1/*
2 * SMP boot-related support
3 *
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * 	Rohit Seth <rohit.seth@intel.com>
8 * 	Suresh Siddha <suresh.b.siddha@intel.com>
9 * 	Gordon Jin <gordon.jin@intel.com>
10 *	Ashok Raj  <ashok.raj@intel.com>
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
15 *						smp_boot_cpus()/smp_commence() is replaced by
16 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 *						Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 *						Setup cpu_sibling_map and cpu_core_map
23 */
24
25#include <linux/module.h>
26#include <linux/acpi.h>
27#include <linux/bootmem.h>
28#include <linux/cpu.h>
29#include <linux/delay.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/irq.h>
33#include <linux/kernel.h>
34#include <linux/kernel_stat.h>
35#include <linux/mm.h>
36#include <linux/notifier.h>
37#include <linux/smp.h>
38#include <linux/spinlock.h>
39#include <linux/efi.h>
40#include <linux/percpu.h>
41#include <linux/bitops.h>
42
43#include <linux/atomic.h>
44#include <asm/cache.h>
45#include <asm/current.h>
46#include <asm/delay.h>
47#include <asm/io.h>
48#include <asm/irq.h>
49#include <asm/machvec.h>
50#include <asm/mca.h>
51#include <asm/page.h>
52#include <asm/paravirt.h>
53#include <asm/pgalloc.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
56#include <asm/ptrace.h>
57#include <asm/sal.h>
58#include <asm/tlbflush.h>
59#include <asm/unistd.h>
60#include <asm/sn/arch.h>
61
62#define SMP_DEBUG 0
63
64#if SMP_DEBUG
65#define Dprintk(x...)  printk(x)
66#else
67#define Dprintk(x...)
68#endif
69
70#ifdef CONFIG_HOTPLUG_CPU
71#ifdef CONFIG_PERMIT_BSP_REMOVE
72#define bsp_remove_ok	1
73#else
74#define bsp_remove_ok	0
75#endif
76
77/*
78 * Global array allocated for NR_CPUS at boot time
79 */
80struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
81
82/*
83 * start_ap in head.S uses this to store current booting cpu
84 * info.
85 */
86struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
87
88#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
89
90#else
91#define set_brendez_area(x)
92#endif
93
94
95/*
96 * ITC synchronization related stuff:
97 */
98#define MASTER	(0)
99#define SLAVE	(SMP_CACHE_BYTES/8)
100
101#define NUM_ROUNDS	64	/* magic value */
102#define NUM_ITERS	5	/* likewise */
103
104static DEFINE_SPINLOCK(itc_sync_lock);
105static volatile unsigned long go[SLAVE + 1];
106
107#define DEBUG_ITC_SYNC	0
108
109extern void start_ap (void);
110extern unsigned long ia64_iobase;
111
112struct task_struct *task_for_booting_cpu;
113
114/*
115 * State for each CPU
116 */
117DEFINE_PER_CPU(int, cpu_state);
118
119cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
120EXPORT_SYMBOL(cpu_core_map);
121DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
122EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
123
124int smp_num_siblings = 1;
125
126/* which logical CPU number maps to which CPU (physical APIC ID) */
127volatile int ia64_cpu_to_sapicid[NR_CPUS];
128EXPORT_SYMBOL(ia64_cpu_to_sapicid);
129
130static cpumask_t cpu_callin_map;
131
132struct smp_boot_data smp_boot_data __initdata;
133
134unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
135
136char __initdata no_int_routing;
137
138unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
139
140#ifdef CONFIG_FORCE_CPEI_RETARGET
141#define CPEI_OVERRIDE_DEFAULT	(1)
142#else
143#define CPEI_OVERRIDE_DEFAULT	(0)
144#endif
145
146unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
147
148static int __init
149cmdl_force_cpei(char *str)
150{
151	int value=0;
152
153	get_option (&str, &value);
154	force_cpei_retarget = value;
155
156	return 1;
157}
158
159__setup("force_cpei=", cmdl_force_cpei);
160
161static int __init
162nointroute (char *str)
163{
164	no_int_routing = 1;
165	printk ("no_int_routing on\n");
166	return 1;
167}
168
169__setup("nointroute", nointroute);
170
171static void fix_b0_for_bsp(void)
172{
173#ifdef CONFIG_HOTPLUG_CPU
174	int cpuid;
175	static int fix_bsp_b0 = 1;
176
177	cpuid = smp_processor_id();
178
179	/*
180	 * Cache the b0 value on the first AP that comes up
181	 */
182	if (!(fix_bsp_b0 && cpuid))
183		return;
184
185	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
186	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
187
188	fix_bsp_b0 = 0;
189#endif
190}
191
192void
193sync_master (void *arg)
194{
195	unsigned long flags, i;
196
197	go[MASTER] = 0;
198
199	local_irq_save(flags);
200	{
201		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
202			while (!go[MASTER])
203				cpu_relax();
204			go[MASTER] = 0;
205			go[SLAVE] = ia64_get_itc();
206		}
207	}
208	local_irq_restore(flags);
209}
210
211/*
212 * Return the number of cycles by which our itc differs from the itc on the master
213 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
214 * negative that it is behind.
