1 /*!**************************************************************************
2 *!
3 *! FILE NAME  : kgdb.c
4 *!
5 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6 *!              It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7 *!
8 *!---------------------------------------------------------------------------
9 *! HISTORY
10 *!
11 *! DATE         NAME            CHANGES
12 *! ----         ----            -------
13 *! Apr 26 1999  Hendrik Ruijter Initial version.
14 *! May  6 1999  Hendrik Ruijter Removed call to strlen in libc and removed
15 *!                              struct assignment as it generates calls to
16 *!                              memcpy in libc.
17 *! Jun 17 1999  Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18 *! Jul 21 1999  Bjorn Wesen     eLinux port
19 *!
20 *!---------------------------------------------------------------------------
21 *!
22 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23 *!
24 *!**************************************************************************/
25 /* @(#) cris_stub.c 1.3 06/17/99 */
26 
27 /*
28  *  kgdb usage notes:
29  *  -----------------
30  *
31  * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32  * built with different gcc flags: "-g" is added to get debug infos, and
33  * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34  * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35  * before compresion. Such a kernel will behave just as usually, except if
36  * given a "debug=<device>" command line option. (Only serial devices are
37  * allowed for <device>, i.e. no printers or the like; possible values are
38  * machine depedend and are the same as for the usual debug device, the one
39  * for logging kernel messages.) If that option is given and the device can be
40  * initialized, the kernel will connect to the remote gdb in trap_init(). The
41  * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42  * implementation.
43  *
44  * To start a debugging session, start that gdb with the debugging kernel
45  * image (the one with the symbols, vmlinux.debug) named on the command line.
46  * This file will be used by gdb to get symbol and debugging infos about the
47  * kernel. Next, select remote debug mode by
48  *    target remote <device>
49  * where <device> is the name of the serial device over which the debugged
50  * machine is connected. Maybe you have to adjust the baud rate by
51  *    set remotebaud <rate>
52  * or also other parameters with stty:
53  *    shell stty ... </dev/...
54  * If the kernel to debug has already booted, it waited for gdb and now
55  * connects, and you'll see a breakpoint being reported. If the kernel isn't
56  * running yet, start it now. The order of gdb and the kernel doesn't matter.
57  * Another thing worth knowing about in the getting-started phase is how to
58  * debug the remote protocol itself. This is activated with
59  *    set remotedebug 1
60  * gdb will then print out each packet sent or received. You'll also get some
61  * messages about the gdb stub on the console of the debugged machine.
62  *
63  * If all that works, you can use lots of the usual debugging techniques on
64  * the kernel, e.g. inspecting and changing variables/memory, setting
65  * breakpoints, single stepping and so on. It's also possible to interrupt the
66  * debugged kernel by pressing C-c in gdb. Have fun! :-)
67  *
68  * The gdb stub is entered (and thus the remote gdb gets control) in the
69  * following situations:
70  *
71  *  - If breakpoint() is called. This is just after kgdb initialization, or if
72  *    a breakpoint() call has been put somewhere into the kernel source.
73  *    (Breakpoints can of course also be set the usual way in gdb.)
74  *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75  *
76  *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77  *    are entered. All the CPU exceptions are mapped to (more or less..., see
78  *    the hard_trap_info array below) appropriate signal, which are reported
79  *    to gdb. die_if_kernel() is usually called after some kind of access
80  *    error and thus is reported as SIGSEGV.
81  *
82  *  - When panic() is called. This is reported as SIGABRT.
83  *
84  *  - If C-c is received over the serial line, which is treated as
85  *    SIGINT.
86  *
87  * Of course, all these signals are just faked for gdb, since there is no
88  * signal concept as such for the kernel. It also isn't possible --obviously--
89  * to set signal handlers from inside gdb, or restart the kernel with a
90  * signal.
91  *
92  * Current limitations:
93  *
94  *  - While the kernel is stopped, interrupts are disabled for safety reasons
95  *    (i.e., variables not changing magically or the like). But this also
96  *    means that the clock isn't running anymore, and that interrupts from the
97  *    hardware may get lost/not be served in time. This can cause some device
98  *    errors...
99  *
100  *  - When single-stepping, only one instruction of the current thread is
101  *    executed, but interrupts are allowed for that time and will be serviced
102  *    if pending. Be prepared for that.
103  *
104  *  - All debugging happens in kernel virtual address space. There's no way to
105  *    access physical memory not mapped in kernel space, or to access user
106  *    space. A way to work around this is using get_user_long & Co. in gdb
107  *    expressions, but only for the current process.
108  *
109  *  - Interrupting the kernel only works if interrupts are currently allowed,
110  *    and the interrupt of the serial line isn't blocked by some other means
111  *    (IPL too high, disabled, ...)
112  *
113  *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
114  *    (e.g. accessing invalid memory) may not be caught correctly. This could
115  *    be removed in future by introducing a stack of struct registers.
116  *
117  */
118 
119 /*
120  *  To enable debugger support, two things need to happen.  One, a
121  *  call to kgdb_init() is necessary in order to allow any breakpoints
122  *  or error conditions to be properly intercepted and reported to gdb.
123  *  Two, a breakpoint needs to be generated to begin communication.  This
124  *  is most easily accomplished by a call to breakpoint().
125  *
126  *    The following gdb commands are supported:
127  *
128  * command          function                               Return value
129  *
130  *    g             return the value of the CPU registers  hex data or ENN
131  *    G             set the value of the CPU registers     OK or ENN
132  *
133  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
134  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
135  *
136  *    c             Resume at current address              SNN   ( signal NN)
137  *    cAA..AA       Continue at address AA..AA             SNN
138  *
139  *    s             Step one instruction                   SNN
140  *    sAA..AA       Step one instruction from AA..AA       SNN
141  *
142  *    k             kill
143  *
144  *    ?             What was the last sigval ?             SNN   (signal NN)
145  *
146  *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
147  *							   baud rate
148  *
149  * All commands and responses are sent with a packet which includes a
150  * checksum.  A packet consists of
151  *
152  * $<packet info>#<checksum>.
