1/* 2 * linux/arch/cris/arch-v32/kernel/time.c 3 * 4 * Copyright (C) 2003-2010 Axis Communications AB 5 * 6 */ 7 8#include <linux/timex.h> 9#include <linux/time.h> 10#include <linux/clocksource.h> 11#include <linux/clockchips.h> 12#include <linux/interrupt.h> 13#include <linux/swap.h> 14#include <linux/sched.h> 15#include <linux/init.h> 16#include <linux/threads.h> 17#include <linux/cpufreq.h> 18#include <linux/sched_clock.h> 19#include <linux/mm.h> 20#include <asm/types.h> 21#include <asm/signal.h> 22#include <asm/io.h> 23#include <asm/delay.h> 24#include <asm/irq.h> 25#include <asm/irq_regs.h> 26 27#include <hwregs/reg_map.h> 28#include <hwregs/reg_rdwr.h> 29#include <hwregs/timer_defs.h> 30#include <hwregs/intr_vect_defs.h> 31#ifdef CONFIG_CRIS_MACH_ARTPEC3 32#include <hwregs/clkgen_defs.h> 33#endif 34 35/* Watchdog defines */ 36#define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */ 37#define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */ 38/* Number of 763 counts before watchdog bites */ 39#define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) 40 41#define CRISV32_TIMER_FREQ (100000000lu) 42 43unsigned long timer_regs[NR_CPUS] = 44{ 45 regi_timer0, 46}; 47 48extern int set_rtc_mmss(unsigned long nowtime); 49 50#ifdef CONFIG_CPU_FREQ 51static int cris_time_freq_notifier(struct notifier_block *nb, 52 unsigned long val, void *data); 53 54static struct notifier_block cris_time_freq_notifier_block = { 55 .notifier_call = cris_time_freq_notifier, 56}; 57#endif 58 59unsigned long get_ns_in_jiffie(void) 60{ 61 reg_timer_r_tmr0_data data; 62 unsigned long ns; 63 64 data = REG_RD(timer, regi_timer0, r_tmr0_data); 65 ns = (TIMER0_DIV - data) * 10; 66 return ns; 67} 68 69/* From timer MDS describing the hardware watchdog: 70 * 4.3.1 Watchdog Operation 71 * The watchdog timer is an 8-bit timer with a configurable start value. 72 * Once started the watchdog counts downwards with a frequency of 763 Hz 73 * (100/131072 MHz). When the watchdog counts down to 1, it generates an 74 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the 75 * chip. 76 */ 77/* This gives us 1.3 ms to do something useful when the NMI comes */ 78 79/* Right now, starting the watchdog is the same as resetting it */ 80#define start_watchdog reset_watchdog 81 82#if defined(CONFIG_ETRAX_WATCHDOG) 83static short int watchdog_key = 42; /* arbitrary 7 bit number */ 84#endif 85 86/* Number of pages to consider "out of memory". It is normal that the memory 87 * is used though, so set this really low. */ 88#define WATCHDOG_MIN_FREE_PAGES 8 89 90#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) 91/* for reliable NICE_DOGGY behaviour */ 92static int bite_in_progress; 93#endif 94 95void reset_watchdog(void) 96{ 97#if defined(CONFIG_ETRAX_WATCHDOG) 98 reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; 99 100#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) 101 if (unlikely(bite_in_progress)) 102 return; 103#endif 104 /* Only keep watchdog happy as long as we have memory left! */ 105 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { 106 /* Reset the watchdog with the inverse of the old key */ 107 /* Invert key, which is 7 bits */ 108 watchdog_key ^= ETRAX_WD_KEY_MASK; 109 wd_ctrl.cnt = ETRAX_WD_CNT; 110 wd_ctrl.cmd = regk_timer_start; 111 wd_ctrl.key = watchdog_key; 112 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); 113 } 114#endif 115} 116 117/* stop the watchdog - we still need the correct key */ 118 119void stop_watchdog(void) 120{ 121#if defined(CONFIG_ETRAX_WATCHDOG) 122 reg_timer_rw_wd_ctrl wd_ctrl = { 0 }; 123 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */ 124 wd_ctrl.cnt = ETRAX_WD_CNT; 125 wd_ctrl.cmd = regk_timer_stop; 126 wd_ctrl.key = watchdog_key; 127 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl); 128#endif 129} 130 131extern void show_registers(struct pt_regs *regs); 132 133void handle_watchdog_bite(struct pt_regs *regs) 134{ 135#if defined(CONFIG_ETRAX_WATCHDOG) 136 extern int cause_of_death; 137 138 nmi_enter(); 139 oops_in_progress = 1; 140#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY) 141 bite_in_progress = 1; 142#endif 143 printk(KERN_WARNING "Watchdog bite\n"); 144 145 /* Check if forced restart or unexpected watchdog */ 146 if (cause_of_death == 0xbedead) { 147#ifdef CONFIG_CRIS_MACH_ARTPEC3 148 /* There is a bug in Artpec-3 (voodoo TR 78) that requires 149 * us to go to lower frequency for the reset to be reliable 150 */ 151 reg_clkgen_rw_clk_ctrl ctrl = 152 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl); 153 ctrl.pll = 0; 154 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl); 155#endif 156 while(1); 157 } 158 159 /* Unexpected watchdog, stop the watchdog and dump registers. */ 160 stop_watchdog(); 161 printk(KERN_WARNING "Oops: bitten by watchdog\n"); 162 show_registers(regs); 163 oops_in_progress = 0; 164 printk("\n"); /* Flush mtdoops. */ 