1/*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20 */
21#define pr_fmt(fmt) "hw perfevents: " fmt
22
23#include <linux/bitmap.h>
24#include <linux/interrupt.h>
25#include <linux/irq.h>
26#include <linux/kernel.h>
27#include <linux/export.h>
28#include <linux/of.h>
29#include <linux/perf_event.h>
30#include <linux/platform_device.h>
31#include <linux/slab.h>
32#include <linux/spinlock.h>
33#include <linux/uaccess.h>
34
35#include <asm/cputype.h>
36#include <asm/irq.h>
37#include <asm/irq_regs.h>
38#include <asm/pmu.h>
39#include <asm/stacktrace.h>
40
41/*
42 * ARMv8 supports a maximum of 32 events.
43 * The cycle counter is included in this total.
44 */
45#define ARMPMU_MAX_HWEVENTS		32
46
47static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
48static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
49static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
50
51#define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
52
53/* Set at runtime when we know what CPU type we are. */
54static struct arm_pmu *cpu_pmu;
55
56int
57armpmu_get_max_events(void)
58{
59	int max_events = 0;
60
61	if (cpu_pmu != NULL)
62		max_events = cpu_pmu->num_events;
63
64	return max_events;
65}
66EXPORT_SYMBOL_GPL(armpmu_get_max_events);
67
68int perf_num_counters(void)
69{
70	return armpmu_get_max_events();
71}
72EXPORT_SYMBOL_GPL(perf_num_counters);
73
74#define HW_OP_UNSUPPORTED		0xFFFF
75
76#define C(_x) \
77	PERF_COUNT_HW_CACHE_##_x
78
79#define CACHE_OP_UNSUPPORTED		0xFFFF
80
81static int
82armpmu_map_cache_event(const unsigned (*cache_map)
83				      [PERF_COUNT_HW_CACHE_MAX]
84				      [PERF_COUNT_HW_CACHE_OP_MAX]
85				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
86		       u64 config)
87{
88	unsigned int cache_type, cache_op, cache_result, ret;
89
90	cache_type = (config >>  0) & 0xff;
91	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
92		return -EINVAL;
93
94	cache_op = (config >>  8) & 0xff;
95	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
96		return -EINVAL;
97
98	cache_result = (config >> 16) & 0xff;
99	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
100		return -EINVAL;
101
102	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
103
104	if (ret == CACHE_OP_UNSUPPORTED)
105		return -ENOENT;
106
107	return ret;
108}
109
110static int
111armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
112{
113	int mapping;
114
115	if (config >= PERF_COUNT_HW_MAX)
116		return -EINVAL;
117
118	mapping = (*event_map)[config];
119	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
120}
121
122static int
123armpmu_map_raw_event(u32 raw_event_mask, u64 config)
124{
125	return (int)(config & raw_event_mask);
126}
127
128static int map_cpu_event(struct perf_event *event,
129			 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
130			 const unsigned (*cache_map)
131					[PERF_COUNT_HW_CACHE_MAX]
132					[PERF_COUNT_HW_CACHE_OP_MAX]
133					[PERF_COUNT_HW_CACHE_RESULT_MAX],
134			 u32 raw_event_mask)
135{
136	u64 config = event->attr.config;
137
138	switch (event->attr.type) {
139	case PERF_TYPE_HARDWARE:
140		return armpmu_map_event(event_map, config);
141	case PERF_TYPE_HW_CACHE:
142		return armpmu_map_cache_event(cache_map, config);
143	case PERF_TYPE_RAW:
144		return armpmu_map_raw_event(raw_event_mask, config);
145	}
146
147	return -ENOENT;
148}
149
150int
151armpmu_event_set_period(struct perf_event *event,
152			struct hw_perf_event *hwc,
153			int idx)
154{
155	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
156	s64 left = local64_read(&hwc->period_left);
157	s64 period = hwc->sample_period;
158	int ret = 0;
159
160	if (unlikely(left <= -period)) {
161		left = period;
162		local64_set(&hwc->period_left, left);
163		hwc->last_period = period;
164		ret = 1;
165	}
166
167	if (unlikely(left <= 0)) {
168		left += period;
169		local64_set(&hwc->period_left, left);
170		hwc->last_period = period;
171		ret = 1;
172	}
173
174	/*
175	 * Limit the maximum period to prevent the counter value
176	 * from overtaking the one we are about to program. In
177	 * effect we are reducing max_period to account for
178	 * interrupt latency (and we are being very conservative).
