1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 *  	Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 *	Populate cpu cache entries in sysfs for cpu cache info
14 */
15
16#include <linux/cpu.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/node.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/bootmem.h>
23#include <linux/nodemask.h>
24#include <linux/notifier.h>
25#include <linux/export.h>
26#include <asm/mmzone.h>
27#include <asm/numa.h>
28#include <asm/cpu.h>
29
30static struct ia64_cpu *sysfs_cpus;
31
32void arch_fix_phys_package_id(int num, u32 slot)
33{
34#ifdef CONFIG_SMP
35	if (cpu_data(num)->socket_id == -1)
36		cpu_data(num)->socket_id = slot;
37#endif
38}
39EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40
41
42#ifdef CONFIG_HOTPLUG_CPU
43int __ref arch_register_cpu(int num)
44{
45#ifdef CONFIG_ACPI
46	/*
47	 * If CPEI can be re-targeted or if this is not
48	 * CPEI target, then it is hotpluggable
49	 */
50	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51		sysfs_cpus[num].cpu.hotpluggable = 1;
52	map_cpu_to_node(num, node_cpuid[num].nid);
53#endif
54	return register_cpu(&sysfs_cpus[num].cpu, num);
55}
56EXPORT_SYMBOL(arch_register_cpu);
57
58void __ref arch_unregister_cpu(int num)
59{
60	unregister_cpu(&sysfs_cpus[num].cpu);
61#ifdef CONFIG_ACPI
62	unmap_cpu_from_node(num, cpu_to_node(num));
63#endif
64}
65EXPORT_SYMBOL(arch_unregister_cpu);
66#else
67static int __init arch_register_cpu(int num)
68{
69	return register_cpu(&sysfs_cpus[num].cpu, num);
70}
71#endif /*CONFIG_HOTPLUG_CPU*/
72
73
74static int __init topology_init(void)
75{
76	int i, err = 0;
77
78#ifdef CONFIG_NUMA
79	/*
80	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
81	 */
82	for_each_online_node(i) {
83		if ((err = register_one_node(i)))
84			goto out;
85	}
86#endif
87
88	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89	if (!sysfs_cpus)
90		panic("kzalloc in topology_init failed - NR_CPUS too big?");
91
92	for_each_present_cpu(i) {
93		if((err = arch_register_cpu(i)))
94			goto out;
95	}
96out:
97	return err;
98}
99
100subsys_initcall(topology_init);
101
102
103/*
104 * Export cpu cache information through sysfs
105 */
106
107/*
108 *  A bunch of string array to get pretty printing
109 */
110static const char *cache_types[] = {
111	"",			/* not used */
112	"Instruction",
113	"Data",
114	"Unified"	/* unified */
115};
116
117static const char *cache_mattrib[]={
118	"WriteThrough",
119	"WriteBack",
120	"",		/* reserved */
121	""		/* reserved */
122};
123
124struct cache_info {
125	pal_cache_config_info_t	cci;
126	cpumask_t shared_cpu_map;
127	int level;
128	int type;
129	struct kobject kobj;
130};
131
132struct cpu_cache_info {
133	struct cache_info *cache_leaves;
134	int	num_cache_leaves;
135	struct kobject kobj;
136};
137
138static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
139#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
140
141#ifdef CONFIG_SMP
142static void cache_shared_cpu_map_setup(unsigned int cpu,
143		struct cache_info * this_leaf)
144{
145	pal_cache_shared_info_t	csi;
146	int num_shared, i = 0;
147	unsigned int j;
148
149	if (cpu_data(cpu)->threads_per_core <= 1 &&
150		cpu_data(cpu)->cores_per_socket <= 1) {
151		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
152		return;
153	}
154
155	if (ia64_pal_cache_shared_info(this_leaf->level,
156					this_leaf->type,
157					0,
158					&csi) != PAL_STATUS_SUCCESS)
159		return;
160
161	num_shared = (int) csi.num_shared;
162	do {
163		for_each_possible_cpu(j)
164			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165				&& cpu_data(j)->core_id == csi.log1_cid
166				&& cpu_data(j)->thread_id == csi.log1_tid)
167				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
168
169		i++;
170	} while (i < num_shared &&
171		ia64_pal_cache_shared_info(this_leaf->level,
172				this_leaf->type,
173				i,
174				&csi) == PAL_STATUS_SUCCESS);