165#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY 166 reset_watchdog(); 167#endif 168 while(1) /* nothing */; 169#endif 170} 171 172extern void cris_profile_sample(struct pt_regs *regs); 173static void __iomem *timer_base; 174 175static void crisv32_clkevt_mode(enum clock_event_mode mode, 176 struct clock_event_device *dev) 177{ 178 reg_timer_rw_tmr0_ctrl ctrl = { 179 .op = regk_timer_hold, 180 .freq = regk_timer_f100, 181 }; 182 183 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); 184} 185 186static int crisv32_clkevt_next_event(unsigned long evt, 187 struct clock_event_device *dev) 188{ 189 reg_timer_rw_tmr0_ctrl ctrl = { 190 .op = regk_timer_ld, 191 .freq = regk_timer_f100, 192 }; 193 194 REG_WR(timer, timer_base, rw_tmr0_div, evt); 195 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); 196 197 ctrl.op = regk_timer_run; 198 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); 199 200 return 0; 201} 202 203static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id) 204{ 205 struct clock_event_device *evt = dev_id; 206 reg_timer_rw_tmr0_ctrl ctrl = { 207 .op = regk_timer_hold, 208 .freq = regk_timer_f100, 209 }; 210 reg_timer_rw_ack_intr ack = { .tmr0 = 1 }; 211 reg_timer_r_masked_intr intr; 212 213 intr = REG_RD(timer, timer_base, r_masked_intr); 214 if (!intr.tmr0) 215 return IRQ_NONE; 216 217 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); 218 REG_WR(timer, timer_base, rw_ack_intr, ack); 219 220 reset_watchdog(); 221#ifdef CONFIG_SYSTEM_PROFILER 222 cris_profile_sample(get_irq_regs()); 223#endif 224 225 evt->event_handler(evt); 226 227 return IRQ_HANDLED; 228} 229 230static struct clock_event_device crisv32_clockevent = { 231 .name = "crisv32-timer", 232 .rating = 300, 233 .features = CLOCK_EVT_FEAT_ONESHOT, 234 .set_mode = crisv32_clkevt_mode, 235 .set_next_event = crisv32_clkevt_next_event, 236}; 237 238/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */ 239static struct irqaction irq_timer = { 240 .handler = crisv32_timer_interrupt, 241 .flags = IRQF_TIMER | IRQF_SHARED, 242 .name = "crisv32-timer", 243 .dev_id = &crisv32_clockevent, 244}; 245 246static u64 notrace crisv32_timer_sched_clock(void) 247{ 248 return REG_RD(timer, timer_base, r_time); 249} 250 251static void __init crisv32_timer_init(void) 252{ 253 reg_timer_rw_intr_mask timer_intr_mask; 254 reg_timer_rw_tmr0_ctrl ctrl = { 255 .op = regk_timer_hold, 256 .freq = regk_timer_f100, 257 }; 258 259 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl); 260 261 timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask); 262 timer_intr_mask.tmr0 = 1; 263 REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask); 264} 265 266void __init time_init(void) 267{ 268 int irq; 269 int ret; 270 271 /* Probe for the RTC and read it if it exists. 272 * Before the RTC can be probed the loops_per_usec variable needs 273 * to be initialized to make usleep work. A better value for 274 * loops_per_usec is calculated by the kernel later once the 275 * clock has started. 276 */ 277 loops_per_usec = 50; 278 279 irq = TIMER0_INTR_VECT; 280 timer_base = (void __iomem *) regi_timer0; 281 282 crisv32_timer_init(); 283 284 sched_clock_register(crisv32_timer_sched_clock, 32, 285 CRISV32_TIMER_FREQ); 286 287 clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time, 288 "crisv32-timer", CRISV32_TIMER_FREQ, 289 300, 32, clocksource_mmio_readl_up); 290 291 crisv32_clockevent.cpumask = cpu_possible_mask; 292 crisv32_clockevent.irq = irq; 293 294 ret = setup_irq(irq, &irq_timer); 295 if (ret) 296 pr_warn("failed to setup irq %d\n", irq); 297 298 clockevents_config_and_register(&crisv32_clockevent, 299 CRISV32_TIMER_FREQ, 300 2, 0xffffffff); 301 302 /* Enable watchdog if we should use one. */ 303 304#if defined(CONFIG_ETRAX_WATCHDOG) 305 printk(KERN_INFO "Enabling watchdog...\n"); 306 start_watchdog(); 307 308 /* If we use the hardware watchdog, we want to trap it as an NMI 309 * and dump registers before it resets us. For this to happen, we 310 * must set the "m" NMI enable flag (which once set, is unset only 311 * when an NMI is taken). */ 312 { 313 unsigned long flags; 314 local_save_flags(flags); 315 flags |= (1<<30); /* NMI M flag is at bit 30 */ 316 local_irq_restore(flags); 317 } 318#endif 319 320#ifdef CONFIG_CPU_FREQ 321 cpufreq_register_notifier(&cris_time_freq_notifier_block, 322 CPUFREQ_TRANSITION_NOTIFIER); 323#endif 324} 325 326#ifdef CONFIG_CPU_FREQ 327static int cris_time_freq_notifier(struct notifier_block *nb, 328 unsigned long val, void *data) 329{ 330 struct cpufreq_freqs *freqs = data; 331 if (val == CPUFREQ_POSTCHANGE) { 332 reg_timer_r_tmr0_data data; 333 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ; 334 do { 335 data = REG_RD(timer, timer_regs[freqs->cpu], 336 r_tmr0_data); 337 } while (data > 20); 338 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div); 339 } 340 return 0; 341} 342#endif 343