179	 */
180	if (left > (armpmu->max_period >> 1))
181		left = armpmu->max_period >> 1;
182
183	local64_set(&hwc->prev_count, (u64)-left);
184
185	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
186
187	perf_event_update_userpage(event);
188
189	return ret;
190}
191
192u64
193armpmu_event_update(struct perf_event *event,
194		    struct hw_perf_event *hwc,
195		    int idx)
196{
197	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
198	u64 delta, prev_raw_count, new_raw_count;
199
200again:
201	prev_raw_count = local64_read(&hwc->prev_count);
202	new_raw_count = armpmu->read_counter(idx);
203
204	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
205			     new_raw_count) != prev_raw_count)
206		goto again;
207
208	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
209
210	local64_add(delta, &event->count);
211	local64_sub(delta, &hwc->period_left);
212
213	return new_raw_count;
214}
215
216static void
217armpmu_read(struct perf_event *event)
218{
219	struct hw_perf_event *hwc = &event->hw;
220
221	/* Don't read disabled counters! */
222	if (hwc->idx < 0)
223		return;
224
225	armpmu_event_update(event, hwc, hwc->idx);
226}
227
228static void
229armpmu_stop(struct perf_event *event, int flags)
230{
231	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
232	struct hw_perf_event *hwc = &event->hw;
233
234	/*
235	 * ARM pmu always has to update the counter, so ignore
236	 * PERF_EF_UPDATE, see comments in armpmu_start().
237	 */
238	if (!(hwc->state & PERF_HES_STOPPED)) {
239		armpmu->disable(hwc, hwc->idx);
240		barrier(); /* why? */
241		armpmu_event_update(event, hwc, hwc->idx);
242		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
243	}
244}
245
246static void
247armpmu_start(struct perf_event *event, int flags)
248{
249	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
250	struct hw_perf_event *hwc = &event->hw;
251
252	/*
253	 * ARM pmu always has to reprogram the period, so ignore
254	 * PERF_EF_RELOAD, see the comment below.
255	 */
256	if (flags & PERF_EF_RELOAD)
257		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
258
259	hwc->state = 0;
260	/*
261	 * Set the period again. Some counters can't be stopped, so when we
262	 * were stopped we simply disabled the IRQ source and the counter
263	 * may have been left counting. If we don't do this step then we may
264	 * get an interrupt too soon or *way* too late if the overflow has
265	 * happened since disabling.
266	 */
267	armpmu_event_set_period(event, hwc, hwc->idx);
268	armpmu->enable(hwc, hwc->idx);
269}
270
271static void
272armpmu_del(struct perf_event *event, int flags)
273{
274	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
276	struct hw_perf_event *hwc = &event->hw;
277	int idx = hwc->idx;
278
279	WARN_ON(idx < 0);
280
281	armpmu_stop(event, PERF_EF_UPDATE);
282	hw_events->events[idx] = NULL;
283	clear_bit(idx, hw_events->used_mask);
284
285	perf_event_update_userpage(event);
286}
287
288static int
289armpmu_add(struct perf_event *event, int flags)
290{
291	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
292	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
293	struct hw_perf_event *hwc = &event->hw;
294	int idx;
295	int err = 0;
296
297	perf_pmu_disable(event->pmu);
298
299	/* If we don't have a space for the counter then finish early. */
300	idx = armpmu->get_event_idx(hw_events, hwc);
301	if (idx < 0) {
302		err = idx;
303		goto out;
304	}
305
306	/*
307	 * If there is an event in the counter we are going to use then make
308	 * sure it is disabled.
309	 */
310	event->hw.idx = idx;
311	armpmu->disable(hwc, idx);
312	hw_events->events[idx] = event;
313
314	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
315	if (flags & PERF_EF_START)
316		armpmu_start(event, PERF_EF_RELOAD);
317
318	/* Propagate our changes to the userspace mapping. */
319	perf_event_update_userpage(event);
320
321out:
322	perf_pmu_enable(event->pmu);
323	return err;
324}
325
326static int
327validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
328				struct perf_event *event)
329{
330	struct arm_pmu *armpmu;
331	struct hw_perf_event fake_event = event->hw;
332	struct pmu *leader_pmu = event->group_leader->pmu;
333
334	if (is_software_event(event))
335		return 1;
336
337	/*
338	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
339	 * core perf code won't check that the pmu->ctx == leader->ctx
340	 * until after pmu->event_init(event).
341	 */
342	if (event->pmu != pmu)
343		return 0;
344
345	if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
346		return 1;
347
348	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
349		return 1;
350
351	armpmu = to_arm_pmu(event->pmu);
352	return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
353}
354
355static int
356validate_group(struct perf_event *event)
357{
358	struct perf_event *sibling, *leader = event->group_leader;
359	struct pmu_hw_events fake_pmu;
360	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
361
362	/*
363	 * Initialise the fake PMU. We only need to populate the
364	 * used_mask for the purposes of validation.