153  *
154  * where
155  * <packet info> :: <characters representing the command or response>
156  * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157  *
158  * When a packet is received, it is first acknowledged with either '+' or '-'.
159  * '+' indicates a successful transfer.  '-' indicates a failed transfer.
160  *
161  * Example:
162  *
163  * Host:                  Reply:
164  * $m0,10#2a               +$00010203040506070809101112131415#42
165  *
166  */
167 
168 
169 #include <linux/string.h>
170 #include <linux/signal.h>
171 #include <linux/kernel.h>
172 #include <linux/delay.h>
173 #include <linux/linkage.h>
174 #include <linux/reboot.h>
175 
176 #include <asm/setup.h>
177 #include <asm/ptrace.h>
178 
179 #include <arch/svinto.h>
180 #include <asm/irq.h>
181 
182 static int kgdb_started = 0;
183 
184 /********************************* Register image ****************************/
185 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186    Reference", p. 1-1, with the additional register definitions of the
187    ETRAX 100LX in cris-opc.h.
188    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189    pointer, SP, and R15 is the program counter, PC.
190    There are 16 special registers, P0-P15, where three of the unimplemented
191    registers, P0, P4 and P8, are reserved as zero-registers. A read from
192    any of these registers returns zero and a write has no effect. */
193 
194 typedef
195 struct register_image
196 {
197 	/* Offset */
198 	unsigned int     r0;   /* 0x00 */
199 	unsigned int     r1;   /* 0x04 */
200 	unsigned int     r2;   /* 0x08 */
201 	unsigned int     r3;   /* 0x0C */
202 	unsigned int     r4;   /* 0x10 */
203 	unsigned int     r5;   /* 0x14 */
204 	unsigned int     r6;   /* 0x18 */
205 	unsigned int     r7;   /* 0x1C */
206 	unsigned int     r8;   /* 0x20 Frame pointer */
207 	unsigned int     r9;   /* 0x24 */
208 	unsigned int    r10;   /* 0x28 */
209 	unsigned int    r11;   /* 0x2C */
210 	unsigned int    r12;   /* 0x30 */
211 	unsigned int    r13;   /* 0x34 */
212 	unsigned int     sp;   /* 0x38 Stack pointer */
213 	unsigned int     pc;   /* 0x3C Program counter */
214 
215         unsigned char    p0;   /* 0x40 8-bit zero-register */
216 	unsigned char    vr;   /* 0x41 Version register */
217 
218         unsigned short   p4;   /* 0x42 16-bit zero-register */
219 	unsigned short  ccr;   /* 0x44 Condition code register */
220 
221 	unsigned int    mof;   /* 0x46 Multiply overflow register */
222 
223         unsigned int     p8;   /* 0x4A 32-bit zero-register */
224 	unsigned int    ibr;   /* 0x4E Interrupt base register */
225 	unsigned int    irp;   /* 0x52 Interrupt return pointer */
226 	unsigned int    srp;   /* 0x56 Subroutine return pointer */
227 	unsigned int    bar;   /* 0x5A Breakpoint address register */
228 	unsigned int   dccr;   /* 0x5E Double condition code register */
229 	unsigned int    brp;   /* 0x62 Breakpoint return pointer (pc in caller) */
230 	unsigned int    usp;   /* 0x66 User mode stack pointer */
231 } registers;
232 
233 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
234 int getDebugChar (void);
235 
236 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
237 void putDebugChar (int val);
238 
239 void enableDebugIRQ (void);
240 
241 /******************** Prototypes for global functions. ***********************/
242 
243 /* The string str is prepended with the GDB printout token and sent. */
244 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
245 
246 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
247    ETRAX 100 specific. */
248 void handle_breakpoint (void);                          /* used by irq.c */
249 
250 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
251 void handle_interrupt (void);                           /* used by irq.c */
252 
253 /* A static breakpoint to be used at startup. */
254 void breakpoint (void);                                 /* called by init/main.c */
255 
256 /* From osys_int.c, executing_task contains the number of the current
257    executing task in osys. Does not know of object-oriented threads. */
258 extern unsigned char executing_task;
259 
260 /* The number of characters used for a 64 bit thread identifier. */
261 #define HEXCHARS_IN_THREAD_ID 16
262 
263 /********************************** Packet I/O ******************************/
264 /* BUFMAX defines the maximum number of characters in
265    inbound/outbound buffers */
266 #define BUFMAX 512
267 
268 /* Run-length encoding maximum length. Send 64 at most. */
269 #define RUNLENMAX 64
270 
271 /* The inbound/outbound buffers used in packet I/O */
272 static char remcomInBuffer[BUFMAX];
273 static char remcomOutBuffer[BUFMAX];
274 
275 /* Error and warning messages. */
276 enum error_type
277 {
278 	SUCCESS, E01, E02, E03, E04, E05, E06, E07
279 };
280 static char *error_message[] =
281 {
282 	"",
283 	"E01 Set current or general thread - H[c,g] - internal error.",
284 	"E02 Change register content - P - cannot change read-only register.",
285 	"E03 Thread is not alive.", /* T, not used. */
286 	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
287 	"E05 Change register content - P - the register is not implemented..",
288 	"E06 Change memory content - M - internal error.",
289 	"E07 Change register content - P - the register is not stored on the stack"
290 };
291 /********************************* Register image ****************************/
292 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
293    Reference", p. 1-1, with the additional register definitions of the
294    ETRAX 100LX in cris-opc.h.
295    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
296    pointer, SP, and R15 is the program counter, PC.
