1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * This file contains NUMA specific variables and functions which can 7 * be split away from DISCONTIGMEM and are used on NUMA machines with 8 * contiguous memory. 9 * 2002/08/07 Erich Focht <efocht@ess.nec.de> 10 * Populate cpu entries in sysfs for non-numa systems as well 11 * Intel Corporation - Ashok Raj 12 * 02/27/2006 Zhang, Yanmin 13 * Populate cpu cache entries in sysfs for cpu cache info 14 */ 15 16#include <linux/cpu.h> 17#include <linux/kernel.h> 18#include <linux/mm.h> 19#include <linux/node.h> 20#include <linux/slab.h> 21#include <linux/init.h> 22#include <linux/bootmem.h> 23#include <linux/nodemask.h> 24#include <linux/notifier.h> 25#include <linux/export.h> 26#include <asm/mmzone.h> 27#include <asm/numa.h> 28#include <asm/cpu.h> 29 30static struct ia64_cpu *sysfs_cpus; 31 32void arch_fix_phys_package_id(int num, u32 slot) 33{ 34#ifdef CONFIG_SMP 35 if (cpu_data(num)->socket_id == -1) 36 cpu_data(num)->socket_id = slot; 37#endif 38} 39EXPORT_SYMBOL_GPL(arch_fix_phys_package_id); 40 41 42#ifdef CONFIG_HOTPLUG_CPU 43int __ref arch_register_cpu(int num) 44{ 45#ifdef CONFIG_ACPI 46 /* 47 * If CPEI can be re-targeted or if this is not 48 * CPEI target, then it is hotpluggable 49 */ 50 if (can_cpei_retarget() || !is_cpu_cpei_target(num)) 51 sysfs_cpus[num].cpu.hotpluggable = 1; 52 map_cpu_to_node(num, node_cpuid[num].nid); 53#endif 54 return register_cpu(&sysfs_cpus[num].cpu, num); 55} 56EXPORT_SYMBOL(arch_register_cpu); 57 58void __ref arch_unregister_cpu(int num) 59{ 60 unregister_cpu(&sysfs_cpus[num].cpu); 61#ifdef CONFIG_ACPI 62 unmap_cpu_from_node(num, cpu_to_node(num)); 63#endif 64} 65EXPORT_SYMBOL(arch_unregister_cpu); 66#else 67static int __init arch_register_cpu(int num) 68{ 69 return register_cpu(&sysfs_cpus[num].cpu, num); 70} 71#endif /*CONFIG_HOTPLUG_CPU*/ 72 73 74static int __init topology_init(void) 75{ 76 int i, err = 0; 77 78#ifdef CONFIG_NUMA 79 /* 80 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes? 81 */ 82 for_each_online_node(i) { 83 if ((err = register_one_node(i))) 84 goto out; 85 } 86#endif 87 88 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL); 89 if (!sysfs_cpus) 90 panic("kzalloc in topology_init failed - NR_CPUS too big?"); 91 92 for_each_present_cpu(i) { 93 if((err = arch_register_cpu(i))) 94 goto out; 95 } 96out: 97 return err; 98} 99 100subsys_initcall(topology_init); 101 102 103/* 104 * Export cpu cache information through sysfs 105 */ 106 107/* 108 * A bunch of string array to get pretty printing 109 */ 110static const char *cache_types[] = { 111 "", /* not used */ 112 "Instruction", 113 "Data", 114 "Unified" /* unified */ 115}; 116 117static const char *cache_mattrib[]={ 118 "WriteThrough", 119 "WriteBack", 120 "", /* reserved */ 121 "" /* reserved */ 122}; 123 124struct cache_info { 125 pal_cache_config_info_t cci; 126 cpumask_t shared_cpu_map; 127 int level; 128 int type; 129 struct kobject kobj; 130}; 131 132struct cpu_cache_info { 133 struct cache_info *cache_leaves; 134 int num_cache_leaves; 135 struct kobject kobj; 136}; 137 138static struct cpu_cache_info all_cpu_cache_info[NR_CPUS]; 139#define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y]) 140 141#ifdef CONFIG_SMP 142static void cache_shared_cpu_map_setup(unsigned int cpu, 143 struct cache_info * this_leaf) 144{ 145 pal_cache_shared_info_t csi; 146 int num_shared, i = 0; 147 unsigned int j; 148 149 if (cpu_data(cpu)->threads_per_core <= 1 && 150 cpu_data(cpu)->cores_per_socket <= 1) { 151 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 152 return; 153 } 154 155 if (ia64_pal_cache_shared_info(this_leaf->level, 156 this_leaf->type, 157 0, 158 &csi) != PAL_STATUS_SUCCESS) 159 return; 160 161 num_shared = (int) csi.num_shared; 162 do { 163 for_each_possible_cpu(j) 164 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id 165 && cpu_data(j)->core_id == csi.log1_cid 166 && cpu_data(j)->thread_id == csi.log1_tid) 167 cpumask_set_cpu(j, &this_leaf->shared_cpu_map); 