365	 */
366	memset(fake_used_mask, 0, sizeof(fake_used_mask));
367	fake_pmu.used_mask = fake_used_mask;
368
369	if (!validate_event(event->pmu, &fake_pmu, leader))
370		return -EINVAL;
371
372	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
373		if (!validate_event(event->pmu, &fake_pmu, sibling))
374			return -EINVAL;
375	}
376
377	if (!validate_event(event->pmu, &fake_pmu, event))
378		return -EINVAL;
379
380	return 0;
381}
382
383static void
384armpmu_disable_percpu_irq(void *data)
385{
386	unsigned int irq = *(unsigned int *)data;
387	disable_percpu_irq(irq);
388}
389
390static void
391armpmu_release_hardware(struct arm_pmu *armpmu)
392{
393	int irq;
394	unsigned int i, irqs;
395	struct platform_device *pmu_device = armpmu->plat_device;
396
397	irqs = min(pmu_device->num_resources, num_possible_cpus());
398	if (!irqs)
399		return;
400
401	irq = platform_get_irq(pmu_device, 0);
402	if (irq <= 0)
403		return;
404
405	if (irq_is_percpu(irq)) {
406		on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
407		free_percpu_irq(irq, &cpu_hw_events);
408	} else {
409		for (i = 0; i < irqs; ++i) {
410			int cpu = i;
411
412			if (armpmu->irq_affinity)
413				cpu = armpmu->irq_affinity[i];
414
415			if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
416				continue;
417			irq = platform_get_irq(pmu_device, i);
418			if (irq > 0)
419				free_irq(irq, armpmu);
420		}
421	}
422}
423
424static void
425armpmu_enable_percpu_irq(void *data)
426{
427	unsigned int irq = *(unsigned int *)data;
428	enable_percpu_irq(irq, IRQ_TYPE_NONE);
429}
430
431static int
432armpmu_reserve_hardware(struct arm_pmu *armpmu)
433{
434	int err, irq;
435	unsigned int i, irqs;
436	struct platform_device *pmu_device = armpmu->plat_device;
437
438	if (!pmu_device) {
439		pr_err("no PMU device registered\n");
440		return -ENODEV;
441	}
442
443	irqs = min(pmu_device->num_resources, num_possible_cpus());
444	if (!irqs) {
445		pr_err("no irqs for PMUs defined\n");
446		return -ENODEV;
447	}
448
449	irq = platform_get_irq(pmu_device, 0);
450	if (irq <= 0) {
451		pr_err("failed to get valid irq for PMU device\n");
452		return -ENODEV;
453	}
454
455	if (irq_is_percpu(irq)) {
456		err = request_percpu_irq(irq, armpmu->handle_irq,
457				"arm-pmu", &cpu_hw_events);
458
459		if (err) {
460			pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
461					irq);
462			armpmu_release_hardware(armpmu);
463			return err;
464		}
465
466		on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
467	} else {
468		for (i = 0; i < irqs; ++i) {
469			int cpu = i;
470
471			err = 0;
472			irq = platform_get_irq(pmu_device, i);
473			if (irq <= 0)
474				continue;
475
476			if (armpmu->irq_affinity)
477				cpu = armpmu->irq_affinity[i];
478
479			/*
480			 * If we have a single PMU interrupt that we can't shift,
481			 * assume that we're running on a uniprocessor machine and
482			 * continue. Otherwise, continue without this interrupt.
483			 */
484			if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
485				pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
486						irq, cpu);
487				continue;
488			}
489
490			err = request_irq(irq, armpmu->handle_irq,
491					IRQF_NOBALANCING,
492					"arm-pmu", armpmu);
493			if (err) {
494				pr_err("unable to request IRQ%d for ARM PMU counters\n",
495						irq);
496				armpmu_release_hardware(armpmu);
497				return err;
498			}
499
500			cpumask_set_cpu(cpu, &armpmu->active_irqs);
501		}
502	}
503
504	return 0;
505}
506
507static void
508hw_perf_event_destroy(struct perf_event *event)
509{
510	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
511	atomic_t *active_events	 = &armpmu->active_events;
512	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
513
514	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
515		armpmu_release_hardware(armpmu);
516		mutex_unlock(pmu_reserve_mutex);
517	}
518}
519
520static int
521event_requires_mode_exclusion(struct perf_event_attr *attr)
522{
523	return attr->exclude_idle || attr->exclude_user ||
524	       attr->exclude_kernel || attr->exclude_hv;
525}
526
527static int
528__hw_perf_event_init(struct perf_event *event)
529{
530	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
531	struct hw_perf_event *hwc = &event->hw;
532	int mapping, err;
533
534	mapping = armpmu->map_event(event);
535
536	if (mapping < 0) {
537		pr_debug("event %x:%llx not supported\n", event->attr.type,
538			 event->attr.config);
539		return mapping;
540	}
541
542	/*
543	 * We don't assign an index until we actually place the event onto
544	 * hardware. Use -1 to signify that we haven't decided where to put it
545	 * yet. For SMP systems, each core has it's own PMU so we can't do any
546	 * clever allocation or constraints checking at this point.