215 */
216static inline long
217get_delta (long *rt, long *master)
218{
219	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
220	unsigned long tcenter, t0, t1, tm;
221	long i;
222
223	for (i = 0; i < NUM_ITERS; ++i) {
224		t0 = ia64_get_itc();
225		go[MASTER] = 1;
226		while (!(tm = go[SLAVE]))
227			cpu_relax();
228		go[SLAVE] = 0;
229		t1 = ia64_get_itc();
230
231		if (t1 - t0 < best_t1 - best_t0)
232			best_t0 = t0, best_t1 = t1, best_tm = tm;
233	}
234
235	*rt = best_t1 - best_t0;
236	*master = best_tm - best_t0;
237
238	/* average best_t0 and best_t1 without overflow: */
239	tcenter = (best_t0/2 + best_t1/2);
240	if (best_t0 % 2 + best_t1 % 2 == 2)
241		++tcenter;
242	return tcenter - best_tm;
243}
244
245/*
246 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
247 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
248 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
249 * step).  The basic idea is for the slave to ask the master what itc value it has and to
250 * read its own itc before and after the master responds.  Each iteration gives us three
251 * timestamps:
252 *
253 *	slave		master
254 *
255 *	t0 ---\
256 *             ---\
257 *		   --->
258 *			tm
259 *		   /---
260 *	       /---
261 *	t1 <---
262 *
263 *
264 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
265 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
266 * between the slave and the master is symmetric.  Even if the interconnect were
267 * asymmetric, we would still know that the synchronization error is smaller than the
268 * roundtrip latency (t0 - t1).
269 *
270 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
271 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
272 * accurate to within a round-trip time, which is typically in the range of several
273 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
274 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
275 * than half a micro second or so.
276 */
277void
278ia64_sync_itc (unsigned int master)
279{
280	long i, delta, adj, adjust_latency = 0, done = 0;
281	unsigned long flags, rt, master_time_stamp, bound;
282#if DEBUG_ITC_SYNC
283	struct {
284		long rt;	/* roundtrip time */
285		long master;	/* master's timestamp */
286		long diff;	/* difference between midpoint and master's timestamp */
287		long lat;	/* estimate of itc adjustment latency */
288	} t[NUM_ROUNDS];
289#endif
290
291	/*
292	 * Make sure local timer ticks are disabled while we sync.  If
293	 * they were enabled, we'd have to worry about nasty issues
294	 * like setting the ITC ahead of (or a long time before) the
295	 * next scheduled tick.
296	 */
297	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
298
299	go[MASTER] = 1;
300
301	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
302		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
303		return;
304	}
305
306	while (go[MASTER])
307		cpu_relax();	/* wait for master to be ready */
308
309	spin_lock_irqsave(&itc_sync_lock, flags);
310	{
311		for (i = 0; i < NUM_ROUNDS; ++i) {
312			delta = get_delta(&rt, &master_time_stamp);
313			if (delta == 0) {
314				done = 1;	/* let's lock on to this... */
315				bound = rt;
316			}
317
318			if (!done) {
319				if (i > 0) {
320					adjust_latency += -delta;
321					adj = -delta + adjust_latency/4;
322				} else
323					adj = -delta;
324
325				ia64_set_itc(ia64_get_itc() + adj);
326			}
327#if DEBUG_ITC_SYNC
328			t[i].rt = rt;
329			t[i].master = master_time_stamp;
330			t[i].diff = delta;
331			t[i].lat = adjust_latency/4;
332#endif
333		}
334	}
335	spin_unlock_irqrestore(&itc_sync_lock, flags);
336
337#if DEBUG_ITC_SYNC
338	for (i = 0; i < NUM_ROUNDS; ++i)
339		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
340		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
341#endif
342
343	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
344	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
345}
346
347/*
348 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
349 */
350static inline void smp_setup_percpu_timer(void)
351{
352}
353
354static void
355smp_callin (void)
356{
357	int cpuid, phys_id, itc_master;
358	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
359	extern void ia64_init_itm(void);
360	extern volatile int time_keeper_id;
361
362#ifdef CONFIG_PERFMON
363	extern void pfm_init_percpu(void);
364#endif
365
366	cpuid = smp_processor_id();
367	phys_id = hard_smp_processor_id();
368	itc_master = time_keeper_id;
369
370	if (cpu_online(cpuid)) {
371		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
372		       phys_id, cpuid);
373		BUG();
374	}
375
376	fix_b0_for_bsp();
377
378	/*
379	 * numa_node_id() works after this.
