1/*
2 * SRAM allocator for Blackfin on-chip memory
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later.
7 */
8
9#include <linux/module.h>
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/miscdevice.h>
13#include <linux/ioport.h>
14#include <linux/fcntl.h>
15#include <linux/init.h>
16#include <linux/poll.h>
17#include <linux/proc_fs.h>
18#include <linux/seq_file.h>
19#include <linux/spinlock.h>
20#include <linux/rtc.h>
21#include <linux/slab.h>
22#include <asm/blackfin.h>
23#include <asm/mem_map.h>
24#include "blackfin_sram.h"
25
26/* the data structure for L1 scratchpad and DATA SRAM */
27struct sram_piece {
28	void *paddr;
29	int size;
30	pid_t pid;
31	struct sram_piece *next;
32};
33
34static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
35static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
36static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
37
38#if L1_DATA_A_LENGTH != 0
39static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
40static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
41#endif
42
43#if L1_DATA_B_LENGTH != 0
44static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
45static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
46#endif
47
48#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
49static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
50#endif
51
52#if L1_CODE_LENGTH != 0
53static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
54static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
55static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
56#endif
57
58#if L2_LENGTH != 0
59static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
60static struct sram_piece free_l2_sram_head, used_l2_sram_head;
61#endif
62
63static struct kmem_cache *sram_piece_cache;
64
65/* L1 Scratchpad SRAM initialization function */
66static void __init l1sram_init(void)
67{
68	unsigned int cpu;
69	unsigned long reserve;
70
71#ifdef CONFIG_SMP
72	reserve = 0;
73#else
74	reserve = sizeof(struct l1_scratch_task_info);
75#endif
76
77	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
78		per_cpu(free_l1_ssram_head, cpu).next =
79			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80		if (!per_cpu(free_l1_ssram_head, cpu).next) {
81			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
82			return;
83		}
84
85		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
86		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
87		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
88		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
89
90		per_cpu(used_l1_ssram_head, cpu).next = NULL;
91
92		/* mutex initialize */
93		spin_lock_init(&per_cpu(l1sram_lock, cpu));
94		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
95			L1_SCRATCH_LENGTH >> 10);
96	}
97}
98
99static void __init l1_data_sram_init(void)
100{
101#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102	unsigned int cpu;
103#endif
104#if L1_DATA_A_LENGTH != 0
105	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106		per_cpu(free_l1_data_A_sram_head, cpu).next =
107			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110			return;
111		}
112
113		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
116			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
117		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119
120		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121
122		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123			L1_DATA_A_LENGTH >> 10,
124			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125	}
126#endif
127#if L1_DATA_B_LENGTH != 0
128	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129		per_cpu(free_l1_data_B_sram_head, cpu).next =
130			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133			return;
134		}
135
136		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
139			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
140		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142
143		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144
145		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146			L1_DATA_B_LENGTH >> 10,
147			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148		/* mutex initialize */
149	}
150#endif
151
152#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155#endif
156}
157
158static void __init l1_inst_sram_init(void)
159{
160#if L1_CODE_LENGTH != 0
161	unsigned int cpu;
162	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163		per_cpu(free_l1_inst_sram_head, cpu).next =
164			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167			return;
168		}
169
170		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172		per_cpu(free_l1_inst_sram_head, cpu).next->size =
