pbus;
429	int ret;
430
431	controller = alloc_pci_controller(domain);
432	if (!controller)
433		return NULL;
434
435	controller->companion = device;
436	controller->node = acpi_get_node(device->handle);
437
438	info = kzalloc(sizeof(*info), GFP_KERNEL);
439	if (!info) {
440		dev_err(&device->dev,
441				"pci_bus %04x:%02x: ignored (out of memory)\n",
442				domain, busnum);
443		kfree(controller);
444		return NULL;
445	}
446
447	info->controller = controller;
448	INIT_LIST_HEAD(&info->io_resources);
449	INIT_LIST_HEAD(&info->resources);
450
451	ret = probe_pci_root_info(info, device, busnum, domain);
452	if (ret) {
453		kfree(info->controller);
454		kfree(info);
455		return NULL;
456	}
457	/* insert busn resource at first */
458	pci_add_resource(&info->resources, &root->secondary);
459	/*
460	 * See arch/x86/pci/acpi.c.
461	 * The desired pci bus might already be scanned in a quirk. We
462	 * should handle the case here, but it appears that IA64 hasn't
463	 * such quirk. So we just ignore the case now.
464	 */
465	pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
466				   &info->resources);
467	if (!pbus) {
468		pci_free_resource_list(&info->resources);
469		__release_pci_root_info(info);
470		return NULL;
471	}
472
473	pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
474			release_pci_root_info, info);
475	pci_scan_child_bus(pbus);
476	return pbus;
477}
478
479int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
480{
481	/*
482	 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
483	 * here, pci_create_root_bus() has been called by someone else and
484	 * sysdata is likely to be different from what we expect.  Let it go in
485	 * that case.
486	 */
487	if (!bridge->dev.parent) {
488		struct pci_controller *controller = bridge->bus->sysdata;
489		ACPI_COMPANION_SET(&bridge->dev, controller->companion);
490	}
491	return 0;
492}
493
494void pcibios_fixup_device_resources(struct pci_dev *dev)
495{
496	int idx;
497
498	if (!dev->bus)
499		return;
500
501	for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
502		struct resource *r = &dev->resource[idx];
503
504		if (!r->flags || r->parent || !r->start)
505			continue;
506
507		pci_claim_resource(dev, idx);
508	}
509}
510EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
511
512static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
513{
514	int idx;
515
516	if (!dev->bus)
517		return;
518
519	for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
520		struct resource *r = &dev->resource[idx];
521
522		if (!r->flags || r->parent || !r->start)
523			continue;
524
525		pci_claim_bridge_resource(dev, idx);
526	}
527}
528
529/*
530 *  Called after each bus is probed, but before its children are examined.
531 */
532void pcibios_fixup_bus(struct pci_bus *b)
533{
534	struct pci_dev *dev;
535
536	if (b->self) {
537		pci_read_bridge_bases(b);
538		pcibios_fixup_bridge_resources(b->self);
539	}
540	list_for_each_entry(dev, &b->devices, bus_list)
541		pcibios_fixup_device_resources(dev);
542	platform_pci_fixup_bus(b);
543}
544
545void pcibios_add_bus(struct pci_bus *bus)
546{
547	acpi_pci_add_bus(bus);
548}
549
550void pcibios_remove_bus(struct pci_bus *bus)
551{
552	acpi_pci_remove_bus(bus);
553}
554
555void pcibios_set_master (struct pci_dev *dev)
556{
557	/* No special bus mastering setup handling */
558}
559
560int
561pcibios_enable_device (struct pci_dev *dev, int mask)
562{
563	int ret;
564
565	ret = pci_enable_resources(dev, mask);
566	if (ret < 0)
567		return ret;
568
569	if (!dev->msi_enabled)
570		return acpi_pci_irq_enable(dev);
571	return 0;
572}
573
574void
575pcibios_disable_device (struct pci_dev *dev)
576{
577	BUG_ON(atomic_read(&dev->enable_cnt));
578	if (!dev->msi_enabled)
579		acpi_pci_irq_disable(dev);
580}
581
582resource_size_t
583pcibios_align_resource (void *data, const struct resource *res,
584		        resource_size_t size, resource_size_t align)
585{
586	return res->start;
587}
588
589int
590pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
591		     enum pci_mmap_state mmap_state, int write_combine)
592{
593	unsigned long size = vma->vm_end - vma->vm_start;
594	pgprot_t prot;
595
596	/*
597	 * I/O space cannot be accessed via normal processor loads and
598	 * stores on this platform.
599	 */
600	if (mmap_state == pci_mmap_io)
601		/*
602		 * XXX we could relax this for I/O spaces for which ACPI
603		 * indicates that the space is 1-to-1 mapped.  But at the
604		 * moment, we don't support multiple PCI address spaces and
605		 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
606		 */
607		return -EINVAL;
608
609	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
610		return -EINVAL;
611
612	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
613				    vma->vm_page_prot);
614
615	/*
616	 * If the user requested WC, the kernel uses UC or WC for this region,
617	 * and the chipset supports WC, we can use WC. Otherwise, we have to
618	 * use the same attribute the kernel uses.