297    There are 16 special registers, P0-P15, where three of the unimplemented
298    registers, P0, P4 and P8, are reserved as zero-registers. A read from
299    any of these registers returns zero and a write has no effect. */
300 enum register_name
301 {
302 	R0,  R1,   R2,  R3,
303 	R4,  R5,   R6,  R7,
304 	R8,  R9,   R10, R11,
305 	R12, R13,  SP,  PC,
306 	P0,  VR,   P2,  P3,
307 	P4,  CCR,  P6,  MOF,
308 	P8,  IBR,  IRP, SRP,
309 	BAR, DCCR, BRP, USP
310 };
311 
312 /* The register sizes of the registers in register_name. An unimplemented register
313    is designated by size 0 in this array. */
314 static int register_size[] =
315 {
316 	4, 4, 4, 4,
317 	4, 4, 4, 4,
318 	4, 4, 4, 4,
319 	4, 4, 4, 4,
320 	1, 1, 0, 0,
321 	2, 2, 0, 4,
322 	4, 4, 4, 4,
323 	4, 4, 4, 4
324 };
325 
326 /* Contains the register image of the executing thread in the assembler
327    part of the code in order to avoid horrible addressing modes. */
328 registers cris_reg;
329 
330 /* FIXME: Should this be used? Delete otherwise. */
331 /* Contains the assumed consistency state of the register image. Uses the
332    enum error_type for state information. */
333 static int consistency_status = SUCCESS;
334 
335 /********************************** Handle exceptions ************************/
336 /* The variable cris_reg contains the register image associated with the
337    current_thread_c variable. It is a complete register image created at
338    entry. The reg_g contains a register image of a task where the general
339    registers are taken from the stack and all special registers are taken
340    from the executing task. It is associated with current_thread_g and used
341    in order to provide access mainly for 'g', 'G' and 'P'.
342 */
343 
344 /********************************** Breakpoint *******************************/
345 /* Use an internal stack in the breakpoint and interrupt response routines */
346 #define INTERNAL_STACK_SIZE 1024
347 char internal_stack[INTERNAL_STACK_SIZE];
348 
349 /* Due to the breakpoint return pointer, a state variable is needed to keep
350    track of whether it is a static (compiled) or dynamic (gdb-invoked)
351    breakpoint to be handled. A static breakpoint uses the content of register
352    BRP as it is whereas a dynamic breakpoint requires subtraction with 2
353    in order to execute the instruction. The first breakpoint is static. */
354 static unsigned char is_dyn_brkp = 0;
355 
356 /********************************* String library ****************************/
357 /* Single-step over library functions creates trap loops. */
358 
359 /* Copy char s2[] to s1[]. */
360 static char*
gdb_cris_strcpy(char * s1,const char * s2)361 gdb_cris_strcpy (char *s1, const char *s2)
362 {
363 	char *s = s1;
364 
365 	for (s = s1; (*s++ = *s2++) != '\0'; )
366 		;
367 	return (s1);
368 }
369 
370 /* Find length of s[]. */
371 static int
gdb_cris_strlen(const char * s)372 gdb_cris_strlen (const char *s)
373 {
374 	const char *sc;
375 
376 	for (sc = s; *sc != '\0'; sc++)
377 		;
378 	return (sc - s);
379 }
380 
381 /* Find first occurrence of c in s[n]. */
382 static void*
gdb_cris_memchr(const void * s,int c,int n)383 gdb_cris_memchr (const void *s, int c, int n)
384 {
385 	const unsigned char uc = c;
386 	const unsigned char *su;
387 
388 	for (su = s; 0 < n; ++su, --n)
389 		if (*su == uc)
390 			return ((void *)su);
391 	return (NULL);
392 }
393 /******************************* Standard library ****************************/
394 /* Single-step over library functions creates trap loops. */
395 /* Convert string to long. */
396 static int
gdb_cris_strtol(const char * s,char ** endptr,int base)397 gdb_cris_strtol (const char *s, char **endptr, int base)
398 {
399 	char *s1;
400 	char *sd;
401 	int x = 0;
402 
403 	for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
404 		x = x * base + (sd - hex_asc);
405 
406         if (endptr)
407         {
408                 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
409                 *endptr = s1;
410         }
411 
412 	return x;
413 }
414 
415 /********************************** Packet I/O ******************************/
416 /* Returns the integer equivalent of a hexadecimal character. */
417 static int
hex(char ch)418 hex (char ch)
419 {
420 	if ((ch >= 'a') && (ch <= 'f'))
421 		return (ch - 'a' + 10);
422 	if ((ch >= '0') && (ch <= '9'))
423 		return (ch - '0');
424 	if ((ch >= 'A') && (ch <= 'F'))
425 		return (ch - 'A' + 10);
426 	return (-1);
427 }
428 
429 /* Convert the memory, pointed to by mem into hexadecimal representation.
430    Put the result in buf, and return a pointer to the last character
431    in buf (null). */
432 
433 static char *
mem2hex(char * buf,unsigned char * mem,int count)434 mem2hex(char *buf, unsigned char *mem, int count)
435 {
436 	int i;
437 	int ch;
438 
439         if (mem == NULL) {
440                 /* Bogus read from m0. FIXME: What constitutes a valid address? */
441                 for (i = 0; i < count; i++) {
442                         *buf++ = '0';
443                         *buf++ = '0';
444                 }
445         } else {
446                 /* Valid mem address. */
447                 for (i = 0; i < count; i++) {
448                         ch = *mem++;
449 			buf = hex_byte_pack(buf, ch);
450                 }
451         }
452 
453         /* Terminate properly. */
454 	*buf = '\0';
455 	return (buf);
456 }
457 
458 /* Convert the array, in hexadecimal representation, pointed to by buf into
459    binary representation. Put the result in mem, and return a pointer to
460    the character after the last byte written. */
461 static unsigned char*
hex2mem(unsigned char * mem,char * buf,int count)462 hex2mem (unsigned char *mem, char *buf, int count)
463 {
464 	int i;
465 	unsigned char ch;
466 	for (i = 0; i < count; i++) {
467 		ch = hex (*buf++) << 4;
468 		ch = ch + hex (*buf++);
469 		*mem++ = ch;
470 	}
471 	return (mem);
472 }
473 
474 /* Put the content of the array, in binary representation, pointed to by buf
475    into memory pointed to by mem, and return a pointer to the character after
476    the last byte written.