547	 */
548	hwc->idx		= -1;
549	hwc->config_base	= 0;
550	hwc->config		= 0;
551	hwc->event_base		= 0;
552
553	/*
554	 * Check whether we need to exclude the counter from certain modes.
555	 */
556	if ((!armpmu->set_event_filter ||
557	     armpmu->set_event_filter(hwc, &event->attr)) &&
558	     event_requires_mode_exclusion(&event->attr)) {
559		pr_debug("ARM performance counters do not support mode exclusion\n");
560		return -EPERM;
561	}
562
563	/*
564	 * Store the event encoding into the config_base field.
565	 */
566	hwc->config_base	    |= (unsigned long)mapping;
567
568	if (!hwc->sample_period) {
569		/*
570		 * For non-sampling runs, limit the sample_period to half
571		 * of the counter width. That way, the new counter value
572		 * is far less likely to overtake the previous one unless
573		 * you have some serious IRQ latency issues.
574		 */
575		hwc->sample_period  = armpmu->max_period >> 1;
576		hwc->last_period    = hwc->sample_period;
577		local64_set(&hwc->period_left, hwc->sample_period);
578	}
579
580	err = 0;
581	if (event->group_leader != event) {
582		err = validate_group(event);
583		if (err)
584			return -EINVAL;
585	}
586
587	return err;
588}
589
590static int armpmu_event_init(struct perf_event *event)
591{
592	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
593	int err = 0;
594	atomic_t *active_events = &armpmu->active_events;
595
596	if (armpmu->map_event(event) == -ENOENT)
597		return -ENOENT;
598
599	event->destroy = hw_perf_event_destroy;
600
601	if (!atomic_inc_not_zero(active_events)) {
602		mutex_lock(&armpmu->reserve_mutex);
603		if (atomic_read(active_events) == 0)
604			err = armpmu_reserve_hardware(armpmu);
605
606		if (!err)
607			atomic_inc(active_events);
608		mutex_unlock(&armpmu->reserve_mutex);
609	}
610
611	if (err)
612		return err;
613
614	err = __hw_perf_event_init(event);
615	if (err)
616		hw_perf_event_destroy(event);
617
618	return err;
619}
620
621static void armpmu_enable(struct pmu *pmu)
622{
623	struct arm_pmu *armpmu = to_arm_pmu(pmu);
624	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
625	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
626
627	if (enabled)
628		armpmu->start();
629}
630
631static void armpmu_disable(struct pmu *pmu)
632{
633	struct arm_pmu *armpmu = to_arm_pmu(pmu);
634	armpmu->stop();
635}
636
637static void __init armpmu_init(struct arm_pmu *armpmu)
638{
639	atomic_set(&armpmu->active_events, 0);
640	mutex_init(&armpmu->reserve_mutex);
641
642	armpmu->pmu = (struct pmu) {
643		.pmu_enable	= armpmu_enable,
644		.pmu_disable	= armpmu_disable,
645		.event_init	= armpmu_event_init,
646		.add		= armpmu_add,
647		.del		= armpmu_del,
648		.start		= armpmu_start,
649		.stop		= armpmu_stop,
650		.read		= armpmu_read,
651	};
652}
653
654int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
655{
656	armpmu_init(armpmu);
657	return perf_pmu_register(&armpmu->pmu, name, type);
658}
659
660/*
661 * ARMv8 PMUv3 Performance Events handling code.
662 * Common event types.