380	 */
381	set_numa_node(cpu_to_node_map[cpuid]);
382	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
383
384	spin_lock(&vector_lock);
385	/* Setup the per cpu irq handling data structures */
386	__setup_vector_irq(cpuid);
387	notify_cpu_starting(cpuid);
388	set_cpu_online(cpuid, true);
389	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
390	spin_unlock(&vector_lock);
391
392	smp_setup_percpu_timer();
393
394	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
395
396#ifdef CONFIG_PERFMON
397	pfm_init_percpu();
398#endif
399
400	local_irq_enable();
401
402	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
403		/*
404		 * Synchronize the ITC with the BP.  Need to do this after irqs are
405		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
406		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
407		 * local_bh_enable(), which bugs out if irqs are not enabled...
408		 */
409		Dprintk("Going to syncup ITC with ITC Master.\n");
410		ia64_sync_itc(itc_master);
411	}
412
413	/*
414	 * Get our bogomips.
415	 */
416	ia64_init_itm();
417
418	/*
419	 * Delay calibration can be skipped if new processor is identical to the
420	 * previous processor.
421	 */
422	last_cpuinfo = cpu_data(cpuid - 1);
423	this_cpuinfo = local_cpu_data;
424	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
425	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
426	    last_cpuinfo->features != this_cpuinfo->features ||
427	    last_cpuinfo->revision != this_cpuinfo->revision ||
428	    last_cpuinfo->family != this_cpuinfo->family ||
429	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
430	    last_cpuinfo->model != this_cpuinfo->model)
431		calibrate_delay();
432	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
433
434	/*
435	 * Allow the master to continue.
436	 */
437	cpumask_set_cpu(cpuid, &cpu_callin_map);
438	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
439}
440
441
442/*
443 * Activate a secondary processor.  head.S calls this.
444 */
445int
446start_secondary (void *unused)
447{
448	/* Early console may use I/O ports */
449	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
450#ifndef CONFIG_PRINTK_TIME
451	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
452#endif
453	efi_map_pal_code();
454	cpu_init();
455	preempt_disable();
456	smp_callin();
457
458	cpu_startup_entry(CPUHP_ONLINE);
459	return 0;
460}
461
462static int
463do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
464{
465	int timeout;
466
467	task_for_booting_cpu = idle;
468	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
469
470	set_brendez_area(cpu);
471	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
472
473	/*
474	 * Wait 10s total for the AP to start
475	 */
476	Dprintk("Waiting on callin_map ...");
477	for (timeout = 0; timeout < 100000; timeout++) {
478		if (cpumask_test_cpu(cpu, &cpu_callin_map))
479			break;  /* It has booted */
480		barrier(); /* Make sure we re-read cpu_callin_map */
481		udelay(100);
482	}
483	Dprintk("\n");
484
485	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
486		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
487		ia64_cpu_to_sapicid[cpu] = -1;
488		set_cpu_online(cpu, false);  /* was set in smp_callin() */
489		return -EINVAL;
490	}
491	return 0;
492}
493
494static int __init
495decay (char *str)
496{
497	int ticks;
498	get_option (&str, &ticks);
499	return 1;
500}
501
502__setup("decay=", decay);
503
504/*
505 * Initialize the logical CPU number to SAPICID mapping
506 */
507void __init
508smp_build_cpu_map (void)
509{
510	int sapicid, cpu, i;
511	int boot_cpu_id = hard_smp_processor_id();
512
513	for (cpu = 0; cpu < NR_CPUS; cpu++) {
514		ia64_cpu_to_sapicid[cpu] = -1;
515	}
516
517	ia64_cpu_to_sapicid[0] = boot_cpu_id;
518	init_cpu_present(cpumask_of(0));
519	set_cpu_possible(0, true);
520	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
521		sapicid = smp_boot_data.cpu_phys_id[i];
522		if (sapicid == boot_cpu_id)
523			continue;
524		set_cpu_present(cpu, true);
525		set_cpu_possible(cpu, true);
526		ia64_cpu_to_sapicid[cpu] = sapicid;
527		cpu++;
528	}
529}
530
531/*
532 * Cycle through the APs sending Wakeup IPIs to boot each.
