1/*
2 * Physical mapping layer for MTD using the Axis partitiontable format
3 *
4 * Copyright (c) 2001-2007 Axis Communications AB
5 *
6 * This file is under the GPL.
7 *
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/kernel.h>
18#include <linux/init.h>
19#include <linux/slab.h>
20
21#include <linux/mtd/concat.h>
22#include <linux/mtd/map.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/mtdram.h>
25#include <linux/mtd/partitions.h>
26
27#include <asm/axisflashmap.h>
28#include <asm/mmu.h>
29
30#define MEM_CSE0_SIZE (0x04000000)
31#define MEM_CSE1_SIZE (0x04000000)
32
33#define FLASH_UNCACHED_ADDR  KSEG_E
34#define FLASH_CACHED_ADDR    KSEG_F
35
36#define PAGESIZE (512)
37
38#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
39#define flash_data __u8
40#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
41#define flash_data __u16
42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
43#define flash_data __u32
44#endif
45
46/* From head.S */
47extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
48extern unsigned long romfs_start, romfs_length;
49extern unsigned long nand_boot; /* 1 when booted from nand flash */
50
51struct partition_name {
52	char name[6];
53};
54
55/* The master mtd for the entire flash. */
56struct mtd_info* axisflash_mtd = NULL;
57
58/* Map driver functions. */
59
60static map_word flash_read(struct map_info *map, unsigned long ofs)
61{
62	map_word tmp;
63	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
64	return tmp;
65}
66
67static void flash_copy_from(struct map_info *map, void *to,
68			    unsigned long from, ssize_t len)
69{
70	memcpy(to, (void *)(map->map_priv_1 + from), len);
71}
72
73static void flash_write(struct map_info *map, map_word d, unsigned long adr)
74{
75	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
76}
77
78/*
79 * The map for chip select e0.
80 *
81 * We run into tricky coherence situations if we mix cached with uncached
82 * accesses to we only use the uncached version here.
83 *
84 * The size field is the total size where the flash chips may be mapped on the
85 * chip select. MTD probes should find all devices there and it does not matter
86 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
87 * probes will ignore them.
88 *
89 * The start address in map_priv_1 is in virtual memory so we cannot use
90 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
91 * address of cse0.
92 */
93static struct map_info map_cse0 = {
94	.name = "cse0",
95	.size = MEM_CSE0_SIZE,
96	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
97	.read = flash_read,
98	.copy_from = flash_copy_from,
99	.write = flash_write,
100	.map_priv_1 = FLASH_UNCACHED_ADDR
101};
102
103/*
104 * The map for chip select e1.
105 *
106 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
107 * address, but there isn't.
108 */
109static struct map_info map_cse1 = {
110	.name = "cse1",
111	.size = MEM_CSE1_SIZE,
112	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
113	.read = flash_read,
114	.copy_from = flash_copy_from,
115	.write = flash_write,
116	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
117};
118
119#define MAX_PARTITIONS			7
120#ifdef CONFIG_ETRAX_NANDBOOT
121#define NUM_DEFAULT_PARTITIONS		4
122#define DEFAULT_ROOTFS_PARTITION_NO	2
123#define DEFAULT_MEDIA_SIZE              0x2000000 /* 32 megs */
124#else
125#define NUM_DEFAULT_PARTITIONS		3
126#define DEFAULT_ROOTFS_PARTITION_NO	(-1)
127#define DEFAULT_MEDIA_SIZE              0x800000 /* 8 megs */
128#endif
129
130#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
131#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
132#endif
133
134/* Initialize the ones normally used. */
135static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
136	{
137		.name = "part0",
138		.size = CONFIG_ETRAX_PTABLE_SECTOR,
139		.offset = 0
140	},
141	{
142		.name = "part1",
143		.size = 0,
144		.offset = 0
145	},
146	{
147		.name = "part2",
148		.size = 0,
149		.offset = 0
150	},
151	{
152		.name = "part3",
153		.size = 0,
154		.offset = 0
155	},
156	{
157		.name = "part4",
158		.size = 0,
159		.offset = 0
160	},
161	{
162		.name = "part5",
163		.size = 0,
164		.offset = 0
165	},
166	{
167		.name = "part6",
168		.size = 0,
169		.offset = 0
170	},
171};
172
173
174/* If no partition-table was found, we use this default-set.