663 */
664enum armv8_pmuv3_perf_types {
665	/* Required events. */
666	ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR			= 0x00,
667	ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL			= 0x03,
668	ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS			= 0x04,
669	ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED			= 0x10,
670	ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES			= 0x11,
671	ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED			= 0x12,
672
673	/* At least one of the following is required. */
674	ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED			= 0x08,
675	ARMV8_PMUV3_PERFCTR_OP_SPEC				= 0x1B,
676
677	/* Common architectural events. */
678	ARMV8_PMUV3_PERFCTR_MEM_READ				= 0x06,
679	ARMV8_PMUV3_PERFCTR_MEM_WRITE				= 0x07,
680	ARMV8_PMUV3_PERFCTR_EXC_TAKEN				= 0x09,
681	ARMV8_PMUV3_PERFCTR_EXC_EXECUTED			= 0x0A,
682	ARMV8_PMUV3_PERFCTR_CID_WRITE				= 0x0B,
683	ARMV8_PMUV3_PERFCTR_PC_WRITE				= 0x0C,
684	ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH			= 0x0D,
685	ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN			= 0x0E,
686	ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS		= 0x0F,
687	ARMV8_PMUV3_PERFCTR_TTBR_WRITE				= 0x1C,
688
689	/* Common microarchitectural events. */
690	ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL			= 0x01,
691	ARMV8_PMUV3_PERFCTR_ITLB_REFILL				= 0x02,
692	ARMV8_PMUV3_PERFCTR_DTLB_REFILL				= 0x05,
693	ARMV8_PMUV3_PERFCTR_MEM_ACCESS				= 0x13,
694	ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS			= 0x14,
695	ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB			= 0x15,
696	ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS			= 0x16,
697	ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL			= 0x17,
698	ARMV8_PMUV3_PERFCTR_L2_CACHE_WB				= 0x18,
699	ARMV8_PMUV3_PERFCTR_BUS_ACCESS				= 0x19,
700	ARMV8_PMUV3_PERFCTR_MEM_ERROR				= 0x1A,
701	ARMV8_PMUV3_PERFCTR_BUS_CYCLES				= 0x1D,
702};
703
704/* PMUv3 HW events mapping. */
705static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
706	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
707	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
708	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
709	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
710	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= HW_OP_UNSUPPORTED,
711	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
712	[PERF_COUNT_HW_BUS_CYCLES]		= HW_OP_UNSUPPORTED,
713	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= HW_OP_UNSUPPORTED,
714	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= HW_OP_UNSUPPORTED,
715};
716
717static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
718						[PERF_COUNT_HW_CACHE_OP_MAX]
719						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
720	[C(L1D)] = {
721		[C(OP_READ)] = {
722			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
723			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
724		},
725		[C(OP_WRITE)] = {
726			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
727			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
728		},
729		[C(OP_PREFETCH)] = {
730			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
731			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
732		},
733	},
734	[C(L1I)] = {
735		[C(OP_READ)] = {
736			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
737			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
738		},
739		[C(OP_WRITE)] = {
740			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
741			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
742		},
743		[C(OP_PREFETCH)] = {
744			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
745			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
746		},
747	},
748	[C(LL)] = {
749		[C(OP_READ)] = {
750			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
751			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
752		},
753		[C(OP_WRITE)] = {
754			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
755			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
756		},
757		[C(OP_PREFETCH)] = {
758			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
759			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
760		},
761	},
762	[C(DTLB)] = {
763		[C(OP_READ)] = {
764			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
765			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
766		},
767		[C(OP_WRITE)] = {
768			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
769			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
770		},
771		[C(OP_PREFETCH)] = {
772			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
773			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
774		},
775	},
776	[C(ITLB)] = {
777		[C(OP_READ)] = {
778			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
779			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
780		},
781		[C(OP_WRITE)] = {
782			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