173			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
174		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176
177		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178
179		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180			L1_CODE_LENGTH >> 10,
181			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182
183		/* mutex initialize */
184		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185	}
186#endif
187}
188
189#ifdef __ADSPBF60x__
190static irqreturn_t l2_ecc_err(int irq, void *dev_id)
191{
192	int status;
193
194	printk(KERN_ERR "L2 ecc error happened\n");
195	status = bfin_read32(L2CTL0_STAT);
196	if (status & 0x1)
197		printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
198			bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
199	if (status & 0x2)
200		printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
201			bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
202
203	status = status >> 8;
204	if (status)
205		printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
206			status, bfin_read32(L2CTL0_ERRADDR0 + status));
207
208	panic("L2 Ecc error");
209	return IRQ_HANDLED;
210}
211#endif
212
213static void __init l2_sram_init(void)
214{
215#if L2_LENGTH != 0
216
217#ifdef __ADSPBF60x__
218	int ret;
219
220	ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
221			NULL);
222	if (unlikely(ret < 0)) {
223		printk(KERN_INFO "Fail to request l2 ecc error interrupt");
224		return;
225	}
226#endif
227
228	free_l2_sram_head.next =
229		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
230	if (!free_l2_sram_head.next) {
231		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
232		return;
233	}
234
235	free_l2_sram_head.next->paddr =
236		(void *)L2_START + (_ebss_l2 - _stext_l2);
237	free_l2_sram_head.next->size =
238		L2_LENGTH - (_ebss_l2 - _stext_l2);
239	free_l2_sram_head.next->pid = 0;
240	free_l2_sram_head.next->next = NULL;
241
242	used_l2_sram_head.next = NULL;
243
244	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
245		L2_LENGTH >> 10,
246		free_l2_sram_head.next->size >> 10);
247
248	/* mutex initialize */
249	spin_lock_init(&l2_sram_lock);
250#endif
251}
252
253static int __init bfin_sram_init(void)
254{
255	sram_piece_cache = kmem_cache_create("sram_piece_cache",
256				sizeof(struct sram_piece),
257				0, SLAB_PANIC, NULL);
258
259	l1sram_init();
260	l1_data_sram_init();
261	l1_inst_sram_init();
262	l2_sram_init();
263
264	return 0;
265}
266pure_initcall(bfin_sram_init);
267
268/* SRAM allocate function */
269static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
270		struct sram_piece *pused_head)
271{
272	struct sram_piece *pslot, *plast, *pavail;
273
274	if (size <= 0 || !pfree_head || !pused_head)
275		return NULL;
276
277	/* Align the size */
278	size = (size + 3) & ~3;
279
280	pslot = pfree_head->next;
281	plast = pfree_head;
282
283	/* search an available piece slot */
284	while (pslot != NULL && size > pslot->size) {
285		plast = pslot;
286		pslot = pslot->next;
287	}
288
289	if (!pslot)
290		return NULL;
291
292	if (pslot->size == size) {
293		plast->next = pslot->next;
294		pavail = pslot;
295	} else {
296		/* use atomic so our L1 allocator can be used atomically */
297		pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
298
299		if (!pavail)
300			return NULL;
301
302		pavail->paddr = pslot->paddr;
303		pavail->size = size;
304		pslot->paddr += size;
305		pslot->size -= size;
306	}
307
308	pavail->pid = current->pid;
309
310	pslot = pused_head->next;
311	plast = pused_head;
312
313	/* insert new piece into used piece list !!! */
314	while (pslot != NULL && pavail->paddr < pslot->paddr) {
315		plast = pslot;
316		pslot = pslot->next;
317	}
318
319	pavail->next = pslot;
320	plast->next = pavail;
321
322	return pavail->paddr;
323}
324
325/* Allocate the largest available block.  */
326static void *_sram_alloc_max(struct sram_piece *pfree_head,
327				struct sram_piece *pused_head,
328				unsigned long *psize)
329{
330	struct sram_piece *pslot, *pmax;
331
332	if (!pfree_head || !pused_head)
333		return NULL;
334
335	pmax = pslot = pfree_head->next;
336
337	/* search an available piece slot */
338	while (pslot != NULL) {
339		if (pslot->size > pmax->size)
340			pmax = pslot;
341		pslot = pslot->next;
342	}
343
344	if (!pmax)
345		return NULL;
346
347	*psize = pmax->size;
348
349	return _sram_alloc(*psize, pfree_head, pused_head);
350}
351
352/* SRAM free function */
353static int _sram_free(const void *addr,
354			struct sram_piece *pfree_head,
355			struct sram_piece *pused_head)
356{
357	struct sram_piece *pslot, *plast, *pavail;
358
359	if (!pfree_head || !pused_head)
360		return -1;
361
362	/* search the relevant memory slot */
