1/*
2 *  linux/arch/cris/arch-v10/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5 *  Copyright (C) 1999-2002 Axis Communications AB
6 *
7 */
8
9#include <linux/timex.h>
10#include <linux/time.h>
11#include <linux/jiffies.h>
12#include <linux/interrupt.h>
13#include <linux/swap.h>
14#include <linux/sched.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <asm/types.h>
18#include <asm/signal.h>
19#include <asm/io.h>
20#include <asm/delay.h>
21#include <asm/irq_regs.h>
22
23/* define this if you need to use print_timestamp */
24/* it will make jiffies at 96 hz instead of 100 hz though */
25#undef USE_CASCADE_TIMERS
26
27unsigned long get_ns_in_jiffie(void)
28{
29	unsigned char timer_count, t1;
30	unsigned short presc_count;
31	unsigned long ns;
32	unsigned long flags;
33
34	local_irq_save(flags);
35	timer_count = *R_TIMER0_DATA;
36	presc_count = *R_TIM_PRESC_STATUS;
37	/* presc_count might be wrapped */
38	t1 = *R_TIMER0_DATA;
39
40	if (timer_count != t1){
41		/* it wrapped, read prescaler again...  */
42		presc_count = *R_TIM_PRESC_STATUS;
43		timer_count = t1;
44	}
45	local_irq_restore(flags);
46	if (presc_count >= PRESCALE_VALUE/2 ){
47		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
48	} else {
49		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
50	}
51
52	ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
53	     ( (presc_count) * (1000000000/PRESCALE_FREQ));
54	return ns;
55}
56
57static u32 cris_v10_gettimeoffset(void)
58{
59	u32 count;
60
61	/* The timer interrupt comes from Etrax timer 0. In order to get
62	 * better precision, we check the current value. It might have
63	 * underflowed already though.
64	 */
65	count = *R_TIMER0_DATA;
66
67	/* Convert timer value to nsec */
68	return (TIMER0_DIV - count) * (NSEC_PER_SEC/HZ)/TIMER0_DIV;
69}
70
71/* Excerpt from the Etrax100 HSDD about the built-in watchdog:
72 *
73 * 3.10.4 Watchdog timer
74
75 * When the watchdog timer is started, it generates an NMI if the watchdog
76 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
77 * stopped after an additional 3.3 ms, the watchdog resets the chip.
78 * The watchdog timer is stopped after reset. The watchdog timer is controlled
79 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
80 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
81 * described in the table below:
82 *
83 *   Watchdog    Value written:
84 *   state:      To enable:  To key:      Operation:
85 *   --------    ----------  -------      ----------
86 *   stopped         0         X          No effect.
87 *   stopped         1       key_val      Start watchdog with key = key_val.
88 *   started         0       ~key         Stop watchdog
89 *   started         1       ~key         Restart watchdog with key = ~key.
90 *   started         X       new_key_val  Change key to new_key_val.
91 *
92 * Note: '~' is the bitwise NOT operator.
93 *
94 */
95
96/* right now, starting the watchdog is the same as resetting it */
97#define start_watchdog reset_watchdog
98
99#ifdef CONFIG_ETRAX_WATCHDOG
100static int watchdog_key = 0;  /* arbitrary number */
101#endif
102
103/* number of pages to consider "out of memory". it is normal that the memory
104 * is used though, so put this really low.