783			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
784		},
785		[C(OP_PREFETCH)] = {
786			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
787			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
788		},
789	},
790	[C(BPU)] = {
791		[C(OP_READ)] = {
792			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
793			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
794		},
795		[C(OP_WRITE)] = {
796			[C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
797			[C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
798		},
799		[C(OP_PREFETCH)] = {
800			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
801			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
802		},
803	},
804	[C(NODE)] = {
805		[C(OP_READ)] = {
806			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
807			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
808		},
809		[C(OP_WRITE)] = {
810			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
811			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
812		},
813		[C(OP_PREFETCH)] = {
814			[C(RESULT_ACCESS)]	= CACHE_OP_UNSUPPORTED,
815			[C(RESULT_MISS)]	= CACHE_OP_UNSUPPORTED,
816		},
817	},
818};
819
820/*
821 * Perf Events' indices
822 */
823#define	ARMV8_IDX_CYCLE_COUNTER	0
824#define	ARMV8_IDX_COUNTER0	1
825#define	ARMV8_IDX_COUNTER_LAST	(ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
826
827#define	ARMV8_MAX_COUNTERS	32
828#define	ARMV8_COUNTER_MASK	(ARMV8_MAX_COUNTERS - 1)
829
830/*
831 * ARMv8 low level PMU access
832 */
833
834/*
835 * Perf Event to low level counters mapping
836 */
837#define	ARMV8_IDX_TO_COUNTER(x)	\
838	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
839
840/*
841 * Per-CPU PMCR: config reg
842 */
843#define ARMV8_PMCR_E		(1 << 0) /* Enable all counters */
844#define ARMV8_PMCR_P		(1 << 1) /* Reset all counters */
845#define ARMV8_PMCR_C		(1 << 2) /* Cycle counter reset */
846#define ARMV8_PMCR_D		(1 << 3) /* CCNT counts every 64th cpu cycle */
847#define ARMV8_PMCR_X		(1 << 4) /* Export to ETM */
848#define ARMV8_PMCR_DP		(1 << 5) /* Disable CCNT if non-invasive debug*/
849#define	ARMV8_PMCR_N_SHIFT	11	 /* Number of counters supported */
850#define	ARMV8_PMCR_N_MASK	0x1f
851#define	ARMV8_PMCR_MASK		0x3f	 /* Mask for writable bits */
852
853/*
854 * PMOVSR: counters overflow flag status reg
855 */
856#define	ARMV8_OVSR_MASK		0xffffffff	/* Mask for writable bits */
857#define	ARMV8_OVERFLOWED_MASK	ARMV8_OVSR_MASK
858
859/*
860 * PMXEVTYPER: Event selection reg
861 */
862#define	ARMV8_EVTYPE_MASK	0xc80003ff	/* Mask for writable bits */
863#define	ARMV8_EVTYPE_EVENT	0x3ff		/* Mask for EVENT bits */
864
865/*
866 * Event filters for PMUv3
867 */
868#define	ARMV8_EXCLUDE_EL1	(1 << 31)
869#define	ARMV8_EXCLUDE_EL0	(1 << 30)
870#define	ARMV8_INCLUDE_EL2	(1 << 27)
871
872static inline u32 armv8pmu_pmcr_read(void)
873{
874	u32 val;
875	asm volatile("mrs %0, pmcr_el0" : "=r" (val));
876	return val;
877}
878
879static inline void armv8pmu_pmcr_write(u32 val)
880{
881	val &= ARMV8_PMCR_MASK;
882	isb();
883	asm volatile("msr pmcr_el0, %0" :: "r" (val));
884}
885
886static inline int armv8pmu_has_overflowed(u32 pmovsr)
887{
888	return pmovsr & ARMV8_OVERFLOWED_MASK;
889}
890
891static inline int armv8pmu_counter_valid(int idx)
892{
893	return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
894}
895
896static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
897{
898	int ret = 0;
899	u32 counter;
900
901	if (!armv8pmu_counter_valid(idx)) {
902		pr_err("CPU%u checking wrong counter %d overflow status\n",
903			smp_processor_id(), idx);
904	} else {
905		counter = ARMV8_IDX_TO_COUNTER(idx);
906		ret = pmnc & BIT(counter);
907	}
908
909	return ret;
910}
911
912static inline int armv8pmu_select_counter(int idx)
913{
914	u32 counter;
915
916	if (!armv8pmu_counter_valid(idx)) {
917		pr_err("CPU%u selecting wrong PMNC counter %d\n",
918			smp_processor_id(), idx);
919		return -EINVAL;
920	}
921
922	counter = ARMV8_IDX_TO_COUNTER(idx);
923	asm volatile("msr pmselr_el0, %0" :: "r" (counter));
924	isb();
925
926	return idx;
927}
928
929static inline u32 armv8pmu_read_counter(int idx)
930{
931	u32 value = 0;
932
933	if (!armv8pmu_counter_valid(idx))
934		pr_err("CPU%u reading wrong counter %d\n",
935			smp_processor_id(), idx);
936	else if (idx == ARMV8_IDX_CYCLE_COUNTER)
937		asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
938	else if (armv8pmu_select_counter(idx) == idx)
939		asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
940
941	return value;
942}
943
944static inline void armv8pmu_write_counter(int idx, u32 value)
945{
946	if (!armv8pmu_counter_valid(idx))
947		pr_err("CPU%u writing wrong counter %d\n",
948			smp_processor_id(), idx);
949	else if (idx == ARMV8_IDX_CYCLE_COUNTER)
950		asm volatile("msr pmccntr_el0, %0" :: "r" (value));
951	else if (armv8pmu_select_counter(idx) == idx)
952		asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
953}
954
955static inline void armv8pmu_write_evtype(int idx, u32 val)