175}
176#else
177static void cache_shared_cpu_map_setup(unsigned int cpu,
178		struct cache_info * this_leaf)
179{
180	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
181	return;
182}
183#endif
184
185static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186					char *buf)
187{
188	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
189}
190
191static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192					char *buf)
193{
194	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
195}
196
197static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198{
199	return sprintf(buf,
200			"%s\n",
201			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
202}
203
204static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205{
206	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
207}
208
209static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210{
211	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212	number_of_sets /= this_leaf->cci.pcci_assoc;
213	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214
215	return sprintf(buf, "%u\n", number_of_sets);
216}
217
218static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219{
220	cpumask_t shared_cpu_map;
221
222	cpumask_and(&shared_cpu_map,
223				&this_leaf->shared_cpu_map, cpu_online_mask);
224	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
225			 cpumask_pr_args(&shared_cpu_map));
226}
227
228static ssize_t show_type(struct cache_info *this_leaf, char *buf)
229{
230	int type = this_leaf->type + this_leaf->cci.pcci_unified;
231	return sprintf(buf, "%s\n", cache_types[type]);
232}
233
234static ssize_t show_level(struct cache_info *this_leaf, char *buf)
235{
236	return sprintf(buf, "%u\n", this_leaf->level);
237}
238
239struct cache_attr {
240	struct attribute attr;
241	ssize_t (*show)(struct cache_info *, char *);
242	ssize_t (*store)(struct cache_info *, const char *, size_t count);
243};
244
245#ifdef define_one_ro
246	#undef define_one_ro
247#endif
248#define define_one_ro(_name) \
249	static struct cache_attr _name = \
250__ATTR(_name, 0444, show_##_name, NULL)
251
252define_one_ro(level);
253define_one_ro(type);
254define_one_ro(coherency_line_size);
255define_one_ro(ways_of_associativity);
256define_one_ro(size);
257define_one_ro(number_of_sets);
258define_one_ro(shared_cpu_map);
259define_one_ro(attributes);
260
261static struct attribute * cache_default_attrs[] = {
262	&type.attr,
263	&level.attr,
264	&coherency_line_size.attr,
265	&ways_of_associativity.attr,
266	&attributes.attr,
267	&size.attr,
268	&number_of_sets.attr,
269	&shared_cpu_map.attr,
270	NULL
271};
272
273#define to_object(k) container_of(k, struct cache_info, kobj)
274#define to_attr(a) container_of(a, struct cache_attr, attr)
275
276static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
277{
278	struct cache_attr *fattr = to_attr(attr);
279	struct cache_info *this_leaf = to_object(kobj);
280	ssize_t ret;
281
282	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283	return ret;
284}
285
286static const struct sysfs_ops cache_sysfs_ops = {
287	.show   = ia64_cache_show
288};
289
290static struct kobj_type cache_ktype = {
291	.sysfs_ops	= &cache_sysfs_ops,
292	.default_attrs	= cache_default_attrs,
293};
294
295static struct kobj_type cache_ktype_percpu_entry = {
296	.sysfs_ops	= &cache_sysfs_ops,
297};
298
299static void cpu_cache_sysfs_exit(unsigned int cpu)
300{
301	kfree(all_cpu_cache_info[cpu].cache_leaves);
302	all_cpu_cache_info[cpu].cache_leaves = NULL;
303	all_cpu_cache_info[cpu].num_cache_leaves = 0;
304	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305	return;
306}
307
308static int cpu_cache_sysfs_init(unsigned int cpu)
309{
310	unsigned long i, levels, unique_caches;
311	pal_cache_config_info_t cci;
312	int j;
313	long status;
314	struct cache_info *this_cache;
315	int num_cache_leaves = 0;
316
317	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319		return -1;