363	pslot = pused_head->next;
364	plast = pused_head;
365
366	/* search an available piece slot */
367	while (pslot != NULL && pslot->paddr != addr) {
368		plast = pslot;
369		pslot = pslot->next;
370	}
371
372	if (!pslot)
373		return -1;
374
375	plast->next = pslot->next;
376	pavail = pslot;
377	pavail->pid = 0;
378
379	/* insert free pieces back to the free list */
380	pslot = pfree_head->next;
381	plast = pfree_head;
382
383	while (pslot != NULL && addr > pslot->paddr) {
384		plast = pslot;
385		pslot = pslot->next;
386	}
387
388	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
389		plast->size += pavail->size;
390		kmem_cache_free(sram_piece_cache, pavail);
391	} else {
392		pavail->next = plast->next;
393		plast->next = pavail;
394		plast = pavail;
395	}
396
397	if (pslot && plast->paddr + plast->size == pslot->paddr) {
398		plast->size += pslot->size;
399		plast->next = pslot->next;
400		kmem_cache_free(sram_piece_cache, pslot);
401	}
402
403	return 0;
404}
405
406int sram_free(const void *addr)
407{
408
409#if L1_CODE_LENGTH != 0
410	if (addr >= (void *)get_l1_code_start()
411		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
412		return l1_inst_sram_free(addr);
413	else
414#endif
415#if L1_DATA_A_LENGTH != 0
416	if (addr >= (void *)get_l1_data_a_start()
417		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
418		return l1_data_A_sram_free(addr);
419	else
420#endif
421#if L1_DATA_B_LENGTH != 0
422	if (addr >= (void *)get_l1_data_b_start()
423		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
424		return l1_data_B_sram_free(addr);
425	else
426#endif
427#if L2_LENGTH != 0
428	if (addr >= (void *)L2_START
429		 && addr < (void *)(L2_START + L2_LENGTH))
430		return l2_sram_free(addr);
431	else
432#endif
433		return -1;
434}
435EXPORT_SYMBOL(sram_free);
436
437void *l1_data_A_sram_alloc(size_t size)
438{
439#if L1_DATA_A_LENGTH != 0
440	unsigned long flags;
441	void *addr;
442	unsigned int cpu;
443
444	cpu = smp_processor_id();
445	/* add mutex operation */
446	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
447
448	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
449			&per_cpu(used_l1_data_A_sram_head, cpu));
450
451	/* add mutex operation */
452	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
453
454	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
455		 (long unsigned int)addr, size);
456
457	return addr;
458#else
459	return NULL;
460#endif
461}
462EXPORT_SYMBOL(l1_data_A_sram_alloc);
463
464int l1_data_A_sram_free(const void *addr)
465{
466#if L1_DATA_A_LENGTH != 0
467	unsigned long flags;
468	int ret;
469	unsigned int cpu;
470
471	cpu = smp_processor_id();
472	/* add mutex operation */
473	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
474
475	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
476			&per_cpu(used_l1_data_A_sram_head, cpu));
477
478	/* add mutex operation */
479	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
480
481	return ret;
482#else
483	return -1;
484#endif
485}
486EXPORT_SYMBOL(l1_data_A_sram_free);
487
488void *l1_data_B_sram_alloc(size_t size)
489{
490#if L1_DATA_B_LENGTH != 0
491	unsigned long flags;
492	void *addr;
493	unsigned int cpu;
494
495	cpu = smp_processor_id();
496	/* add mutex operation */
497	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
498
499	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
500			&per_cpu(used_l1_data_B_sram_head, cpu));
501
502	/* add mutex operation */
503	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
504
505	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
506		 (long unsigned int)addr, size);
507
508	return addr;
509#else
510	return NULL;
511#endif
512}
513EXPORT_SYMBOL(l1_data_B_sram_alloc);
514
515int l1_data_B_sram_free(const void *addr)
516{
517#if L1_DATA_B_LENGTH != 0
518	unsigned long flags;
519	int ret;
520	unsigned int cpu;
521
522	cpu = smp_processor_id();
523	/* add mutex operation */
524	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
525
526	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
527			&per_cpu(used_l1_data_B_sram_head, cpu));
528
529	/* add mutex operation */
530	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
531
532	return ret;
533#else
534	return -1;
535#endif
536}
537EXPORT_SYMBOL(l1_data_B_sram_free);
538
539void *l1_data_sram_alloc(size_t size)
540{
541	void *addr = l1_data_A_sram_alloc(size);
542
543	if (!addr)
544		addr = l1_data_B_sram_alloc(size);
545
546	return addr;
547}
548EXPORT_SYMBOL(l1_data_sram_alloc);
549
550void *l1_data_sram_zalloc(size_t size)
551{
552	void *addr = l1_data_sram_alloc(size);
553
554	if (addr)
555		memset(addr, 0x00, size);
556
557	return addr;
558}
559EXPORT_SYMBOL(l1_data_sram_zalloc);
560