956{
957	if (armv8pmu_select_counter(idx) == idx) {
958		val &= ARMV8_EVTYPE_MASK;
959		asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
960	}
961}
962
963static inline int armv8pmu_enable_counter(int idx)
964{
965	u32 counter;
966
967	if (!armv8pmu_counter_valid(idx)) {
968		pr_err("CPU%u enabling wrong PMNC counter %d\n",
969			smp_processor_id(), idx);
970		return -EINVAL;
971	}
972
973	counter = ARMV8_IDX_TO_COUNTER(idx);
974	asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
975	return idx;
976}
977
978static inline int armv8pmu_disable_counter(int idx)
979{
980	u32 counter;
981
982	if (!armv8pmu_counter_valid(idx)) {
983		pr_err("CPU%u disabling wrong PMNC counter %d\n",
984			smp_processor_id(), idx);
985		return -EINVAL;
986	}
987
988	counter = ARMV8_IDX_TO_COUNTER(idx);
989	asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
990	return idx;
991}
992
993static inline int armv8pmu_enable_intens(int idx)
994{
995	u32 counter;
996
997	if (!armv8pmu_counter_valid(idx)) {
998		pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
999			smp_processor_id(), idx);
1000		return -EINVAL;
1001	}
1002
1003	counter = ARMV8_IDX_TO_COUNTER(idx);
1004	asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
1005	return idx;
1006}
1007
1008static inline int armv8pmu_disable_intens(int idx)
1009{
1010	u32 counter;
1011
1012	if (!armv8pmu_counter_valid(idx)) {
1013		pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
1014			smp_processor_id(), idx);
1015		return -EINVAL;
1016	}
1017
1018	counter = ARMV8_IDX_TO_COUNTER(idx);
1019	asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
1020	isb();
1021	/* Clear the overflow flag in case an interrupt is pending. */
1022	asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
1023	isb();
1024	return idx;
1025}
1026
1027static inline u32 armv8pmu_getreset_flags(void)
1028{
1029	u32 value;
1030
1031	/* Read */
1032	asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
1033
1034	/* Write to clear flags */
1035	value &= ARMV8_OVSR_MASK;
1036	asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
1037
1038	return value;
1039}
1040
1041static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
1042{
1043	unsigned long flags;
1044	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1045
1046	/*
1047	 * Enable counter and interrupt, and set the counter to count
1048	 * the event that we're interested in.
1049	 */
1050	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1051
1052	/*
1053	 * Disable counter
1054	 */
1055	armv8pmu_disable_counter(idx);
1056
1057	/*
1058	 * Set event (if destined for PMNx counters).
1059	 */
1060	armv8pmu_write_evtype(idx, hwc->config_base);
1061
1062	/*
1063	 * Enable interrupt for this counter
1064	 */
1065	armv8pmu_enable_intens(idx);
1066
1067	/*
1068	 * Enable counter
1069	 */
1070	armv8pmu_enable_counter(idx);
1071
1072	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1073}
1074
1075static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1076{
1077	unsigned long flags;
1078	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1079
1080	/*
1081	 * Disable counter and interrupt
1082	 */
1083	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1084
1085	/*
1086	 * Disable counter
1087	 */
1088	armv8pmu_disable_counter(idx);
1089
1090	/*
1091	 * Disable interrupt for this counter
1092	 */
1093	armv8pmu_disable_intens(idx);
1094
1095	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1096}
1097
1098static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1099{
1100	u32 pmovsr;
1101	struct perf_sample_data data;
1102	struct pmu_hw_events *cpuc;
1103	struct pt_regs *regs;
1104	int idx;
1105
1106	/*
1107	 * Get and reset the IRQ flags
1108	 */
1109	pmovsr = armv8pmu_getreset_flags();
1110
1111	/*
1112	 * Did an overflow occur?
1113	 */
1114	if (!armv8pmu_has_overflowed(pmovsr))
1115		return IRQ_NONE;
1116
1117	/*
1118	 * Handle the counter(s) overflow(s)
1119	 */
1120	regs = get_irq_regs();
1121
1122	cpuc = this_cpu_ptr(&cpu_hw_events);
1123	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1124		struct perf_event *event = cpuc->events[idx];
1125		struct hw_perf_event *hwc;
1126
1127		/* Ignore if we don't have an event. */
1128		if (!event)
1129			continue;
1130
1131		/*
1132		 * We have a single interrupt for all counters. Check that
1133		 * each counter has overflowed before we process it.
1134		 */
1135		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1136			continue;
1137
1138		hwc = &event->hw;
1139		armpmu_event_update(event, hwc, idx);
1140		perf_sample_data_init(&data, 0, hwc->last_period);
1141		if (!armpmu_event_set_period(event, hwc, idx))
1142			continue;
1143
1144		if (perf_event_overflow(event, &data, regs))
1145			cpu_pmu->disable(hwc, idx);
1146	}
1147
1148	/*
1149	 * Handle the pending perf events.
1150	 *
1151	 * Note: this call *must* be run with interrupts disabled. For
1152	 * platforms that can have the PMU interrupts raised as an NMI, this
1153	 * will not work.