533 */
534void __init
535smp_prepare_cpus (unsigned int max_cpus)
536{
537	int boot_cpu_id = hard_smp_processor_id();
538
539	/*
540	 * Initialize the per-CPU profiling counter/multiplier
541	 */
542
543	smp_setup_percpu_timer();
544
545	cpumask_set_cpu(0, &cpu_callin_map);
546
547	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
548	ia64_cpu_to_sapicid[0] = boot_cpu_id;
549
550	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
551
552	current_thread_info()->cpu = 0;
553
554	/*
555	 * If SMP should be disabled, then really disable it!
556	 */
557	if (!max_cpus) {
558		printk(KERN_INFO "SMP mode deactivated.\n");
559		init_cpu_online(cpumask_of(0));
560		init_cpu_present(cpumask_of(0));
561		init_cpu_possible(cpumask_of(0));
562		return;
563	}
564}
565
566void smp_prepare_boot_cpu(void)
567{
568	set_cpu_online(smp_processor_id(), true);
569	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
570	set_numa_node(cpu_to_node_map[smp_processor_id()]);
571	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
572	paravirt_post_smp_prepare_boot_cpu();
573}
574
575#ifdef CONFIG_HOTPLUG_CPU
576static inline void
577clear_cpu_sibling_map(int cpu)
578{
579	int i;
580
581	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
582		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
583	for_each_cpu(i, &cpu_core_map[cpu])
584		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
585
586	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
587}
588
589static void
590remove_siblinginfo(int cpu)
591{
592	int last = 0;
593
594	if (cpu_data(cpu)->threads_per_core == 1 &&
595	    cpu_data(cpu)->cores_per_socket == 1) {
596		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
597		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
598		return;
599	}
600
601	last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
602
603	/* remove it from all sibling map's */
604	clear_cpu_sibling_map(cpu);
605}
606
607extern void fixup_irqs(void);
608
609int migrate_platform_irqs(unsigned int cpu)
610{
611	int new_cpei_cpu;
612	struct irq_data *data = NULL;
613	const struct cpumask *mask;
614	int 		retval = 0;
615
616	/*
617	 * dont permit CPEI target to removed.
618	 */
619	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
620		printk ("CPU (%d) is CPEI Target\n", cpu);
621		if (can_cpei_retarget()) {
622			/*
623			 * Now re-target the CPEI to a different processor
624			 */
625			new_cpei_cpu = cpumask_any(cpu_online_mask);
626			mask = cpumask_of(new_cpei_cpu);
627			set_cpei_target_cpu(new_cpei_cpu);
628			data = irq_get_irq_data(ia64_cpe_irq);
629			/*
630			 * Switch for now, immediately, we need to do fake intr
631			 * as other interrupts, but need to study CPEI behaviour with
632			 * polling before making changes.
633			 */
634			if (data && data->chip) {
635				data->chip->irq_disable(data);
636				data->chip->irq_set_affinity(data, mask, false);
637				data->chip->irq_enable(data);
638				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
639			}
640		}
641		if (!data) {
642			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
643			retval = -EBUSY;
644		}
645	}
646	return retval;
647}
648
649/* must be called with cpucontrol mutex held */
650int __cpu_disable(void)
651{
652	int cpu = smp_processor_id();
653
654	/*
655	 * dont permit boot processor for now
656	 */
657	if (cpu == 0 && !bsp_remove_ok) {
658		printk ("Your platform does not support removal of BSP\n");
659		return (-EBUSY);
660	}
661
662	if (ia64_platform_is("sn2")) {
663		if (!sn_cpu_disable_allowed(cpu))
664			return -EBUSY;
665	}
666
667	set_cpu_online(cpu, false);
668
669	if (migrate_platform_irqs(cpu)) {
670		set_cpu_online(cpu, true);
671		return -EBUSY;
672	}
673
674	remove_siblinginfo(cpu);
675	fixup_irqs();
676	local_flush_tlb_all();
677	cpumask_clear_cpu(cpu, &cpu_callin_map);
678	return 0;
679}
680
681void __cpu_die(unsigned int cpu)
682{
683	unsigned int i;
684
685	for (i = 0; i < 100; i++) {
686		/* They ack this in play_dead by setting CPU_DEAD */
687		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
688		{
689			printk ("CPU %d is now offline\n", cpu);
690			return;
691		}
692		msleep(100);
693	}
694 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
695}
696#endif /* CONFIG_HOTPLUG_CPU */
697
698void
699smp_cpus_done (unsigned int dummy)
700{
701	int cpu;
702	unsigned long bogosum = 0;
703
704	/*
705	 * Allow the user to impress friends.