619	 */
620	if (write_combine &&
621	    ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
622	     (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
623	    efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
624		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
625	else
626		vma->vm_page_prot = prot;
627
628	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
629			     vma->vm_end - vma->vm_start, vma->vm_page_prot))
630		return -EAGAIN;
631
632	return 0;
633}
634
635/**
636 * ia64_pci_get_legacy_mem - generic legacy mem routine
637 * @bus: bus to get legacy memory base address for
638 *
639 * Find the base of legacy memory for @bus.  This is typically the first
640 * megabyte of bus address space for @bus or is simply 0 on platforms whose
641 * chipsets support legacy I/O and memory routing.  Returns the base address
642 * or an error pointer if an error occurred.
643 *
644 * This is the ia64 generic version of this routine.  Other platforms
645 * are free to override it with a machine vector.
646 */
647char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
648{
649	return (char *)__IA64_UNCACHED_OFFSET;
650}
651
652/**
653 * pci_mmap_legacy_page_range - map legacy memory space to userland
654 * @bus: bus whose legacy space we're mapping
655 * @vma: vma passed in by mmap
656 *
657 * Map legacy memory space for this device back to userspace using a machine
658 * vector to get the base address.
659 */
660int
661pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
662			   enum pci_mmap_state mmap_state)
663{
664	unsigned long size = vma->vm_end - vma->vm_start;
665	pgprot_t prot;
666	char *addr;
667
668	/* We only support mmap'ing of legacy memory space */
669	if (mmap_state != pci_mmap_mem)
670		return -ENOSYS;
671
672	/*
673	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.txt
674	 * for more details.
675	 */
676	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
677		return -EINVAL;
678	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
679				    vma->vm_page_prot);
680
681	addr = pci_get_legacy_mem(bus);
682	if (IS_ERR(addr))
683		return PTR_ERR(addr);
684
685	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
686	vma->vm_page_prot = prot;
687
688	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
689			    size, vma->vm_page_prot))
690		return -EAGAIN;
691
692	return 0;
693}
694
695/**
696 * ia64_pci_legacy_read - read from legacy I/O space
697 * @bus: bus to read
698 * @port: legacy port value
699 * @val: caller allocated storage for returned value
700 * @size: number of bytes to read
701 *
702 * Simply reads @size bytes from @port and puts the result in @val.
703 *
704 * Again, this (and the write routine) are generic versions that can be
705 * overridden by the platform.  This is necessary on platforms that don't
706 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
707 */
708int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
709{
710	int ret = size;
711
712	switch (size) {
713	case 1:
714		*val = inb(port);
715		break;
716	case 2:
717		*val = inw(port);
718		break;
719	case 4:
720		*val = inl(port);
721		break;
722	default:
723		ret = -EINVAL;
724		break;
725	}
726
727	return ret;
728}
729
730/**
731 * ia64_pci_legacy_write - perform a legacy I/O write
732 * @bus: bus pointer
733 * @port: port to write
734 * @val: value to write
735 * @size: number of bytes to write from @val
736 *
737 * Simply writes @size bytes of @val to @port.
738 */
739int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
740{
741	int ret = size;
742
743	switch (size) {
744	case 1:
745		outb(val, port);
746		break;
747	case 2:
748		outw(val, port);
749		break;
750	case 4:
751		outl(val, port);
752		break;
753	default:
754		ret = -EINVAL;
755		break;
756	}
757
758	return ret;
759}
760
761/**
762 * set_pci_cacheline_size - determine cacheline size for PCI devices
763 *
764 * We want to use the line-size of the outer-most cache.  We assume
765 * that this line-size is the same for all CPUs.
766 *
767 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
768 */
769static void __init set_pci_dfl_cacheline_size(void)
770{
771	unsigned long levels, unique_caches;
772	long status;
773	pal_cache_config_info_t cci;
774
775	status = ia64_pal_cache_summary(&levels, &unique_caches);
776	if (status != 0) {
777		pr_err("%s: ia64_pal_cache_summary() failed "
778			"(status=%ld)\n", __func__, status);
779		return;
780	}
781
782	status = ia64_pal_cache_config_info(levels - 1,
783				/* cache_type (data_or_unified)= */ 2, &cci);
784	if (status != 0) {
785		pr_err("%s: ia64_pal_cache_config_info() failed "
786			"(status=%ld)\n", __func__, status);
787		return;
788	}
789	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
790}
791
792u64 ia64_dma_get_required_mask(struct device *dev)
793{
794	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
795	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
796	u64 mask;
797
798	if (!high_totalram) {
799		/* convert to mask just covering totalram */
800		low_totalram = (1 << (fls(low_totalram) - 1));
801		low_totalram += low_totalram - 1;
802		mask = low_totalram;
803	} else {
804		high_totalram = (1 << (fls(high_totalram) - 1));
805		high_totalram += high_totalram - 1;
806		mask = (((u64)high_totalram) << 32) + 0xffffffff;
807	}
808	return mask;
809}
810EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
811
812u64 dma_get_required_mask(struct device *dev)
813{
814	return platform_dma_get_required_mask(dev);
815}
816EXPORT_SYMBOL_GPL(dma_get_required_mask);
817
818static int __init pcibios_init(void)
819{
820	set_pci_dfl_cacheline_size();
821	return 0;
822}
823
824subsys_initcall(pcibios_init);
825