175 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
176 * likely the size of one flash block and "filesystem"-partition needs
177 * to be >=5 blocks to be able to use JFFS.
178 */
179static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
180	{
181		.name = "boot firmware",
182		.size = CONFIG_ETRAX_PTABLE_SECTOR,
183		.offset = 0
184	},
185	{
186		.name = "kernel",
187		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
188		.offset = CONFIG_ETRAX_PTABLE_SECTOR
189	},
190#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
191#ifdef CONFIG_ETRAX_NANDBOOT
192	{
193		.name = "rootfs",
194		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
195		.offset = FILESYSTEM_SECTOR
196	},
197#undef FILESYSTEM_SECTOR
198#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
199#endif
200	{
201		.name = "rwfs",
202		.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
203		.offset = FILESYSTEM_SECTOR
204	}
205};
206
207#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
208/* Main flash device */
209static struct mtd_partition main_partition = {
210	.name = "main",
211	.size = 0,
212	.offset = 0
213};
214#endif
215
216/* Auxiliary partition if we find another flash */
217static struct mtd_partition aux_partition = {
218	.name = "aux",
219	.size = 0,
220	.offset = 0
221};
222
223/*
224 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
225 * chips in that order (because the amd_flash-driver is faster).
226 */
227static struct mtd_info *probe_cs(struct map_info *map_cs)
228{
229	struct mtd_info *mtd_cs = NULL;
230
231	printk(KERN_INFO
232	       "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
233	       map_cs->name, map_cs->size, map_cs->map_priv_1);
234
235#ifdef CONFIG_MTD_CFI
236	mtd_cs = do_map_probe("cfi_probe", map_cs);
237#endif
238#ifdef CONFIG_MTD_JEDECPROBE
239	if (!mtd_cs)
240		mtd_cs = do_map_probe("jedec_probe", map_cs);
241#endif
242
243	return mtd_cs;
244}
245
246/*
247 * Probe each chip select individually for flash chips. If there are chips on
248 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
249 * so that MTD partitions can cross chip boundries.
250 *
251 * The only known restriction to how you can mount your chips is that each
252 * chip select must hold similar flash chips. But you need external hardware
253 * to do that anyway and you can put totally different chips on cse0 and cse1
254 * so it isn't really much of a restriction.
255 */
256extern struct mtd_info* __init crisv32_nand_flash_probe (void);
257static struct mtd_info *flash_probe(void)
258{
259	struct mtd_info *mtd_cse0;
260	struct mtd_info *mtd_cse1;
261	struct mtd_info *mtd_total;
262	struct mtd_info *mtds[2];
263	int count = 0;
264
265	if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
266		mtds[count++] = mtd_cse0;
267	if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
268		mtds[count++] = mtd_cse1;
269
270	if (!mtd_cse0 && !mtd_cse1) {
271		/* No chip found. */
272		return NULL;
273	}
274
275	if (count > 1) {
276		/* Since the concatenation layer adds a small overhead we
277		 * could try to figure out if the chips in cse0 and cse1 are
278		 * identical and reprobe the whole cse0+cse1 window. But since
279		 * flash chips are slow, the overhead is relatively small.
280		 * So we use the MTD concatenation layer instead of further
281		 * complicating the probing procedure.
282		 */
283		mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
284		if (!mtd_total) {
285			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
286				map_cse0.name, map_cse1.name);
287
288			/* The best we can do now is to only use what we found
289			 * at cse0. */
290			mtd_total = mtd_cse0;
291			map_destroy(mtd_cse1);
292		}
293	} else
294		mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
295
296	return mtd_total;
297}
298
299/*
300 * Probe the flash chip(s) and, if it succeeds, read the partition-table
301 * and register the partitions with MTD.