706	 */
707
708	for_each_online_cpu(cpu) {
709		bogosum += cpu_data(cpu)->loops_per_jiffy;
710	}
711
712	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
713	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
714}
715
716static inline void set_cpu_sibling_map(int cpu)
717{
718	int i;
719
720	for_each_online_cpu(i) {
721		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
722			cpumask_set_cpu(i, &cpu_core_map[cpu]);
723			cpumask_set_cpu(cpu, &cpu_core_map[i]);
724			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
725				cpumask_set_cpu(i,
726						&per_cpu(cpu_sibling_map, cpu));
727				cpumask_set_cpu(cpu,
728						&per_cpu(cpu_sibling_map, i));
729			}
730		}
731	}
732}
733
734int
735__cpu_up(unsigned int cpu, struct task_struct *tidle)
736{
737	int ret;
738	int sapicid;
739
740	sapicid = ia64_cpu_to_sapicid[cpu];
741	if (sapicid == -1)
742		return -EINVAL;
743
744	/*
745	 * Already booted cpu? not valid anymore since we dont
746	 * do idle loop tightspin anymore.
747	 */
748	if (cpumask_test_cpu(cpu, &cpu_callin_map))
749		return -EINVAL;
750
751	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
752	/* Processor goes to start_secondary(), sets online flag */
753	ret = do_boot_cpu(sapicid, cpu, tidle);
754	if (ret < 0)
755		return ret;
756
757	if (cpu_data(cpu)->threads_per_core == 1 &&
758	    cpu_data(cpu)->cores_per_socket == 1) {
759		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
760		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
761		return 0;
762	}
763
764	set_cpu_sibling_map(cpu);
765
766	return 0;
767}
768
769/*
770 * Assume that CPUs have been discovered by some platform-dependent interface.  For
771 * SoftSDV/Lion, that would be ACPI.
772 *
773 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
774 */
775void __init
776init_smp_config(void)
777{
778	struct fptr {
779		unsigned long fp;
780		unsigned long gp;
781	} *ap_startup;
782	long sal_ret;
783
784	/* Tell SAL where to drop the APs.  */
785	ap_startup = (struct fptr *) start_ap;
786	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
787				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
788	if (sal_ret < 0)
789		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
790		       ia64_sal_strerror(sal_ret));
791}
792
793/*
794 * identify_siblings(cpu) gets called from identify_cpu. This populates the
795 * information related to logical execution units in per_cpu_data structure.
796 */
797void identify_siblings(struct cpuinfo_ia64 *c)
798{
799	long status;
800	u16 pltid;
801	pal_logical_to_physical_t info;
802
803	status = ia64_pal_logical_to_phys(-1, &info);
804	if (status != PAL_STATUS_SUCCESS) {
805		if (status != PAL_STATUS_UNIMPLEMENTED) {
806			printk(KERN_ERR
807				"ia64_pal_logical_to_phys failed with %ld\n",
808				status);
809			return;
810		}
811
812		info.overview_ppid = 0;
813		info.overview_cpp  = 1;
814		info.overview_tpc  = 1;
815	}
816
817	status = ia64_sal_physical_id_info(&pltid);
818	if (status != PAL_STATUS_SUCCESS) {
819		if (status != PAL_STATUS_UNIMPLEMENTED)
820			printk(KERN_ERR
821				"ia64_sal_pltid failed with %ld\n",
822				status);
823		return;
824	}
825
826	c->socket_id =  (pltid << 8) | info.overview_ppid;
827
828	if (info.overview_cpp == 1 && info.overview_tpc == 1)
829		return;
830
831	c->cores_per_socket = info.overview_cpp;
832	c->threads_per_core = info.overview_tpc;
833	c->num_log = info.overview_num_log;
834
835	c->core_id = info.log1_cid;
836	c->thread_id = info.log1_tid;
837}
838
839/*
840 * returns non zero, if multi-threading is enabled
841 * on at least one physical package. Due to hotplug cpu
842 * and (maxcpus=), all threads may not necessarily be enabled
843 * even though the processor supports multi-threading.
844 */
845int is_multithreading_enabled(void)
846{
847	int i, j;
848
849	for_each_present_cpu(i) {
850		for_each_present_cpu(j) {
851			if (j == i)
852				continue;
853			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
854				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
855					return 1;
856			}
857		}
858	}
859	return 0;
860}
861EXPORT_SYMBOL_GPL(is_multithreading_enabled);
862