561int l1_data_sram_free(const void *addr)
562{
563	int ret;
564	ret = l1_data_A_sram_free(addr);
565	if (ret == -1)
566		ret = l1_data_B_sram_free(addr);
567	return ret;
568}
569EXPORT_SYMBOL(l1_data_sram_free);
570
571void *l1_inst_sram_alloc(size_t size)
572{
573#if L1_CODE_LENGTH != 0
574	unsigned long flags;
575	void *addr;
576	unsigned int cpu;
577
578	cpu = smp_processor_id();
579	/* add mutex operation */
580	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
581
582	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
583			&per_cpu(used_l1_inst_sram_head, cpu));
584
585	/* add mutex operation */
586	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
587
588	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
589		 (long unsigned int)addr, size);
590
591	return addr;
592#else
593	return NULL;
594#endif
595}
596EXPORT_SYMBOL(l1_inst_sram_alloc);
597
598int l1_inst_sram_free(const void *addr)
599{
600#if L1_CODE_LENGTH != 0
601	unsigned long flags;
602	int ret;
603	unsigned int cpu;
604
605	cpu = smp_processor_id();
606	/* add mutex operation */
607	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
608
609	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
610			&per_cpu(used_l1_inst_sram_head, cpu));
611
612	/* add mutex operation */
613	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
614
615	return ret;
616#else
617	return -1;
618#endif
619}
620EXPORT_SYMBOL(l1_inst_sram_free);
621
622/* L1 Scratchpad memory allocate function */
623void *l1sram_alloc(size_t size)
624{
625	unsigned long flags;
626	void *addr;
627	unsigned int cpu;
628
629	cpu = smp_processor_id();
630	/* add mutex operation */
631	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
632
633	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
634			&per_cpu(used_l1_ssram_head, cpu));
635
636	/* add mutex operation */
637	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
638
639	return addr;
640}
641
642/* L1 Scratchpad memory allocate function */
643void *l1sram_alloc_max(size_t *psize)
644{
645	unsigned long flags;
646	void *addr;
647	unsigned int cpu;
648
649	cpu = smp_processor_id();
650	/* add mutex operation */
651	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
652
653	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
654			&per_cpu(used_l1_ssram_head, cpu), psize);
655
656	/* add mutex operation */
657	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
658
659	return addr;
660}
661
662/* L1 Scratchpad memory free function */
663int l1sram_free(const void *addr)
664{
665	unsigned long flags;
666	int ret;
667	unsigned int cpu;
668
669	cpu = smp_processor_id();
670	/* add mutex operation */
671	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
672
673	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
674			&per_cpu(used_l1_ssram_head, cpu));
675
676	/* add mutex operation */
677	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
678
679	return ret;
680}
681
682void *l2_sram_alloc(size_t size)
683{
684#if L2_LENGTH != 0
685	unsigned long flags;
686	void *addr;
687
688	/* add mutex operation */
689	spin_lock_irqsave(&l2_sram_lock, flags);
690
691	addr = _sram_alloc(size, &free_l2_sram_head,
692			&used_l2_sram_head);
693
694	/* add mutex operation */
695	spin_unlock_irqrestore(&l2_sram_lock, flags);
696
697	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
698		 (long unsigned int)addr, size);
699
700	return addr;
701#else
702	return NULL;
703#endif
704}
705EXPORT_SYMBOL(l2_sram_alloc);
706
707void *l2_sram_zalloc(size_t size)
708{
709	void *addr = l2_sram_alloc(size);
710
711	if (addr)
712		memset(addr, 0x00, size);
713
714	return addr;
715}
716EXPORT_SYMBOL(l2_sram_zalloc);
717
718int l2_sram_free(const void *addr)
719{
720#if L2_LENGTH != 0
721	unsigned long flags;
722	int ret;
723
724	/* add mutex operation */
725	spin_lock_irqsave(&l2_sram_lock, flags);
726
727	ret = _sram_free(addr, &free_l2_sram_head,
728			&used_l2_sram_head);
729
730	/* add mutex operation */
731	spin_unlock_irqrestore(&l2_sram_lock, flags);
732
733	return ret;
734#else
735	return -1;
736#endif
737}
738EXPORT_SYMBOL(l2_sram_free);
739
740int sram_free_with_lsl(const void *addr)
741{
742	struct sram_list_struct *lsl, **tmp;
743	struct mm_struct *mm = current->mm;
744	int ret = -1;
745
746	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
747		if ((*tmp)->addr == addr) {
748			lsl = *tmp;
749			ret = sram_free(addr);
750			*tmp = lsl->next;
751			kfree(lsl);
752			break;
753		}
754
755	return ret;
756}
757EXPORT_SYMBOL(sram_free_with_lsl);
758
759/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
760 * tracked.  These are designed for userspace so that when a process exits,
761 * we can safely reap their resources.
