1/* 2 * Blackfin performance counters 3 * 4 * Copyright 2011 Analog Devices Inc. 5 * 6 * Ripped from SuperH version: 7 * 8 * Copyright (C) 2009 Paul Mundt 9 * 10 * Heavily based on the x86 and PowerPC implementations. 11 * 12 * x86: 13 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 14 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 15 * Copyright (C) 2009 Jaswinder Singh Rajput 16 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 17 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 18 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> 19 * 20 * ppc: 21 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 22 * 23 * Licensed under the GPL-2 or later. 24 */ 25 26#include <linux/kernel.h> 27#include <linux/export.h> 28#include <linux/init.h> 29#include <linux/perf_event.h> 30#include <asm/bfin_pfmon.h> 31 32/* 33 * We have two counters, and each counter can support an event type. 34 * The 'o' is PFCNTx=1 and 's' is PFCNTx=0 35 * 36 * 0x04 o pc invariant branches 37 * 0x06 o mispredicted branches 38 * 0x09 o predicted branches taken 39 * 0x0B o EXCPT insn 40 * 0x0C o CSYNC/SSYNC insn 41 * 0x0D o Insns committed 42 * 0x0E o Interrupts taken 43 * 0x0F o Misaligned address exceptions 44 * 0x80 o Code memory fetches stalled due to DMA 45 * 0x83 o 64bit insn fetches delivered 46 * 0x9A o data cache fills (bank a) 47 * 0x9B o data cache fills (bank b) 48 * 0x9C o data cache lines evicted (bank a) 49 * 0x9D o data cache lines evicted (bank b) 50 * 0x9E o data cache high priority fills 51 * 0x9F o data cache low priority fills 52 * 0x00 s loop 0 iterations 53 * 0x01 s loop 1 iterations 54 * 0x0A s CSYNC/SSYNC stalls 55 * 0x10 s DAG read/after write hazards 56 * 0x13 s RAW data hazards 57 * 0x81 s code TAG stalls 58 * 0x82 s code fill stalls 59 * 0x90 s processor to memory stalls 60 * 0x91 s data memory stalls not hidden by 0x90 61 * 0x92 s data store buffer full stalls 62 * 0x93 s data memory write buffer full stalls due to high->low priority 63 * 0x95 s data memory fill buffer stalls 64 * 0x96 s data TAG collision stalls 65 * 0x97 s data collision stalls 66 * 0x98 s data stalls 67 * 0x99 s data stalls sent to processor 68 */ 69 70static const int event_map[] = { 71 /* use CYCLES cpu register */ 72 [PERF_COUNT_HW_CPU_CYCLES] = -1, 73 [PERF_COUNT_HW_INSTRUCTIONS] = 0x0D, 74 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 75 [PERF_COUNT_HW_CACHE_MISSES] = 0x83, 76 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09, 77 [PERF_COUNT_HW_BRANCH_MISSES] = 0x06, 78 [PERF_COUNT_HW_BUS_CYCLES] = -1, 79}; 80 81#define C(x) PERF_COUNT_HW_CACHE_##x 82 83static const int cache_events[PERF_COUNT_HW_CACHE_MAX] 84 [PERF_COUNT_HW_CACHE_OP_MAX] 85 [PERF_COUNT_HW_CACHE_RESULT_MAX] = 86{ 87 [C(L1D)] = { /* Data bank A */ 88 [C(OP_READ)] = { 89 [C(RESULT_ACCESS)] = 0, 90 [C(RESULT_MISS) ] = 0x9A, 91 }, 92 [C(OP_WRITE)] = { 93 [C(RESULT_ACCESS)] = 0, 94 [C(RESULT_MISS) ] = 0, 95 }, 96 [C(OP_PREFETCH)] = { 97 [C(RESULT_ACCESS)] = 0, 98 [C(RESULT_MISS) ] = 0, 99 }, 100 }, 101 102 [C(L1I)] = { 103 [C(OP_READ)] = { 104 [C(RESULT_ACCESS)] = 0, 105 [C(RESULT_MISS) ] = 0x83, 106 }, 107 [C(OP_WRITE)] = { 108 [C(RESULT_ACCESS)] = -1, 