477    Gdb will escape $, #, and the escape char (0x7d). */
478 static unsigned char*
bin2mem(unsigned char * mem,unsigned char * buf,int count)479 bin2mem (unsigned char *mem, unsigned char *buf, int count)
480 {
481 	int i;
482 	unsigned char *next;
483 	for (i = 0; i < count; i++) {
484 		/* Check for any escaped characters. Be paranoid and
485 		   only unescape chars that should be escaped. */
486 		if (*buf == 0x7d) {
487 			next = buf + 1;
488 			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
489 				{
490 					buf++;
491 					*buf += 0x20;
492 				}
493 		}
494 		*mem++ = *buf++;
495 	}
496 	return (mem);
497 }
498 
499 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
500    returned. */
501 static void
getpacket(char * buffer)502 getpacket (char *buffer)
503 {
504 	unsigned char checksum;
505 	unsigned char xmitcsum;
506 	int i;
507 	int count;
508 	char ch;
509 	do {
510 		while ((ch = getDebugChar ()) != '$')
511 			/* Wait for the start character $ and ignore all other characters */;
512 		checksum = 0;
513 		xmitcsum = -1;
514 		count = 0;
515 		/* Read until a # or the end of the buffer is reached */
516 		while (count < BUFMAX - 1) {
517 			ch = getDebugChar ();
518 			if (ch == '#')
519 				break;
520 			checksum = checksum + ch;
521 			buffer[count] = ch;
522 			count = count + 1;
523 		}
524 		buffer[count] = '\0';
525 
526 		if (ch == '#') {
527 			xmitcsum = hex (getDebugChar ()) << 4;
528 			xmitcsum += hex (getDebugChar ());
529 			if (checksum != xmitcsum) {
530 				/* Wrong checksum */
531 				putDebugChar ('-');
532 			}
533 			else {
534 				/* Correct checksum */
535 				putDebugChar ('+');
536 				/* If sequence characters are received, reply with them */
537 				if (buffer[2] == ':') {
538 					putDebugChar (buffer[0]);
539 					putDebugChar (buffer[1]);
540 					/* Remove the sequence characters from the buffer */
541 					count = gdb_cris_strlen (buffer);
542 					for (i = 3; i <= count; i++)
543 						buffer[i - 3] = buffer[i];
544 				}
545 			}
546 		}
547 	} while (checksum != xmitcsum);
548 }
549 
550 /* Send $<data>#<checksum> from the <data> in the array buffer. */
551 
552 static void
putpacket(char * buffer)553 putpacket(char *buffer)
554 {
555 	int checksum;
556 	int runlen;
557 	int encode;
558 
559 	do {
560 		char *src = buffer;
561 		putDebugChar ('$');
562 		checksum = 0;
563 		while (*src) {
564 			/* Do run length encoding */
565 			putDebugChar (*src);
566 			checksum += *src;
567 			runlen = 0;
568 			while (runlen < RUNLENMAX && *src == src[runlen]) {
569 				runlen++;
570 			}
571 			if (runlen > 3) {
572 				/* Got a useful amount */
573 				putDebugChar ('*');
574 				checksum += '*';
575 				encode = runlen + ' ' - 4;
576 				putDebugChar (encode);
577 				checksum += encode;
578 				src += runlen;
579 			}
580 			else {
581 				src++;
582 			}
583 		}
584 		putDebugChar('#');
585 		putDebugChar(hex_asc_hi(checksum));
586 		putDebugChar(hex_asc_lo(checksum));
587 	} while(kgdb_started && (getDebugChar() != '+'));
588 }
589 
590 /* The string str is prepended with the GDB printout token and sent. Required
591    in traditional implementations. */
592 void
putDebugString(const unsigned char * str,int length)593 putDebugString (const unsigned char *str, int length)
594 {
595         remcomOutBuffer[0] = 'O';
596         mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
597         putpacket(remcomOutBuffer);
598 }
599 
600 /********************************* Register image ****************************/
601 /* Write a value to a specified register in the register image of the current
602    thread. Returns status code SUCCESS, E02 or E05. */
603 static int
write_register(int regno,char * val)604 write_register (int regno, char *val)
605 {
606 	int status = SUCCESS;
607 	registers *current_reg = &cris_reg;
608 
609         if (regno >= R0 && regno <= PC) {
610 		/* 32-bit register with simple offset. */
611 		hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
612 			 val, sizeof(unsigned int));
613 	}
614         else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
615 		/* Do not support read-only registers. */
616 		status = E02;
617 	}
618         else if (regno == CCR) {
619 		/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
620                    and P7 (MOF) is 32 bits in ETRAX 100LX. */
621 		hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
622 			 val, sizeof(unsigned short));
623 	}
624 	else if (regno >= MOF && regno <= USP) {
625 		/* 32 bit register with complex offset.  (P8 has been taken care of.) */
626 		hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
627 			 val, sizeof(unsigned int));
628 	}
629         else {
630 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
631 		status = E05;
632 	}
633 	return status;
634 }
635 
636 /* Read a value from a specified register in the register image. Returns the
637    value in the register or -1 for non-implemented registers.