320	}
321
322	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323			GFP_KERNEL);
324	if (this_cache == NULL)
325		return -ENOMEM;
326
327	for (i=0; i < levels; i++) {
328		for (j=2; j >0 ; j--) {
329			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330					PAL_STATUS_SUCCESS)
331				continue;
332
333			this_cache[num_cache_leaves].cci = cci;
334			this_cache[num_cache_leaves].level = i + 1;
335			this_cache[num_cache_leaves].type = j;
336
337			cache_shared_cpu_map_setup(cpu,
338					&this_cache[num_cache_leaves]);
339			num_cache_leaves ++;
340		}
341	}
342
343	all_cpu_cache_info[cpu].cache_leaves = this_cache;
344	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
345
346	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
347
348	return 0;
349}
350
351/* Add cache interface for CPU device */
352static int cache_add_dev(struct device *sys_dev)
353{
354	unsigned int cpu = sys_dev->id;
355	unsigned long i, j;
356	struct cache_info *this_object;
357	int retval = 0;
358	cpumask_t oldmask;
359
360	if (all_cpu_cache_info[cpu].kobj.parent)
361		return 0;
362
363	oldmask = current->cpus_allowed;
364	retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
365	if (unlikely(retval))
366		return retval;
367
368	retval = cpu_cache_sysfs_init(cpu);
369	set_cpus_allowed_ptr(current, &oldmask);
370	if (unlikely(retval < 0))
371		return retval;
372
373	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
374				      &cache_ktype_percpu_entry, &sys_dev->kobj,
375				      "%s", "cache");
376	if (unlikely(retval < 0)) {
377		cpu_cache_sysfs_exit(cpu);
378		return retval;
379	}
380
381	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
382		this_object = LEAF_KOBJECT_PTR(cpu,i);
383		retval = kobject_init_and_add(&(this_object->kobj),
384					      &cache_ktype,
385					      &all_cpu_cache_info[cpu].kobj,
386					      "index%1lu", i);
387		if (unlikely(retval)) {
388			for (j = 0; j < i; j++) {
389				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
390			}
391			kobject_put(&all_cpu_cache_info[cpu].kobj);
392			cpu_cache_sysfs_exit(cpu);
393			return retval;
394		}
395		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
396	}
397	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
398	return retval;
399}
400
401/* Remove cache interface for CPU device */
402static int cache_remove_dev(struct device *sys_dev)
403{
404	unsigned int cpu = sys_dev->id;
405	unsigned long i;
406
407	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
408		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
409
410	if (all_cpu_cache_info[cpu].kobj.parent) {
411		kobject_put(&all_cpu_cache_info[cpu].kobj);
412		memset(&all_cpu_cache_info[cpu].kobj,
413			0,
414			sizeof(struct kobject));
415	}
416
417	cpu_cache_sysfs_exit(cpu);
418
419	return 0;
420}
421
422/*
423 * When a cpu is hot-plugged, do a check and initiate
424 * cache kobject if necessary
425 */
426static int cache_cpu_callback(struct notifier_block *nfb,
427		unsigned long action, void *hcpu)
428{
429	unsigned int cpu = (unsigned long)hcpu;
430	struct device *sys_dev;
431
432	sys_dev = get_cpu_device(cpu);
433	switch (action) {
434	case CPU_ONLINE:
435	case CPU_ONLINE_FROZEN:
436		cache_add_dev(sys_dev);
437		break;
438	case CPU_DEAD:
439	case CPU_DEAD_FROZEN:
440		cache_remove_dev(sys_dev);
441		break;
442	}
443	return NOTIFY_OK;
444}
445
446static struct notifier_block cache_cpu_notifier =
447{
448	.notifier_call = cache_cpu_callback
449};
450
451static int __init cache_sysfs_init(void)
452{
453	int i;
454
455	cpu_notifier_register_begin();
456
457	for_each_online_cpu(i) {
458		struct device *sys_dev = get_cpu_device((unsigned int)i);
459		cache_add_dev(sys_dev);
460	}
461
462	__register_hotcpu_notifier(&cache_cpu_notifier);
463
464	cpu_notifier_register_done();
465
466	return 0;
467}
468
469device_initcall(cache_sysfs_init);
470
471