109 [C(RESULT_MISS) ] = -1, 110 }, 111 [C(OP_PREFETCH)] = { 112 [C(RESULT_ACCESS)] = 0, 113 [C(RESULT_MISS) ] = 0, 114 }, 115 }, 116 117 [C(LL)] = { 118 [C(OP_READ)] = { 119 [C(RESULT_ACCESS)] = -1, 120 [C(RESULT_MISS) ] = -1, 121 }, 122 [C(OP_WRITE)] = { 123 [C(RESULT_ACCESS)] = -1, 124 [C(RESULT_MISS) ] = -1, 125 }, 126 [C(OP_PREFETCH)] = { 127 [C(RESULT_ACCESS)] = -1, 128 [C(RESULT_MISS) ] = -1, 129 }, 130 }, 131 132 [C(DTLB)] = { 133 [C(OP_READ)] = { 134 [C(RESULT_ACCESS)] = -1, 135 [C(RESULT_MISS) ] = -1, 136 }, 137 [C(OP_WRITE)] = { 138 [C(RESULT_ACCESS)] = -1, 139 [C(RESULT_MISS) ] = -1, 140 }, 141 [C(OP_PREFETCH)] = { 142 [C(RESULT_ACCESS)] = -1, 143 [C(RESULT_MISS) ] = -1, 144 }, 145 }, 146 147 [C(ITLB)] = { 148 [C(OP_READ)] = { 149 [C(RESULT_ACCESS)] = -1, 150 [C(RESULT_MISS) ] = -1, 151 }, 152 [C(OP_WRITE)] = { 153 [C(RESULT_ACCESS)] = -1, 154 [C(RESULT_MISS) ] = -1, 155 }, 156 [C(OP_PREFETCH)] = { 157 [C(RESULT_ACCESS)] = -1, 158 [C(RESULT_MISS) ] = -1, 159 }, 160 }, 161 162 [C(BPU)] = { 163 [C(OP_READ)] = { 164 [C(RESULT_ACCESS)] = -1, 165 [C(RESULT_MISS) ] = -1, 166 }, 167 [C(OP_WRITE)] = { 168 [C(RESULT_ACCESS)] = -1, 169 [C(RESULT_MISS) ] = -1, 170 }, 171 [C(OP_PREFETCH)] = { 172 [C(RESULT_ACCESS)] = -1, 173 [C(RESULT_MISS) ] = -1, 174 }, 175 }, 176}; 177 178const char *perf_pmu_name(void) 179{ 180 return "bfin"; 181} 182EXPORT_SYMBOL(perf_pmu_name); 183 184int perf_num_counters(void) 185{ 186 return ARRAY_SIZE(event_map); 187} 188EXPORT_SYMBOL(perf_num_counters); 189 190static u64 bfin_pfmon_read(int idx) 191{ 192 return bfin_read32(PFCNTR0 + (idx * 4)); 193} 194 195static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx) 196{ 197 bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK)); 198} 199 200static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx) 201{ 202 u32 val, mask; 203 204 val = PFPWR; 205 if (idx) { 206 mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1); 207 /* The packed config is for event0, so shift it to event1 slots */ 208 val |= (hwc->config << (PFMON1_P - PFMON0_P)); 209 val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P); 210 bfin_write_PFCNTR1(0); 211 } else { 212 mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0); 213 val |= hwc->config; 214 bfin_write_PFCNTR0(0); 215 } 216 217 bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val); 218} 219 220static void bfin_pfmon_disable_all(void) 221{ 222 bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR); 223} 224 225static void bfin_pfmon_enable_all(void) 226{ 227 bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR); 228} 229 230struct cpu_hw_events { 231 struct perf_event *events[MAX_HWEVENTS]; 232 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; 233}; 234DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 235 236static int hw_perf_cache_event(int config, int *evp) 237{ 238 unsigned long type, op, result; 239 int ev; 240 241 /* unpack config */ 242 type = config & 0xff; 243 op = (config >> 8) & 0xff; 244 result = (config >> 16) & 0xff; 245 246 if (type >= PERF_COUNT_HW_CACHE_MAX || 247 op >= PERF_COUNT_HW_CACHE_OP_MAX || 248 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 249 return -EINVAL; 250 251 ev = cache_events[type][op][result]; 252 if (ev == 0) 253 return -EOPNOTSUPP; 254 if (ev == -1) 255 return -EINVAL; 256 *evp = ev; 257 return 0; 258} 259 260static void bfin_perf_event_update(struct perf_event *event, 261 struct hw_perf_event *hwc, int idx) 262{ 263 u64 prev_raw_count, new_raw_count; 264 s64 delta; 265 int shift = 0; 266 267 /* 268 * Depending on the counter configuration, they may or may not 269 * be chained, in which case the previous counter value can be 270 * updated underneath us if the lower-half overflows. 271 * 272 * Our tactic to handle this is to first atomically read and 273 * exchange a new raw count - then add that new-prev delta 274 * count to the generic counter atomically. 275 * 276 * As there is no interrupt associated with the overflow events, 277 * this is the simplest approach for maintaining consistency. 278 */ 279again: 280 prev_raw_count = local64_read(&hwc->prev_count); 281 new_raw_count = bfin_pfmon_read(idx); 282 283 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 284 new_raw_count) != prev_raw_count) 285 goto again; 286 287 /* 288 * Now we have the new raw value and have updated the prev 289 * timestamp already. We can now calculate the elapsed delta 290 * (counter-)time and add that to the generic counter. 291 * 292 * Careful, not all hw sign-extends above the physical width 293 * of the count. 294 */ 295 delta = (new_raw_count << shift) - (prev_raw_count << shift); 296 delta >>= shift; 297 298 local64_add(delta, &event->count); 299} 300 301static void bfin_pmu_stop(struct perf_event *event, int flags) 302{ 303 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 304 struct hw_perf_event *hwc = &event->hw; 305 int idx = hwc->idx; 306 307 if (!(event->hw.state & PERF_HES_STOPPED)) { 308 bfin_pfmon_disable(hwc, idx); 309 cpuc->events[idx] = NULL; 310 event->hw.state |= PERF_HES_STOPPED; 311 } 312 313 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { 314 bfin_perf_event_update(event, &event->hw, idx); 315 event->hw.state |= PERF_HES_UPTODATE; 316 } 317} 318 319static void bfin_pmu_start(struct perf_event *event, int flags) 320{ 321 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 322 struct hw_perf_event *hwc = &event->hw; 323 int idx = hwc->idx; 324 325 if (WARN_ON_ONCE(idx == -1)) 326 return; 327 328 if (flags & PERF_EF_RELOAD) 329 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 330 331 cpuc->events[idx] = event; 332 event->hw.state = 0; 333 bfin_pfmon_enable(hwc, idx); 334} 335 336static void bfin_pmu_del(struct perf_event *event, int flags) 337{ 338 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 339 340 bfin_pmu_stop(event, PERF_EF_UPDATE); 341 __clear_bit(event->hw.idx, cpuc->used_mask); 342 343 perf_event_update_userpage(event); 344} 345 346static int bfin_pmu_add(struct perf_event *event, int flags) 347{ 348 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 349 struct hw_perf_event *hwc = &event->hw; 350 int idx = hwc->idx; 351 int ret = -EAGAIN; 352 353 perf_pmu_disable(event->pmu); 354 355 if (__test_and_set_bit(idx, cpuc->used_mask)) { 356 idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS); 357 if (idx == MAX_HWEVENTS) 358 