1/*
2 *  Copyright (C) 2004-2006 Atmel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/gfp.h>
11#include <linux/export.h>
12
13#include <asm/addrspace.h>
14#include <asm/cacheflush.h>
15
16void dma_cache_sync(struct device *dev, void *vaddr, size_t size, int direction)
17{
18	/*
19	 * No need to sync an uncached area
20	 */
21	if (PXSEG(vaddr) == P2SEG)
22		return;
23
24	switch (direction) {
25	case DMA_FROM_DEVICE:		/* invalidate only */
26		invalidate_dcache_region(vaddr, size);
27		break;
28	case DMA_TO_DEVICE:		/* writeback only */
29		clean_dcache_region(vaddr, size);
30		break;
31	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
32		flush_dcache_region(vaddr, size);
33		break;
34	default:
35		BUG();
36	}
37}
38EXPORT_SYMBOL(dma_cache_sync);
39
40static struct page *__dma_alloc(struct device *dev, size_t size,
41				dma_addr_t *handle, gfp_t gfp)
42{
43	struct page *page, *free, *end;
44	int order;
45
46	/* Following is a work-around (a.k.a. hack) to prevent pages
47	 * with __GFP_COMP being passed to split_page() which cannot
48	 * handle them.  The real problem is that this flag probably
49	 * should be 0 on AVR32 as it is not supported on this
50	 * platform--see CONFIG_HUGETLB_PAGE. */
51	gfp &= ~(__GFP_COMP);
52
53	size = PAGE_ALIGN(size);
54	order = get_order(size);
55
56	page = alloc_pages(gfp, order);
57	if (!page)
58		return NULL;
59	split_page(page, order);
60
61	/*
62	 * When accessing physical memory with valid cache data, we
63	 * get a cache hit even if the virtual memory region is marked
64	 * as uncached.
65	 *
66	 * Since the memory is newly allocated, there is no point in
67	 * doing a writeback. If the previous owner cares, he should
68	 * have flushed the cache before releasing the memory.
69	 */
70	invalidate_dcache_region(phys_to_virt(page_to_phys(page)), size);
71
72	*handle = page_to_bus(page);
73	free = page + (size >> PAGE_SHIFT);
74	end = page + (1 << order);
75
76	/*
77	 * Free any unused pages
78	 */
79	while (free < end) {
80		__free_page(free);
81		free++;
82	}
83
84	return page;
85}
86
87static void __dma_free(struct device *dev, size_t size,
88		       struct page *page, dma_addr_t handle)
89{
90	struct page *end = page + (PAGE_ALIGN(size) >> PAGE_SHIFT);
91
92	while (page < end)
93		__free_page(page++);
94}
95
96void *dma_alloc_coherent(struct device *dev, size_t size,
97			 dma_addr_t *handle, gfp_t gfp)
98{
99	struct page *page;
100	void *ret = NULL;
101
102	page = __dma_alloc(dev, size, handle, gfp);
103	if (page)
104		ret = phys_to_uncached(page_to_phys(page));
105
106	return ret;
107}
108EXPORT_SYMBOL(dma_alloc_coherent);
109
110void dma_free_coherent(struct device *dev, size_t size,
111		       void *cpu_addr, dma_addr_t handle)
112{
113	void *addr = phys_to_cached(uncached_to_phys(cpu_addr));
114	struct page *page;
115
116	pr_debug("dma_free_coherent addr %p (phys %08lx) size %u\n",
117		 cpu_addr, (unsigned long)handle, (unsigned)size);
118	BUG_ON(!virt_addr_valid(addr));
119	page = virt_to_page(addr);
120	__dma_free(dev, size, page, handle);
121}
122EXPORT_SYMBOL(dma_free_coherent);
123
124void *dma_alloc_writecombine(struct device *dev, size_t size,
125			     dma_addr_t *handle, gfp_t gfp)
126{
127	struct page *page;
128	dma_addr_t phys;
129
130	page = __dma_alloc(dev, size, handle, gfp);
131	if (!page)
132		return NULL;
133
134	phys = page_to_phys(page);
135	*handle = phys;
136
137	/* Now, map the page into P3 with write-combining turned on */
138	return __ioremap(phys, size, _PAGE_BUFFER);
139}
140EXPORT_SYMBOL(dma_alloc_writecombine);
141
142void dma_free_writecombine(struct device *dev, size_t size,
143			   void *cpu_addr, dma_addr_t handle)
144{
145	struct page *page;
146
147	iounmap(cpu_addr);
148
149	page = phys_to_page(handle);
150	__dma_free(dev, size, page, handle);
151}
152EXPORT_SYMBOL(dma_free_writecombine);
153