638    Should check consistency_status after a call which may be E05 after changes
639    in the implementation. */
640 static int
read_register(char regno,unsigned int * valptr)641 read_register (char regno, unsigned int *valptr)
642 {
643 	registers *current_reg = &cris_reg;
644 
645 	if (regno >= R0 && regno <= PC) {
646 		/* 32-bit register with simple offset. */
647 		*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
648                 return SUCCESS;
649 	}
650 	else if (regno == P0 || regno == VR) {
651 		/* 8 bit register with complex offset. */
652 		*valptr = (unsigned int)(*(unsigned char *)
653                                          ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
654                 return SUCCESS;
655 	}
656 	else if (regno == P4 || regno == CCR) {
657 		/* 16 bit register with complex offset. */
658 		*valptr = (unsigned int)(*(unsigned short *)
659                                          ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
660                 return SUCCESS;
661 	}
662 	else if (regno >= MOF && regno <= USP) {
663 		/* 32 bit register with complex offset. */
664 		*valptr = *(unsigned int *)((char *)&(current_reg->p8)
665                                             + (regno-P8) * sizeof(unsigned int));
666                 return SUCCESS;
667 	}
668 	else {
669 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
670 		consistency_status = E05;
671 		return E05;
672 	}
673 }
674 
675 /********************************** Handle exceptions ************************/
676 /* Build and send a response packet in order to inform the host the
677    stub is stopped. TAAn...:r...;n...:r...;n...:r...;
678                     AA = signal number
679                     n... = register number (hex)
680                     r... = register contents
681                     n... = `thread'
682                     r... = thread process ID.  This is a hex integer.
683                     n... = other string not starting with valid hex digit.
684                     gdb should ignore this n,r pair and go on to the next.
685                     This way we can extend the protocol. */
686 static void
stub_is_stopped(int sigval)687 stub_is_stopped(int sigval)
688 {
689 	char *ptr = remcomOutBuffer;
690 	int regno;
691 
692 	unsigned int reg_cont;
693 	int status;
694 
695 	/* Send trap type (converted to signal) */
696 
697 	*ptr++ = 'T';
698 	ptr = hex_byte_pack(ptr, sigval);
699 
700 	/* Send register contents. We probably only need to send the
701 	 * PC, frame pointer and stack pointer here. Other registers will be
702 	 * explicitly asked for. But for now, send all.
703 	 */
704 
705 	for (regno = R0; regno <= USP; regno++) {
706 		/* Store n...:r...; for the registers in the buffer. */
707 
708                 status = read_register (regno, &reg_cont);
709 
710 		if (status == SUCCESS) {
711 			ptr = hex_byte_pack(ptr, regno);
712                         *ptr++ = ':';
713 
714                         ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
715                                       register_size[regno]);
716                         *ptr++ = ';';
717                 }
718 
719 	}
720 
721 	/* null-terminate and send it off */
722 
723 	*ptr = 0;
724 
725 	putpacket (remcomOutBuffer);
726 }
727 
728 /* Performs a complete re-start from scratch. */
729 static void
kill_restart(void)730 kill_restart (void)
731 {
732 	machine_restart("");
733 }
734 
735 /* All expected commands are sent from remote.c. Send a response according
736    to the description in remote.c. */
737 void
handle_exception(int sigval)738 handle_exception (int sigval)
739 {
740 	/* Send response. */
741 
742 	stub_is_stopped (sigval);
743 
744 	for (;;) {
745 		remcomOutBuffer[0] = '\0';
746 		getpacket (remcomInBuffer);
747 		switch (remcomInBuffer[0]) {
748 			case 'g':
749 				/* Read registers: g
750 				   Success: Each byte of register data is described by two hex digits.
751 				   Registers are in the internal order for GDB, and the bytes
752 				   in a register  are in the same order the machine uses.
753 				   Failure: void. */
754 
755 				mem2hex(remcomOutBuffer, (char *)&cris_reg, sizeof(registers));
756 				break;
757 
758 			case 'G':
759 				/* Write registers. GXX..XX
760 				   Each byte of register data  is described by two hex digits.
761 				   Success: OK
762 				   Failure: void. */
763 				hex2mem((char *)&cris_reg, &remcomInBuffer[1], sizeof(registers));
764 				gdb_cris_strcpy (remcomOutBuffer, "OK");
765 				break;
766 
767 			case 'P':
768 				/* Write register. Pn...=r...
769 				   Write register n..., hex value without 0x, with value r...,
770 				   which contains a hex value without 0x and two hex digits
771 				   for each byte in the register (target byte order). P1f=11223344 means
772 				   set register 31 to 44332211.
773 				   Success: OK
774 				   Failure: E02, E05 */
775 				{
776 					char *suffix;
777 					int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
778 					int status;
779 					status = write_register (regno, suffix+1);
780 
781 					switch (status) {
782 						case E02:
783 							/* Do not support read-only registers. */
784 							gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
785 							break;
786 						case E05:
787 							/* Do not support non-existing registers. */
788 							gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
789 							break;
790 						case E07:
791 							/* Do not support non-existing registers on the stack. */
792 							gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
793 							break;
794 						default:
795 							/* Valid register number. */
796 							gdb_cris_strcpy (remcomOutBuffer, "OK");
797 							break;
798 					}
799 				}
800 				break;
801 
802 			case 'm':
803 				/* Read from memory. mAA..AA,LLLL
804 				   AA..AA is the address and LLLL is the length.
805 				   Success: XX..XX is the memory content.  Can be fewer bytes than
806 				   requested if only part of the data may be read. m6000120a,6c means
807 				   retrieve 108 byte from base address 6000120a.