302 */
303static int __init init_axis_flash(void)
304{
305	struct mtd_info *main_mtd;
306	struct mtd_info *aux_mtd = NULL;
307	int err = 0;
308	int pidx = 0;
309	struct partitiontable_head *ptable_head = NULL;
310	struct partitiontable_entry *ptable;
311	int ptable_ok = 0;
312	static char page[PAGESIZE];
313	size_t len;
314	int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
315	int part;
316
317	/* We need a root fs. If it resides in RAM, we need to use an
318	 * MTDRAM device, so it must be enabled in the kernel config,
319	 * but its size must be configured as 0 so as not to conflict
320	 * with our usage.
321	 */
322#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
323	if (!romfs_in_flash && !nand_boot) {
324		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
325		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
326		panic("This kernel cannot boot from RAM!\n");
327	}
328#endif
329
330	main_mtd = flash_probe();
331	if (main_mtd)
332		printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
333		       main_mtd->name, main_mtd->size);
334
335#ifdef CONFIG_ETRAX_NANDFLASH
336	aux_mtd = crisv32_nand_flash_probe();
337	if (aux_mtd)
338		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
339			aux_mtd->name, aux_mtd->size);
340
341#ifdef CONFIG_ETRAX_NANDBOOT
342	{
343		struct mtd_info *tmp_mtd;
344
345		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
346		       "making NAND flash primary device.\n");
347		tmp_mtd = main_mtd;
348		main_mtd = aux_mtd;
349		aux_mtd = tmp_mtd;
350	}
351#endif /* CONFIG_ETRAX_NANDBOOT */
352#endif /* CONFIG_ETRAX_NANDFLASH */
353
354	if (!main_mtd && !aux_mtd) {
355		/* There's no reason to use this module if no flash chip can
356		 * be identified. Make sure that's understood.
357		 */
358		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
359	}
360
361#if 0 /* Dump flash memory so we can see what is going on */
362	if (main_mtd) {
363		int sectoraddr, i;
364		for (sectoraddr = 0; sectoraddr < 2*65536+4096;
365				sectoraddr += PAGESIZE) {
366			main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
367				page);
368			printk(KERN_INFO
369			       "Sector at %d (length %d):\n",
370			       sectoraddr, len);
371			for (i = 0; i < PAGESIZE; i += 16) {
372				printk(KERN_INFO
373				       "%02x %02x %02x %02x "
374				       "%02x %02x %02x %02x "
375				       "%02x %02x %02x %02x "
376				       "%02x %02x %02x %02x\n",
377				       page[i] & 255, page[i+1] & 255,
378				       page[i+2] & 255, page[i+3] & 255,
379				       page[i+4] & 255, page[i+5] & 255,
380				       page[i+6] & 255, page[i+7] & 255,
381				       page[i+8] & 255, page[i+9] & 255,
382				       page[i+10] & 255, page[i+11] & 255,
383				       page[i+12] & 255, page[i+13] & 255,
384				       page[i+14] & 255, page[i+15] & 255);
385			}
386		}
387	}
388#endif
389
390	if (main_mtd) {
391		main_mtd->owner = THIS_MODULE;
392		axisflash_mtd = main_mtd;
393
394		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
395
396		/* First partition (rescue) is always set to the default. */
397		pidx++;
398#ifdef CONFIG_ETRAX_NANDBOOT
399		/* We know where the partition table should be located,
400		 * it will be in first good block after that.