105 */
106
107#define WATCHDOG_MIN_FREE_PAGES 8
108
109void reset_watchdog(void)
110{
111#if defined(CONFIG_ETRAX_WATCHDOG)
112	/* only keep watchdog happy as long as we have memory left! */
113	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
114		/* reset the watchdog with the inverse of the old key */
115		watchdog_key ^= 0x7; /* invert key, which is 3 bits */
116		*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
117			IO_STATE(R_WATCHDOG, enable, start);
118	}
119#endif
120}
121
122/* stop the watchdog - we still need the correct key */
123
124void stop_watchdog(void)
125{
126#ifdef CONFIG_ETRAX_WATCHDOG
127	watchdog_key ^= 0x7; /* invert key, which is 3 bits */
128	*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
129		IO_STATE(R_WATCHDOG, enable, stop);
130#endif
131}
132
133
134extern void cris_do_profile(struct pt_regs *regs);
135
136/*
137 * timer_interrupt() needs to keep up the real-time clock,
138 * as well as call the "xtime_update()" routine every clocktick
139 */
140static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
141{
142	struct pt_regs *regs = get_irq_regs();
143	/* acknowledge the timer irq */
144
145#ifdef USE_CASCADE_TIMERS
146	*R_TIMER_CTRL =
147		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
148		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
149		IO_STATE( R_TIMER_CTRL, i1, clr) |
150		IO_STATE( R_TIMER_CTRL, tm1, run) |
151		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
152		IO_STATE( R_TIMER_CTRL, i0, clr) |
153		IO_STATE( R_TIMER_CTRL, tm0, run) |
154		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
155#else
156	*R_TIMER_CTRL = r_timer_ctrl_shadow | IO_STATE(R_TIMER_CTRL, i0, clr);
157#endif
158
159	/* reset watchdog otherwise it resets us! */
160	reset_watchdog();
161
162	/* Update statistics. */
163	update_process_times(user_mode(regs));
164
165	/* call the real timer interrupt handler */
166	xtime_update(1);
167
168        cris_do_profile(regs); /* Save profiling information */
169        return IRQ_HANDLED;
170}
171
172/* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain */
173
174static struct irqaction irq2  = {
175	.handler = timer_interrupt,
176	.flags = IRQF_SHARED,
177	.name = "timer",
178};
179
180void __init time_init(void)
181{
182	arch_gettimeoffset = cris_v10_gettimeoffset;
183
184	/* probe for the RTC and read it if it exists
185	 * Before the RTC can be probed the loops_per_usec variable needs
186	 * to be initialized to make usleep work. A better value for
187	 * loops_per_usec is calculated by the kernel later once the
188	 * clock has started.
189	 */
190	loops_per_usec = 50;
191
192	/* Setup the etrax timers
193	 * Base frequency is 25000 hz, divider 250 -> 100 HZ
194	 * In normal mode, we use timer0, so timer1 is free. In cascade
195	 * mode (which we sometimes use for debugging) both timers are used.
196	 * Remember that linux/timex.h contains #defines that rely on the
197	 * timer settings below (hz and divide factor) !!!
198	 */
199
200#ifdef USE_CASCADE_TIMERS
201	*R_TIMER_CTRL =
202		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
203		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
204		IO_STATE( R_TIMER_CTRL, i1, nop) |
205		IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
206		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
207		IO_STATE( R_TIMER_CTRL, i0, nop) |
208		IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
209		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
210
211	*R_TIMER_CTRL = r_timer_ctrl_shadow =
212		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
213		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
214		IO_STATE( R_TIMER_CTRL, i1, nop) |
215		IO_STATE( R_TIMER_CTRL, tm1, run) |
216		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
217		IO_STATE( R_TIMER_CTRL, i0, nop) |
218		IO_STATE( R_TIMER_CTRL, tm0, run) |
219		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
220#else
221	*R_TIMER_CTRL =
222		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
223		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
224		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
225		IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
226		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
227		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
228		IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
229		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
230
231	*R_TIMER_CTRL = r_timer_ctrl_shadow =
232		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
233		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
234		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
235		IO_STATE(R_TIMER_CTRL, tm1,       run)      |
236		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
237		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
238		IO_STATE(R_TIMER_CTRL, tm0,       run)      |
239		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
240
241	*R_TIMER_PRESCALE = PRESCALE_VALUE;
242#endif
243
244	/* unmask the timer irq */
245	*R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, timer0, set);
246
247	/* now actually register the irq handler that calls timer_interrupt() */
248	setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
249
250	/* enable watchdog if we should use one */
251#if defined(CONFIG_ETRAX_WATCHDOG)
252	printk("Enabling watchdog...\n");
253	start_watchdog();
254
255	/* If we use the hardware watchdog, we want to trap it as an NMI
256	   and dump registers before it resets us.  For this to happen, we
257	   must set the "m" NMI enable flag (which once set, is unset only
258	   when an NMI is taken).
259
260	   The same goes for the external NMI, but that doesn't have any
261	   driver or infrastructure support yet.  */
262	asm ("setf m");
263
264	*R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
265	*R_VECT_MASK_SET = IO_STATE(R_VECT_MASK_SET, nmi, set);
266#endif
267}
268