goto out; 359 360 __set_bit(idx, cpuc->used_mask); 361 hwc->idx = idx; 362 } 363 364 bfin_pfmon_disable(hwc, idx); 365 366 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 367 if (flags & PERF_EF_START) 368 bfin_pmu_start(event, PERF_EF_RELOAD); 369 370 perf_event_update_userpage(event); 371 ret = 0; 372out: 373 perf_pmu_enable(event->pmu); 374 return ret; 375} 376 377static void bfin_pmu_read(struct perf_event *event) 378{ 379 bfin_perf_event_update(event, &event->hw, event->hw.idx); 380} 381 382static int bfin_pmu_event_init(struct perf_event *event) 383{ 384 struct perf_event_attr *attr = &event->attr; 385 struct hw_perf_event *hwc = &event->hw; 386 int config = -1; 387 int ret; 388 389 if (attr->exclude_hv || attr->exclude_idle) 390 return -EPERM; 391 392 ret = 0; 393 switch (attr->type) { 394 case PERF_TYPE_RAW: 395 config = PFMON(0, attr->config & PFMON_MASK) | 396 PFCNT(0, !(attr->config & 0x100)); 397 break; 398 case PERF_TYPE_HW_CACHE: 399 ret = hw_perf_cache_event(attr->config, &config); 400 break; 401 case PERF_TYPE_HARDWARE: 402 if (attr->config >= ARRAY_SIZE(event_map)) 403 return -EINVAL; 404 405 config = event_map[attr->config]; 406 break; 407 } 408 409 if (config == -1) 410 return -EINVAL; 411 412 if (!attr->exclude_kernel) 413 config |= PFCEN(0, PFCEN_ENABLE_SUPV); 414 if (!attr->exclude_user) 415 config |= PFCEN(0, PFCEN_ENABLE_USER); 416 417 hwc->config |= config; 418 419 return ret; 420} 421 422static void bfin_pmu_enable(struct pmu *pmu) 423{ 424 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 425 struct perf_event *event; 426 struct hw_perf_event *hwc; 427 int i; 428 429 for (i = 0; i < MAX_HWEVENTS; ++i) { 430 event = cpuc->events[i]; 431 if (!event) 432 continue; 433 hwc = &event->hw; 434 bfin_pfmon_enable(hwc, hwc->idx); 435 } 436 437 bfin_pfmon_enable_all(); 438} 439 440static void bfin_pmu_disable(struct pmu *pmu) 441{ 442 bfin_pfmon_disable_all(); 443} 444 445static struct pmu pmu = { 446 .pmu_enable = bfin_pmu_enable, 447 .pmu_disable = bfin_pmu_disable, 448 .event_init = bfin_pmu_event_init, 449 .add = bfin_pmu_add, 450 .del = bfin_pmu_del, 451 .start = bfin_pmu_start, 452 .stop = bfin_pmu_stop, 453 .read = bfin_pmu_read, 454}; 455 456static void bfin_pmu_setup(int cpu) 457{ 458 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 459 460 memset(cpuhw, 0, sizeof(struct cpu_hw_events)); 461} 462 463static int 464bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) 465{ 466 unsigned int cpu = (long)hcpu; 467 468 switch (action & ~CPU_TASKS_FROZEN) { 469 case CPU_UP_PREPARE: 470 bfin_write_PFCTL(0); 471 bfin_pmu_setup(cpu); 472 break; 473 474 default: 475 break; 476 } 477 478 return NOTIFY_OK; 479} 480 481static int __init bfin_pmu_init(void) 482{ 483 int ret; 484 485 /* 486 * All of the on-chip counters are "limited", in that they have 487 * no interrupts, and are therefore unable to do sampling without 488 * further work and timer assistance. 489 */ 490 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 491 492 ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 493 if (!ret) 494 perf_cpu_notifier(bfin_pmu_notifier); 495 496 return ret; 497} 498early_initcall(bfin_pmu_init); 499