1/* 2 * linux/arch/cris/arch-v10/mm/init.c 3 * 4 */ 5#include <linux/mmzone.h> 6#include <linux/init.h> 7#include <linux/bootmem.h> 8#include <linux/mm.h> 9#include <asm/pgtable.h> 10#include <asm/page.h> 11#include <asm/types.h> 12#include <asm/mmu.h> 13#include <asm/io.h> 14#include <asm/mmu_context.h> 15#include <arch/svinto.h> 16 17extern void tlb_init(void); 18 19/* 20 * The kernel is already mapped with a kernel segment at kseg_c so 21 * we don't need to map it with a page table. However head.S also 22 * temporarily mapped it at kseg_4 so we should set up the ksegs again, 23 * clear the TLB and do some other paging setup stuff. 24 */ 25 26void __init 27paging_init(void) 28{ 29 int i; 30 unsigned long zones_size[MAX_NR_ZONES]; 31 32 printk("Setting up paging and the MMU.\n"); 33 34 /* clear out the init_mm.pgd that will contain the kernel's mappings */ 35 36 for(i = 0; i < PTRS_PER_PGD; i++) 37 swapper_pg_dir[i] = __pgd(0); 38 39 /* make sure the current pgd table points to something sane 40 * (even if it is most probably not used until the next 41 * switch_mm) 42 */ 43 44 per_cpu(current_pgd, smp_processor_id()) = init_mm.pgd; 45 46 /* initialise the TLB (tlb.c) */ 47 48 tlb_init(); 49 50 /* see README.mm for details on the KSEG setup */ 51 52#ifdef CONFIG_CRIS_LOW_MAP 53 /* Etrax-100 LX version 1 has a bug so that we cannot map anything 54 * across the 0x80000000 boundary, so we need to shrink the user-virtual 55 * area to 0x50000000 instead of 0xb0000000 and map things slightly 56 * different. The unused areas are marked as paged so that we can catch 57 * freak kernel accesses there. 58 * 59 * The ARTPEC chip is mapped at 0xa so we pass that segment straight 60 * through. We cannot vremap it because the vmalloc area is below 0x8 61 * and Juliette needs an uncached area above 0x8. 62 * 63 * Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards. 64 * We map them straight over in LOW_MAP, but use vremap in LX version 2. 65 */ 66 67#define CACHED_BOOTROM (KSEG_F | 0x08000000UL) 68 69 *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* bootrom */ 70 IO_STATE(R_MMU_KSEG, seg_e, page ) | 71 IO_STATE(R_MMU_KSEG, seg_d, page ) | 72 IO_STATE(R_MMU_KSEG, seg_c, page ) | 73 IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */ 74#ifdef CONFIG_JULIETTE 75 IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* ARTPEC etc. */ 76#else 77 IO_STATE(R_MMU_KSEG, seg_a, page ) | 78#endif 79 IO_STATE(R_MMU_KSEG, seg_9, seg ) | /* LED's on some boards */ 80 IO_STATE(R_MMU_KSEG, seg_8, seg ) | /* CSE0/1, flash and I/O */ 81 IO_STATE(R_MMU_KSEG, seg_7, page ) | /* kernel vmalloc area */ 82 IO_STATE(R_MMU_KSEG, seg_6, seg ) | /* kernel DRAM area */ 83 IO_STATE(R_MMU_KSEG, seg_5, seg ) | /* cached flash */ 84 IO_STATE(R_MMU_KSEG, seg_4, page ) | /* user area */ 85 IO_STATE(R_MMU_KSEG, seg_3, page ) | /* user area */ 86 IO_STATE(R_MMU_KSEG, seg_2, page ) | /* user area */ 87 IO_STATE(R_MMU_KSEG, seg_1, page ) | /* user area */ 88 IO_STATE(R_MMU_KSEG, seg_0, page ) ); /* user area */ 89 90 *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x3 ) | 91 IO_FIELD(R_MMU_KBASE_HI, base_e, 0x0 ) | 92 IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) | 93 IO_FIELD(R_MMU_KBASE_HI, base_c, 0x0 ) | 94 IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) | 95#ifdef CONFIG_JULIETTE 96 IO_FIELD(R_MMU_KBASE_HI, base_a, 0xa ) | 97#else 98 IO_FIELD(R_MMU_KBASE_HI, base_a, 0x0 ) | 99#endif 100 IO_FIELD(R_MMU_KBASE_HI, base_9, 0x9 ) | 101 IO_FIELD(R_MMU_KBASE_HI, base_8, 0x8 ) ); 102 103 *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) | 104 IO_FIELD(R_MMU_KBASE_LO, base_6, 0x4 ) | 105 IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) | 106 IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) | 107 IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) | 108 IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) | 109 IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) | 110 IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) ); 111#else 112 /* This code is for the corrected Etrax-100 LX version 2... */ 113 114#define CACHED_BOOTROM (KSEG_A | 0x08000000UL) 115 116 *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* cached flash */ 117 IO_STATE(R_MMU_KSEG, seg_e, seg ) | /* uncached flash */ 118 IO_STATE(R_MMU_KSEG, seg_d, page ) | /* vmalloc area */ 119 IO_STATE(R_MMU_KSEG, seg_c, seg ) | /* kernel area */ 120 IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */ 121 IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* bootrom */ 122 IO_STATE(R_MMU_KSEG, seg_9, page ) | /* user area */ 123 IO_STATE(R_MMU_KSEG, seg_8, page ) | 124 IO_STATE(R_MMU_KSEG, seg_7, page ) | 125 IO_STATE(R_MMU_KSEG, seg_6, page ) | 126 IO_STATE(R_MMU_KSEG, seg_5, page ) | 127 IO_STATE(R_MMU_KSEG, seg_4, page ) | 128 