168 169 i++; 170 } while (i < num_shared && 171 ia64_pal_cache_shared_info(this_leaf->level, 172 this_leaf->type, 173 i, 174 &csi) == PAL_STATUS_SUCCESS); 175} 176#else 177static void cache_shared_cpu_map_setup(unsigned int cpu, 178 struct cache_info * this_leaf) 179{ 180 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 181 return; 182} 183#endif 184 185static ssize_t show_coherency_line_size(struct cache_info *this_leaf, 186 char *buf) 187{ 188 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size); 189} 190 191static ssize_t show_ways_of_associativity(struct cache_info *this_leaf, 192 char *buf) 193{ 194 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc); 195} 196 197static ssize_t show_attributes(struct cache_info *this_leaf, char *buf) 198{ 199 return sprintf(buf, 200 "%s\n", 201 cache_mattrib[this_leaf->cci.pcci_cache_attr]); 202} 203 204static ssize_t show_size(struct cache_info *this_leaf, char *buf) 205{ 206 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024); 207} 208 209static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf) 210{ 211 unsigned number_of_sets = this_leaf->cci.pcci_cache_size; 212 number_of_sets /= this_leaf->cci.pcci_assoc; 213 number_of_sets /= 1 << this_leaf->cci.pcci_line_size; 214 215 return sprintf(buf, "%u\n", number_of_sets); 216} 217 218static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf) 219{ 220 cpumask_t shared_cpu_map; 221 222 cpumask_and(&shared_cpu_map, 223 &this_leaf->shared_cpu_map, cpu_online_mask); 224 return scnprintf(buf, PAGE_SIZE, "%*pb\n", 225 cpumask_pr_args(&shared_cpu_map)); 226} 227 228static ssize_t show_type(struct cache_info *this_leaf, char *buf) 229{ 230 int type = this_leaf->type + this_leaf->cci.pcci_unified; 231 return sprintf(buf, "%s\n", cache_types[type]); 232} 233 234static ssize_t show_level(struct cache_info *this_leaf, char *buf) 235{ 236 return sprintf(buf, "%u\n", this_leaf->level); 237} 238 239struct cache_attr { 240 struct attribute attr; 241 ssize_t (*show)(struct cache_info *, char *); 242 ssize_t (*store)(struct cache_info *, const char *, size_t count); 243}; 244 245#ifdef define_one_ro 246 #undef define_one_ro 247#endif 248#define define_one_ro(_name) \ 249 static struct cache_attr _name = \ 250__ATTR(_name, 0444, show_##_name, NULL) 251 252define_one_ro(level); 253define_one_ro(type); 254define_one_ro(coherency_line_size); 255define_one_ro(ways_of_associativity); 256define_one_ro(size); 257define_one_ro(number_of_sets); 258define_one_ro(shared_cpu_map); 259define_one_ro(attributes); 260 261static struct attribute * cache_default_attrs[] = { 262 &type.attr, 263 &level.attr, 264 &coherency_line_size.attr, 265 &ways_of_associativity.attr, 266 &attributes.attr, 267 &size.attr, 268 &number_of_sets.attr, 269 &shared_cpu_map.attr, 270 NULL 271}; 272 273#define to_object(k) container_of(k, struct cache_info, kobj) 274#define to_attr(a) container_of(a, struct cache_attr, attr) 275 276static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf) 277{ 278 struct cache_attr *fattr = to_attr(attr); 279 struct cache_info *this_leaf = to_object(kobj); 280 ssize_t ret; 281 282 ret = fattr->show ? fattr->show(this_leaf, buf) : 0; 283 return ret; 284} 285 286static const struct sysfs_ops cache_sysfs_ops = { 287 .show = ia64_cache_show 288}; 289 290static struct kobj_type cache_ktype = { 291 .sysfs_ops = &cache_sysfs_ops, 292 .default_attrs = cache_default_attrs, 293}; 294 295static struct kobj_type cache_ktype_percpu_entry = { 296 .sysfs_ops = &cache_sysfs_ops, 297}; 298 299static void cpu_cache_sysfs_exit(unsigned int cpu) 300{ 301 kfree(all_cpu_cache_info[cpu].cache_leaves); 302 all_cpu_cache_info[cpu].cache_leaves = NULL; 303 all_cpu_cache_info[cpu].num_cache_leaves = 0; 304 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 305 return; 306} 307 308static int cpu_cache_sysfs_init(unsigned int cpu) 309{ 310 unsigned long i, levels, unique_caches; 311 pal_cache_config_info_t cci; 312 int j; 313 long