401		 */
402		int blockstat;
403		do {
404			blockstat = mtd_block_isbad(main_mtd, ptable_sector);
405			if (blockstat < 0)
406				ptable_sector = 0; /* read error */
407			else if (blockstat)
408				ptable_sector += main_mtd->erasesize;
409		} while (blockstat && ptable_sector);
410#endif
411		if (ptable_sector) {
412			mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
413				 page);
414			ptable_head = &((struct partitiontable *) page)->head;
415		}
416
417#if 0 /* Dump partition table so we can see what is going on */
418		printk(KERN_INFO
419		       "axisflashmap: flash read %d bytes at 0x%08x, data: "
420		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
421		       len, CONFIG_ETRAX_PTABLE_SECTOR,
422		       page[0] & 255, page[1] & 255,
423		       page[2] & 255, page[3] & 255,
424		       page[4] & 255, page[5] & 255,
425		       page[6] & 255, page[7] & 255);
426		printk(KERN_INFO
427		       "axisflashmap: partition table offset %d, data: "
428		       "%02x %02x %02x %02x %02x %02x %02x %02x\n",
429		       PARTITION_TABLE_OFFSET,
430		       page[PARTITION_TABLE_OFFSET+0] & 255,
431		       page[PARTITION_TABLE_OFFSET+1] & 255,
432		       page[PARTITION_TABLE_OFFSET+2] & 255,
433		       page[PARTITION_TABLE_OFFSET+3] & 255,
434		       page[PARTITION_TABLE_OFFSET+4] & 255,
435		       page[PARTITION_TABLE_OFFSET+5] & 255,
436		       page[PARTITION_TABLE_OFFSET+6] & 255,
437		       page[PARTITION_TABLE_OFFSET+7] & 255);
438#endif
439	}
440
441	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
442	    && (ptable_head->size <
443		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
444		PARTITIONTABLE_END_MARKER_SIZE))
445	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
446				  ptable_head->size -
447				  PARTITIONTABLE_END_MARKER_SIZE)
448		== PARTITIONTABLE_END_MARKER)) {
449		/* Looks like a start, sane length and end of a
450		 * partition table, lets check csum etc.
451		 */
452		struct partitiontable_entry *max_addr =
453			(struct partitiontable_entry *)
454			((unsigned long)ptable_head + sizeof(*ptable_head) +
455			 ptable_head->size);
456		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
457		unsigned char *p;
458		unsigned long csum = 0;
459
460		ptable = (struct partitiontable_entry *)
461			((unsigned long)ptable_head + sizeof(*ptable_head));
462
463		/* Lets be PARANOID, and check the checksum. */
464		p = (unsigned char*) ptable;
465
466		while (p <= (unsigned char*)max_addr) {
467			csum += *p++;
468			csum += *p++;
469			csum += *p++;
470			csum += *p++;
471		}
472		ptable_ok = (csum == ptable_head->checksum);
473
474		/* Read the entries and use/show the info.  */
475		printk(KERN_INFO "axisflashmap: "
476		       "Found a%s partition table at 0x%p-0x%p.\n",
477		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
478		       max_addr);
479
480		/* We have found a working bootblock.  Now read the
481		 * partition table.  Scan the table.  It ends with 0xffffffff.
482		 */
483		while (ptable_ok
484		       && ptable->offset != PARTITIONTABLE_END_MARKER
485		       && ptable < max_addr
486		       && pidx < MAX_PARTITIONS - 1) {
487
488			axis_partitions[pidx].offset = offset + ptable->offset;
489#ifdef CONFIG_ETRAX_NANDFLASH
490			if (main_mtd->type == MTD_NANDFLASH) {
491				axis_partitions[pidx].size =
492					(((ptable+1)->offset ==
493					  PARTITIONTABLE_END_MARKER) ?
494					  main_mtd->size :
495					  ((ptable+1)->offset + offset)) -
496					(ptable->offset + offset);
497
498			} else
499#endif /* CONFIG_ETRAX_NANDFLASH */
500				axis_partitions[pidx].size = ptable->size;
501#ifdef CONFIG_ETRAX_NANDBOOT
502			/* Save partition number of jffs2 ro partition.
503			 * Needed if RAM booting or root file system in RAM.