762 */
763void *sram_alloc_with_lsl(size_t size, unsigned long flags)
764{
765	void *addr = NULL;
766	struct sram_list_struct *lsl = NULL;
767	struct mm_struct *mm = current->mm;
768
769	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
770	if (!lsl)
771		return NULL;
772
773	if (flags & L1_INST_SRAM)
774		addr = l1_inst_sram_alloc(size);
775
776	if (addr == NULL && (flags & L1_DATA_A_SRAM))
777		addr = l1_data_A_sram_alloc(size);
778
779	if (addr == NULL && (flags & L1_DATA_B_SRAM))
780		addr = l1_data_B_sram_alloc(size);
781
782	if (addr == NULL && (flags & L2_SRAM))
783		addr = l2_sram_alloc(size);
784
785	if (addr == NULL) {
786		kfree(lsl);
787		return NULL;
788	}
789	lsl->addr = addr;
790	lsl->length = size;
791	lsl->next = mm->context.sram_list;
792	mm->context.sram_list = lsl;
793	return addr;
794}
795EXPORT_SYMBOL(sram_alloc_with_lsl);
796
797#ifdef CONFIG_PROC_FS
798/* Once we get a real allocator, we'll throw all of this away.
799 * Until then, we need some sort of visibility into the L1 alloc.
800 */
801/* Need to keep line of output the same.  Currently, that is 44 bytes
802 * (including newline).
803 */
804static int _sram_proc_show(struct seq_file *m, const char *desc,
805		struct sram_piece *pfree_head,
806		struct sram_piece *pused_head)
807{
808	struct sram_piece *pslot;
809
810	if (!pfree_head || !pused_head)
811		return -1;
812
813	seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
814
815	/* search the relevant memory slot */
816	pslot = pused_head->next;
817
818	while (pslot != NULL) {
819		seq_printf(m, "%p-%p %10i %5i %-10s\n",
820			pslot->paddr, pslot->paddr + pslot->size,
821			pslot->size, pslot->pid, "ALLOCATED");
822
823		pslot = pslot->next;
824	}
825
826	pslot = pfree_head->next;
827
828	while (pslot != NULL) {
829		seq_printf(m, "%p-%p %10i %5i %-10s\n",
830			pslot->paddr, pslot->paddr + pslot->size,
831			pslot->size, pslot->pid, "FREE");
832
833		pslot = pslot->next;
834	}
835
836	return 0;
837}
838static int sram_proc_show(struct seq_file *m, void *v)
839{
840	unsigned int cpu;
841
842	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
843		if (_sram_proc_show(m, "Scratchpad",
844			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
845			goto not_done;
846#if L1_DATA_A_LENGTH != 0
847		if (_sram_proc_show(m, "L1 Data A",
848			&per_cpu(free_l1_data_A_sram_head, cpu),
849			&per_cpu(used_l1_data_A_sram_head, cpu)))
850			goto not_done;
851#endif
852#if L1_DATA_B_LENGTH != 0
853		if (_sram_proc_show(m, "L1 Data B",
854			&per_cpu(free_l1_data_B_sram_head, cpu),
855			&per_cpu(used_l1_data_B_sram_head, cpu)))
856			goto not_done;
857#endif
858#if L1_CODE_LENGTH != 0
859		if (_sram_proc_show(m, "L1 Instruction",
860			&per_cpu(free_l1_inst_sram_head, cpu),
861			&per_cpu(used_l1_inst_sram_head, cpu)))
862			goto not_done;
863#endif
864	}
865#if L2_LENGTH != 0
866	if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
867		goto not_done;
868#endif
869 not_done:
870	return 0;
871}
872
873static int sram_proc_open(struct inode *inode, struct file *file)
874{
875	return single_open(file, sram_proc_show, NULL);
876}
877
878static const struct file_operations sram_proc_ops = {
879	.open		= sram_proc_open,
880	.read		= seq_read,
881	.llseek		= seq_lseek,
882	.release	= single_release,
883};
884
885static int __init sram_proc_init(void)
886{
887	struct proc_dir_entry *ptr;
888
889	ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
890	if (!ptr) {
891		printk(KERN_WARNING "unable to create /proc/sram\n");
892		return -1;
893	}
894	return 0;
895}
896late_initcall(sram_proc_init);
897#endif
898