status; 314 struct cache_info *this_cache; 315 int num_cache_leaves = 0; 316 317 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { 318 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); 319 return -1; 320 } 321 322 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches, 323 GFP_KERNEL); 324 if (this_cache == NULL) 325 return -ENOMEM; 326 327 for (i=0; i < levels; i++) { 328 for (j=2; j >0 ; j--) { 329 if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 330 PAL_STATUS_SUCCESS) 331 continue; 332 333 this_cache[num_cache_leaves].cci = cci; 334 this_cache[num_cache_leaves].level = i + 1; 335 this_cache[num_cache_leaves].type = j; 336 337 cache_shared_cpu_map_setup(cpu, 338 &this_cache[num_cache_leaves]); 339 num_cache_leaves ++; 340 } 341 } 342 343 all_cpu_cache_info[cpu].cache_leaves = this_cache; 344 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves; 345 346 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject)); 347 348 return 0; 349} 350 351/* Add cache interface for CPU device */ 352static int cache_add_dev(struct device *sys_dev) 353{ 354 unsigned int cpu = sys_dev->id; 355 unsigned long i, j; 356 struct cache_info *this_object; 357 int retval = 0; 358 cpumask_t oldmask; 359 360 if (all_cpu_cache_info[cpu].kobj.parent) 361 return 0; 362 363 oldmask = current->cpus_allowed; 364 retval = set_cpus_allowed_ptr(current, cpumask_of(cpu)); 365 if (unlikely(retval)) 366 return retval; 367 368 retval = cpu_cache_sysfs_init(cpu); 369 set_cpus_allowed_ptr(current, &oldmask); 370 if (unlikely(retval < 0)) 371 return retval; 372 373 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj, 374 &cache_ktype_percpu_entry, &sys_dev->kobj, 375 "%s", "cache"); 376 if (unlikely(retval < 0)) { 377 cpu_cache_sysfs_exit(cpu); 378 return retval; 379 } 380 381 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) { 382 this_object = LEAF_KOBJECT_PTR(cpu,i); 383 retval = kobject_init_and_add(&(this_object->kobj), 384 &cache_ktype, 385 &all_cpu_cache_info[cpu].kobj, 386 "index%1lu", i); 387 if (unlikely(retval)) { 388 for (j = 0; j < i; j++) { 389 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj)); 390 } 391 kobject_put(&all_cpu_cache_info[cpu].kobj); 392 cpu_cache_sysfs_exit(cpu); 393 return retval; 394 } 395 kobject_uevent(&(this_object->kobj), KOBJ_ADD); 396 } 397 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD); 398 return retval; 399} 400 401/* Remove cache interface for CPU device */ 402static int cache_remove_dev(struct device *sys_dev) 403{ 404 unsigned int cpu = sys_dev->id; 405 unsigned long i; 406 407 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) 408 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj)); 409 410 if (all_cpu_cache_info[cpu].kobj.parent) { 411 kobject_put(&all_cpu_cache_info[cpu].kobj); 412 memset(&all_cpu_cache_info[cpu].kobj, 413 0, 414 sizeof(struct kobject)); 415 } 416 417 cpu_cache_sysfs_exit(cpu); 418 419 return 0; 420} 421 422/* 423 * When a cpu is hot-plugged, do a check and initiate 424 * cache kobject if necessary 425 */ 426static int cache_cpu_callback(struct notifier_block *nfb, 427 unsigned long action, void *hcpu) 428{ 429 unsigned int cpu = (unsigned long)hcpu; 430 struct device *sys_dev; 431 432 sys_dev = get_cpu_device(cpu); 433 switch (action) { 434 case CPU_ONLINE: 435 case CPU_ONLINE_FROZEN: 436 cache_add_dev(sys_dev); 437 break; 438 case CPU_DEAD: 439 case CPU_DEAD_FROZEN: 440 cache_remove_dev(sys_dev); 441 break; 442 } 443 return NOTIFY_OK; 444} 445 446static struct notifier_block cache_cpu_notifier = 447{ 448 .notifier_call = cache_cpu_callback 449}; 450 451static int __init cache_sysfs_init(void) 452{ 453 int i; 454 455 cpu_notifier_register_begin(); 456 457 for_each_online_cpu(i) { 458 struct device *sys_dev = get_cpu_device((unsigned int)i); 459 cache_add_dev(sys_dev); 460 } 461 462 __register_hotcpu_notifier(&cache_cpu_notifier); 463 464 cpu_notifier_register_done(); 465 466 return 0; 467} 468 469device_initcall(cache_sysfs_init); 470 471