504			 */
505			if (!nand_boot &&
506			    ram_rootfs_partition < 0 && /* not already set */
507			    ptable->type == PARTITION_TYPE_JFFS2 &&
508			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
509				PARTITION_FLAGS_READONLY)
510				ram_rootfs_partition = pidx;
511#endif /* CONFIG_ETRAX_NANDBOOT */
512			pidx++;
513			ptable++;
514		}
515	}
516
517	/* Decide whether to use default partition table. */
518	/* Only use default table if we actually have a device (main_mtd) */
519
520	struct mtd_partition *partition = &axis_partitions[0];
521	if (main_mtd && !ptable_ok) {
522		memcpy(axis_partitions, axis_default_partitions,
523		       sizeof(axis_default_partitions));
524		pidx = NUM_DEFAULT_PARTITIONS;
525		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
526	}
527
528	/* Add artificial partitions for rootfs if necessary */
529	if (romfs_in_flash) {
530		/* rootfs is in directly accessible flash memory = NOR flash.
531		   Add an overlapping device for the rootfs partition. */
532		printk(KERN_INFO "axisflashmap: Adding partition for "
533		       "overlapping root file system image\n");
534		axis_partitions[pidx].size = romfs_length;
535		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
536		axis_partitions[pidx].name = "romfs";
537		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
538		ram_rootfs_partition = -1;
539		pidx++;
540	} else if (romfs_length && !nand_boot) {
541		/* romfs exists in memory, but not in flash, so must be in RAM.
542		 * Configure an MTDRAM partition. */
543		if (ram_rootfs_partition < 0) {
544			/* None set yet, put it at the end */
545			ram_rootfs_partition = pidx;
546			pidx++;
547		}
548		printk(KERN_INFO "axisflashmap: Adding partition for "
549		       "root file system image in RAM\n");
550		axis_partitions[ram_rootfs_partition].size = romfs_length;
551		axis_partitions[ram_rootfs_partition].offset = romfs_start;
552		axis_partitions[ram_rootfs_partition].name = "romfs";
553		axis_partitions[ram_rootfs_partition].mask_flags |=
554			MTD_WRITEABLE;
555	}
556
557#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
558	if (main_mtd) {
559		main_partition.size = main_mtd->size;
560		err = mtd_device_register(main_mtd, &main_partition, 1);
561		if (err)
562			panic("axisflashmap: Could not initialize "
563			      "partition for whole main mtd device!\n");
564	}
565#endif
566
567	/* Now, register all partitions with mtd.
568	 * We do this one at a time so we can slip in an MTDRAM device
569	 * in the proper place if required. */
570
571	for (part = 0; part < pidx; part++) {
572		if (part == ram_rootfs_partition) {
573			/* add MTDRAM partition here */
574			struct mtd_info *mtd_ram;
575
576			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
577			if (!mtd_ram)
578				panic("axisflashmap: Couldn't allocate memory "
579				      "for mtd_info!\n");
580			printk(KERN_INFO "axisflashmap: Adding RAM partition "
581			       "for rootfs image.\n");
582			err = mtdram_init_device(mtd_ram,
583						 (void *)partition[part].offset,
584						 partition[part].size,
585						 partition[part].name);
586			if (err)
587				panic("axisflashmap: Could not initialize "
588				      "MTD RAM device!\n");
589			/* JFFS2 likes to have an erasesize. Keep potential
590			 * JFFS2 rootfs happy by providing one. Since image
591			 * was most likely created for main mtd, use that
592			 * erasesize, if available. Otherwise, make a guess. */
593			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
594				CONFIG_ETRAX_PTABLE_SECTOR);
595		} else {
596			err = mtd_device_register(main_mtd, &partition[part],
597						  1);
598			if (err)
599				panic("axisflashmap: Could not add mtd "
600					"partition %d\n", part);
601		}
602	}
603
604	if (aux_mtd) {
605		aux_partition.size = aux_mtd->size;
606		err = mtd_device_register(aux_mtd, &aux_partition, 1);
607		if (err)
608			panic("axisflashmap: Could not initialize "
609			      "aux mtd device!\n");
610
611	}
612
613	return err;
614}
615
616/* This adds the above to the kernels init-call chain. */
617module_init(init_axis_flash);
618
619EXPORT_SYMBOL(axisflash_mtd);
620