808 				   Failure: void. */
809 				{
810                                         char *suffix;
811 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
812                                                                                                &suffix, 16);                                        int length = gdb_cris_strtol(suffix+1, 0, 16);
813 
814                                         mem2hex(remcomOutBuffer, addr, length);
815                                 }
816 				break;
817 
818 			case 'X':
819 				/* Write to memory. XAA..AA,LLLL:XX..XX
820 				   AA..AA is the start address,  LLLL is the number of bytes, and
821 				   XX..XX is the binary data.
822 				   Success: OK
823 				   Failure: void. */
824 			case 'M':
825 				/* Write to memory. MAA..AA,LLLL:XX..XX
826 				   AA..AA is the start address,  LLLL is the number of bytes, and
827 				   XX..XX is the hexadecimal data.
828 				   Success: OK
829 				   Failure: void. */
830 				{
831 					char *lenptr;
832 					char *dataptr;
833 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
834 										      &lenptr, 16);
835 					int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
836 					if (*lenptr == ',' && *dataptr == ':') {
837 						if (remcomInBuffer[0] == 'M') {
838 							hex2mem(addr, dataptr + 1, length);
839 						}
840 						else /* X */ {
841 							bin2mem(addr, dataptr + 1, length);
842 						}
843 						gdb_cris_strcpy (remcomOutBuffer, "OK");
844 					}
845 					else {
846 						gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
847 					}
848 				}
849 				break;
850 
851 			case 'c':
852 				/* Continue execution. cAA..AA
853 				   AA..AA is the address where execution is resumed. If AA..AA is
854 				   omitted, resume at the present address.
855 				   Success: return to the executing thread.
856 				   Failure: will never know. */
857 				if (remcomInBuffer[1] != '\0') {
858 					cris_reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
859 				}
860 				enableDebugIRQ();
861 				return;
862 
863 			case 's':
864 				/* Step. sAA..AA
865 				   AA..AA is the address where execution is resumed. If AA..AA is
866 				   omitted, resume at the present address. Success: return to the
867 				   executing thread. Failure: will never know.
868 
869 				   Should never be invoked. The single-step is implemented on
870 				   the host side. If ever invoked, it is an internal error E04. */
871 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
872 				putpacket (remcomOutBuffer);
873 				return;
874 
875 			case '?':
876 				/* The last signal which caused a stop. ?
877 				   Success: SAA, where AA is the signal number.
878 				   Failure: void. */
879 				remcomOutBuffer[0] = 'S';
880 				remcomOutBuffer[1] = hex_asc_hi(sigval);
881 				remcomOutBuffer[2] = hex_asc_lo(sigval);
882 				remcomOutBuffer[3] = 0;
883 				break;
884 
885 			case 'D':
886 				/* Detach from host. D
887 				   Success: OK, and return to the executing thread.
888 				   Failure: will never know */
889 				putpacket ("OK");
890 				return;
891 
892 			case 'k':
893 			case 'r':
894 				/* kill request or reset request.
895 				   Success: restart of target.
896 				   Failure: will never know. */
897 				kill_restart ();
898 				break;
899 
900 			case 'C':
901 			case 'S':
902 			case '!':
903 			case 'R':
904 			case 'd':
905 				/* Continue with signal sig. Csig;AA..AA
906 				   Step with signal sig. Ssig;AA..AA
907 				   Use the extended remote protocol. !
908 				   Restart the target system. R0
909 				   Toggle debug flag. d
910 				   Search backwards. tAA:PP,MM
911 				   Not supported: E04 */
912 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
913 				break;
914 
915 			default:
916 				/* The stub should ignore other request and send an empty
917 				   response ($#<checksum>). This way we can extend the protocol and GDB
918 				   can tell whether the stub it is talking to uses the old or the new. */
919 				remcomOutBuffer[0] = 0;
920 				break;
921 		}
922 		putpacket(remcomOutBuffer);
923 	}
924 }
925 
926 /********************************** Breakpoint *******************************/
927 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
928    An internal stack is used by the stub. The register image of the caller is
929    stored in the structure register_image.
930    Interactive communication with the host is handled by handle_exception and
931    finally the register image is restored. */
932 
933 void kgdb_handle_breakpoint(void);
934 
935 asm ("\n"
936 "  .global kgdb_handle_breakpoint\n"
937 "kgdb_handle_breakpoint:\n"
938 ";;\n"
939 ";; Response to the break-instruction\n"
940 ";;\n"
941 ";; Create a register image of the caller\n"