IO_STATE(R_MMU_KSEG, seg_3, page ) | 129 IO_STATE(R_MMU_KSEG, seg_2, page ) | 130 IO_STATE(R_MMU_KSEG, seg_1, page ) | 131 IO_STATE(R_MMU_KSEG, seg_0, page ) ); 132 133 *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x0 ) | 134 IO_FIELD(R_MMU_KBASE_HI, base_e, 0x8 ) | 135 IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) | 136 IO_FIELD(R_MMU_KBASE_HI, base_c, 0x4 ) | 137 IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) | 138 IO_FIELD(R_MMU_KBASE_HI, base_a, 0x3 ) | 139 IO_FIELD(R_MMU_KBASE_HI, base_9, 0x0 ) | 140 IO_FIELD(R_MMU_KBASE_HI, base_8, 0x0 ) ); 141 142 *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) | 143 IO_FIELD(R_MMU_KBASE_LO, base_6, 0x0 ) | 144 IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) | 145 IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) | 146 IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) | 147 IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) | 148 IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) | 149 IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) ); 150#endif 151 152 *R_MMU_CONTEXT = ( IO_FIELD(R_MMU_CONTEXT, page_id, 0 ) ); 153 154 /* The MMU has been enabled ever since head.S but just to make 155 * it totally obvious we do it here as well. 156 */ 157 158 *R_MMU_CTRL = ( IO_STATE(R_MMU_CTRL, inv_excp, enable ) | 159 IO_STATE(R_MMU_CTRL, acc_excp, enable ) | 160 IO_STATE(R_MMU_CTRL, we_excp, enable ) ); 161 162 *R_MMU_ENABLE = IO_STATE(R_MMU_ENABLE, mmu_enable, enable); 163 164 /* 165 * initialize the bad page table and bad page to point 166 * to a couple of allocated pages 167 */ 168 169 empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); 170 memset((void *)empty_zero_page, 0, PAGE_SIZE); 171 172 /* All pages are DMA'able in Etrax, so put all in the DMA'able zone */ 173 174 zones_size[0] = ((unsigned long)high_memory - PAGE_OFFSET) >> PAGE_SHIFT; 175 176 for (i = 1; i < MAX_NR_ZONES; i++) 177 zones_size[i] = 0; 178 179 /* Use free_area_init_node instead of free_area_init, because the former 180 * is designed for systems where the DRAM starts at an address substantially 181 * higher than 0, like us (we start at PAGE_OFFSET). This saves space in the 182 * mem_map page array. 183 */ 184 185 free_area_init_node(0, zones_size, PAGE_OFFSET >> PAGE_SHIFT, 0); 186} 187 188/* Initialize remaps of some I/O-ports. It is important that this 189 * is called before any driver is initialized. 190 */ 191 192static int 193__init init_ioremap(void) 194{ 195 196 /* Give the external I/O-port addresses their values */ 197 198#ifdef CONFIG_CRIS_LOW_MAP 199 /* Simply a linear map (see the KSEG map above in paging_init) */ 200 port_cse1_addr = (volatile unsigned long *)(MEM_CSE1_START | 201 MEM_NON_CACHEABLE); 202 port_csp0_addr = (volatile unsigned long *)(MEM_CSP0_START | 203 MEM_NON_CACHEABLE); 204 port_csp4_addr = (volatile unsigned long *)(MEM_CSP4_START | 205 MEM_NON_CACHEABLE); 206#else 207 /* Note that nothing blows up just because we do this remapping 208 * it's ok even if the ports are not used or connected 209 * to anything (or connected to a non-I/O thing) */ 210 port_cse1_addr = (volatile unsigned long *) 211 ioremap((unsigned long)(MEM_CSE1_START | MEM_NON_CACHEABLE), 16); 212 port_csp0_addr = (volatile unsigned long *) 213 ioremap((unsigned long)(MEM_CSP0_START | MEM_NON_CACHEABLE), 16); 214 port_csp4_addr = (volatile unsigned long *) 215 ioremap((unsigned long)(MEM_CSP4_START | MEM_NON_CACHEABLE), 16); 216#endif 217 return 0; 218} 219 220__initcall(init_ioremap); 221 222/* Helper function for the two below */ 223 224static inline void 225flush_etrax_cacherange(void *startadr, int length) 226{ 227 /* CACHED_BOOTROM is mapped to the boot-rom area (cached) which 228 * we can use to get fast dummy-reads of cachelines 229 */ 230 231 volatile short *flushadr = (volatile short *)(((unsigned long)startadr & ~PAGE_MASK) | 232 CACHED_BOOTROM); 233 234 length = length > 8192 ? 8192 : length; /* No need to flush more than cache size */ 235 236 while(length > 0) { 237 *flushadr; /* dummy read to flush */ 238 flushadr += (32/sizeof(short)); /* a cacheline is 32 bytes */ 239 length -= 32; 240 } 241} 242 243/* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers 244 * will occasionally corrupt certain CPU writes if the DMA buffers 245 * happen to be hot in the cache. 246 * 247 * As a workaround, we have to flush the relevant parts of the cache 248 * before (re) inserting any receiving descriptor into the DMA HW. 249 */ 250 251void 252prepare_rx_descriptor(struct etrax_dma_descr *desc) 253{ 254 flush_etrax_cacherange((void *)desc->buf, desc->sw_len ? desc->sw_len : 65536); 255} 256 257/* Do the same thing but flush the entire cache */ 258 259void 260flush_etrax_cache(void) 261{ 262 flush_etrax_cacherange(0, 8192); 263} 264