942 ";;\n"
943 "  move     $dccr,[cris_reg+0x5E] ; Save the flags in DCCR before disable interrupts\n"
944 "  di                        ; Disable interrupts\n"
945 "  move.d   $r0,[cris_reg]        ; Save R0\n"
946 "  move.d   $r1,[cris_reg+0x04]   ; Save R1\n"
947 "  move.d   $r2,[cris_reg+0x08]   ; Save R2\n"
948 "  move.d   $r3,[cris_reg+0x0C]   ; Save R3\n"
949 "  move.d   $r4,[cris_reg+0x10]   ; Save R4\n"
950 "  move.d   $r5,[cris_reg+0x14]   ; Save R5\n"
951 "  move.d   $r6,[cris_reg+0x18]   ; Save R6\n"
952 "  move.d   $r7,[cris_reg+0x1C]   ; Save R7\n"
953 "  move.d   $r8,[cris_reg+0x20]   ; Save R8\n"
954 "  move.d   $r9,[cris_reg+0x24]   ; Save R9\n"
955 "  move.d   $r10,[cris_reg+0x28]  ; Save R10\n"
956 "  move.d   $r11,[cris_reg+0x2C]  ; Save R11\n"
957 "  move.d   $r12,[cris_reg+0x30]  ; Save R12\n"
958 "  move.d   $r13,[cris_reg+0x34]  ; Save R13\n"
959 "  move.d   $sp,[cris_reg+0x38]   ; Save SP (R14)\n"
960 ";; Due to the old assembler-versions BRP might not be recognized\n"
961 "  .word 0xE670              ; move brp,$r0\n"
962 "  subq     2,$r0             ; Set to address of previous instruction.\n"
963 "  move.d   $r0,[cris_reg+0x3c]   ; Save the address in PC (R15)\n"
964 "  clear.b  [cris_reg+0x40]      ; Clear P0\n"
965 "  move     $vr,[cris_reg+0x41]   ; Save special register P1\n"
966 "  clear.w  [cris_reg+0x42]      ; Clear P4\n"
967 "  move     $ccr,[cris_reg+0x44]  ; Save special register CCR\n"
968 "  move     $mof,[cris_reg+0x46]  ; P7\n"
969 "  clear.d  [cris_reg+0x4A]      ; Clear P8\n"
970 "  move     $ibr,[cris_reg+0x4E]  ; P9,\n"
971 "  move     $irp,[cris_reg+0x52]  ; P10,\n"
972 "  move     $srp,[cris_reg+0x56]  ; P11,\n"
973 "  move     $dtp0,[cris_reg+0x5A] ; P12, register BAR, assembler might not know BAR\n"
974 "                            ; P13, register DCCR already saved\n"
975 ";; Due to the old assembler-versions BRP might not be recognized\n"
976 "  .word 0xE670              ; move brp,r0\n"
977 ";; Static (compiled) breakpoints must return to the next instruction in order\n"
978 ";; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction\n"
979 ";; in order to execute it when execution is continued.\n"
980 "  test.b   [is_dyn_brkp]    ; Is this a dynamic breakpoint?\n"
981 "  beq      is_static         ; No, a static breakpoint\n"
982 "  nop\n"
983 "  subq     2,$r0              ; rerun the instruction the break replaced\n"
984 "is_static:\n"
985 "  moveq    1,$r1\n"
986 "  move.b   $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint\n"
987 "  move.d   $r0,[cris_reg+0x62]    ; Save the return address in BRP\n"
988 "  move     $usp,[cris_reg+0x66]   ; USP\n"
989 ";;\n"
990 ";; Handle the communication\n"
991 ";;\n"
992 "  move.d   internal_stack+1020,$sp ; Use the internal stack which grows upward\n"
993 "  moveq    5,$r10                   ; SIGTRAP\n"
994 "  jsr      handle_exception       ; Interactive routine\n"
995 ";;\n"
996 ";; Return to the caller\n"
997 ";;\n"
998 "   move.d  [cris_reg],$r0         ; Restore R0\n"
999 "   move.d  [cris_reg+0x04],$r1    ; Restore R1\n"
1000 "   move.d  [cris_reg+0x08],$r2    ; Restore R2\n"
1001 "   move.d  [cris_reg+0x0C],$r3    ; Restore R3\n"
1002 "   move.d  [cris_reg+0x10],$r4    ; Restore R4\n"
1003 "   move.d  [cris_reg+0x14],$r5    ; Restore R5\n"
1004 "   move.d  [cris_reg+0x18],$r6    ; Restore R6\n"
1005 "   move.d  [cris_reg+0x1C],$r7    ; Restore R7\n"
1006 "   move.d  [cris_reg+0x20],$r8    ; Restore R8\n"
1007 "   move.d  [cris_reg+0x24],$r9    ; Restore R9\n"
1008 "   move.d  [cris_reg+0x28],$r10   ; Restore R10\n"
1009 "   move.d  [cris_reg+0x2C],$r11   ; Restore R11\n"
1010 "   move.d  [cris_reg+0x30],$r12   ; Restore R12\n"
1011 "   move.d  [cris_reg+0x34],$r13   ; Restore R13\n"
1012 ";;\n"
1013 ";; FIXME: Which registers should be restored?\n"
1014 ";;\n"
1015 "   move.d  [cris_reg+0x38],$sp    ; Restore SP (R14)\n"
1016 "   move    [cris_reg+0x56],$srp   ; Restore the subroutine return pointer.\n"
1017 "   move    [cris_reg+0x5E],$dccr  ; Restore DCCR\n"
1018 "   move    [cris_reg+0x66],$usp   ; Restore USP\n"
1019 "   jump    [cris_reg+0x62]       ; A jump to the content in register BRP works.\n"
1020 "   nop                       ;\n"
1021 "\n");
1022 
1023 /* The hook for an interrupt generated by GDB. An internal stack is used
1024    by the stub. The register image of the caller is stored in the structure
1025    register_image. Interactive communication with the host is handled by
1026    handle_exception and finally the register image is restored. Due to the
1027    old assembler which does not recognise the break instruction and the
1028    breakpoint return pointer hex-code is used. */
1029 
1030 void kgdb_handle_serial(void);
1031 
1032 asm ("\n"
1033 "  .global kgdb_handle_serial\n"
1034 "kgdb_handle_serial:\n"
1035 ";;\n"
1036 ";; Response to a serial interrupt\n"
1037 ";;\n"
1038 "\n"
1039 "  move     $dccr,[cris_reg+0x5E] ; Save the flags in DCCR\n"
1040 "  di                        ; Disable interrupts\n"
1041 "  move.d   $r0,[cris_reg]        ; Save R0\n"
1042 "  move.d   $r1,[cris_reg+0x04]   ; Save R1\n"
1043 "  move.d   $r2,[cris_reg+0x08]   ; Save R2\n"
1044 "  move.d   $r3,[cris_reg+0x0C]   ; Save R3\n"
1045 "  move.d   $r4,[cris_reg+0x10]   ; Save R4\n"
1046 "  move.d   $r5,[cris_reg+0x14]   ; Save R5\n"
1047 "  move.d   $r6,[cris_reg+0x18]   ; Save R6\n"
1048 "  move.d   $r7,[cris_reg+0x1C]   ; Save R7\n"
1049 "  move.d   $r8,[cris_reg+0x20]   ; Save R8\n"
1050 "  move.d   $r9,[cris_reg+0x24]   ; Save R9\n"
1051 "  move.d   $r10,[cris_reg+0x28]  ; Save R10\n"
1052 "  move.d   $r11,[cris_reg+0x2C]  ; Save R11\n"
1053 "  move.d   $r12,[cris_reg+0x30]  ; Save R12\n"
1054 "  move.d   $r13,[cris_reg+0x34]  ; Save R13\n"
1055 "  move.d   $sp,[cris_reg+0x38]   ; Save SP (R14)\n"
1056 "  move     $irp,[cris_reg+0x3c]  ; Save the address in PC (R15)\n"
1057 "  clear.b  [cris_reg+0x40]      ; Clear P0\n"
1058 "  move     $vr,[cris_reg+0x41]   ; Save special register P1,\n"
1059 "  clear.w  [cris_reg+0x42]      ; Clear P4\n"
1060 "  move     $ccr,[cris_reg+0x44]  ; Save special register CCR\n"
1061 "  move     $mof,[cris_reg+0x46]  ; P7\n"
1062 "  clear.d  [cris_reg+0x4A]      ; Clear P8\n"
1063 "  move     $ibr,[cris_reg+0x4E]  ; P9,\n"
1064 "  move     $irp,[cris_reg+0x52]  ; P10,\n"
1065 "  move     $srp,[cris_reg+0x56]  ; P11,\n"
1066 "  move     $dtp0,[cris_reg+0x5A] ; P12, register BAR, assembler might not know BAR\n"
1067 "                            ; P13, register DCCR already saved\n"
1068 ";; Due to the old assembler-versions BRP might not be recognized\n"
1069 "  .word 0xE670              ; move brp,r0\n"
1070 "  move.d   $r0,[cris_reg+0x62]   ; Save the return address in BRP\n"
1071 "  move     $usp,[cris_reg+0x66]  ; USP\n"
1072 "\n"
1073 ";; get the serial character (from debugport.c) and check if it is a ctrl-c\n"
1074 "\n"
1075 "  jsr getDebugChar\n"
1076 "  cmp.b 3, $r10\n"
1077 "  bne goback\n"
1078 "  nop\n"
1079 "\n"
1080 "  move.d  [cris_reg+0x5E], $r10		; Get DCCR\n"
1081 "  btstq	   8, $r10			; Test the U-flag.\n"
1082 "  bmi	   goback\n"
1083 "  nop\n"
1084 "\n"
1085 ";;\n"
1086 ";; Handle the communication\n"
1087 ";;\n"
1088 "  move.d   internal_stack+1020,$sp ; Use the internal stack\n"
1089 "  moveq    2,$r10                   ; SIGINT\n"
1090 "  jsr      handle_exception       ; Interactive routine\n"
1091 "\n"
1092 "goback:\n"
1093 ";;\n"
1094 ";; Return to the caller\n"
1095 ";;\n"
1096 "   move.d  [cris_reg],$r0         ; Restore R0\n"
1097 "   move.d  [cris_reg+0x04],$r1    ; Restore R1\n"
1098 "   move.d  [cris_reg+0x08],$r2    ; Restore R2\n"
1099 "   move.d  [cris_reg+0x0C],$r3    ; Restore R3\n"
1100 "   move.d  [cris_reg+0x10],$r4    ; Restore R4\n"
1101 "   move.d  [cris_reg+0x14],$r5    ; Restore R5\n"
1102 "   move.d  [cris_reg+0x18],$r6    ; Restore R6\n"
1103 "   move.d  [cris_reg+0x1C],$r7    ; Restore R7\n"
1104 "   move.d  [cris_reg+0x20],$r8    ; Restore R8\n"
1105 "   move.d  [cris_reg+0x24],$r9    ; Restore R9\n"
1106 "   move.d  [cris_reg+0x28],$r10   ; Restore R10\n"
1107 "   move.d  [cris_reg+0x2C],$r11   ; Restore R11\n"
1108 "   move.d  [cris_reg+0x30],$r12   ; Restore R12\n"
1109 "   move.d  [cris_reg+0x34],$r13   ; Restore R13\n"
1110 ";;\n"
1111 ";; FIXME: Which registers should be restored?\n"
1112 ";;\n"
1113 "   move.d  [cris_reg+0x38],$sp    ; Restore SP (R14)\n"
1114 "   move    [cris_reg+0x56],$srp   ; Restore the subroutine return pointer.\n"
1115 "   move    [cris_reg+0x5E],$dccr  ; Restore DCCR\n"
1116 "   move    [cris_reg+0x66],$usp   ; Restore USP\n"
1117 "   reti                      ; Return from the interrupt routine\n"
1118 "   nop\n"
1119 "\n");
1120 
1121 /* Use this static breakpoint in the start-up only. */
1122 
1123 void
breakpoint(void)1124 breakpoint(void)
1125 {
1126 	kgdb_started = 1;
1127 	is_dyn_brkp = 0;     /* This is a static, not a dynamic breakpoint. */
1128 	__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1129 }
1130 
1131 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1132 
1133 void
kgdb_init(void)1134 kgdb_init(void)
1135 {
1136 	/* could initialize debug port as well but it's done in head.S already... */
1137 
1138         /* breakpoint handler is now set in irq.c */
1139 	set_int_vector(8, kgdb_handle_serial);
1140 
1141 	enableDebugIRQ();
1142 }
1143 
1144 /****************************** End of file **********************************/
1145