1154	 */
1155	irq_work_run();
1156
1157	return IRQ_HANDLED;
1158}
1159
1160static void armv8pmu_start(void)
1161{
1162	unsigned long flags;
1163	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1164
1165	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1166	/* Enable all counters */
1167	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1168	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1169}
1170
1171static void armv8pmu_stop(void)
1172{
1173	unsigned long flags;
1174	struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1175
1176	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1177	/* Disable all counters */
1178	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1179	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1180}
1181
1182static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1183				  struct hw_perf_event *event)
1184{
1185	int idx;
1186	unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1187
1188	/* Always place a cycle counter into the cycle counter. */
1189	if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1190		if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1191			return -EAGAIN;
1192
1193		return ARMV8_IDX_CYCLE_COUNTER;
1194	}
1195
1196	/*
1197	 * For anything other than a cycle counter, try and use
1198	 * the events counters
1199	 */
1200	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1201		if (!test_and_set_bit(idx, cpuc->used_mask))
1202			return idx;
1203	}
1204
1205	/* The counters are all in use. */
1206	return -EAGAIN;
1207}
1208
1209/*
1210 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1211 */
1212static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1213				     struct perf_event_attr *attr)
1214{
1215	unsigned long config_base = 0;
1216
1217	if (attr->exclude_idle)
1218		return -EPERM;
1219	if (attr->exclude_user)
1220		config_base |= ARMV8_EXCLUDE_EL0;
1221	if (attr->exclude_kernel)
1222		config_base |= ARMV8_EXCLUDE_EL1;
1223	if (!attr->exclude_hv)
1224		config_base |= ARMV8_INCLUDE_EL2;
1225
1226	/*
1227	 * Install the filter into config_base as this is used to
1228	 * construct the event type.
1229	 */
1230	event->config_base = config_base;
1231
1232	return 0;
1233}
1234
1235static void armv8pmu_reset(void *info)
1236{
1237	u32 idx, nb_cnt = cpu_pmu->num_events;
1238
1239	/* The counter and interrupt enable registers are unknown at reset. */
1240	for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1241		armv8pmu_disable_event(NULL, idx);
1242
1243	/* Initialize & Reset PMNC: C and P bits. */
1244	armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1245}
1246
1247static int armv8_pmuv3_map_event(struct perf_event *event)
1248{
1249	return map_cpu_event(event, &armv8_pmuv3_perf_map,
1250				&armv8_pmuv3_perf_cache_map,
1251				ARMV8_EVTYPE_EVENT);
1252}
1253
1254static struct arm_pmu armv8pmu = {
1255	.handle_irq		= armv8pmu_handle_irq,
1256	.enable			= armv8pmu_enable_event,
1257	.disable		= armv8pmu_disable_event,
1258	.read_counter		= armv8pmu_read_counter,
1259	.write_counter		= armv8pmu_write_counter,
1260	.get_event_idx		= armv8pmu_get_event_idx,
1261	.start			= armv8pmu_start,
1262	.stop			= armv8pmu_stop,
1263	.reset			= armv8pmu_reset,
1264	.max_period		= (1LLU << 32) - 1,
1265};
1266
1267static u32 __init armv8pmu_read_num_pmnc_events(void)
1268{
1269	u32 nb_cnt;
1270
1271	/* Read the nb of CNTx counters supported from PMNC */
1272	nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1273
1274	/* Add the CPU cycles counter and return */
1275	return nb_cnt + 1;
1276}
1277
1278static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1279{
1280	armv8pmu.name			= "arm/armv8-pmuv3";
1281	armv8pmu.map_event		= armv8_pmuv3_map_event;
1282	armv8pmu.num_events		= armv8pmu_read_num_pmnc_events();
1283	armv8pmu.set_event_filter	= armv8pmu_set_event_filter;
1284	return &armv8pmu;
1285}
1286
1287/*
1288 * Ensure the PMU has sane values out of reset.
1289 * This requires SMP to be available, so exists as a separate initcall.
1290 */
1291static int __init
1292cpu_pmu_reset(void)
1293{
1294	if (cpu_pmu && cpu_pmu->reset)
1295		return on_each_cpu(cpu_pmu->reset, NULL, 1);
1296	return 0;
1297}
1298arch_initcall(cpu_pmu_reset);
1299
1300/*
1301 * PMU platform driver and devicetree bindings.
1302 */
1303static const struct of_device_id armpmu_of_device_ids[] = {
1304	{.compatible = "arm,armv8-pmuv3"},
1305	{},
1306};
1307
1308static int armpmu_device_probe(struct platform_device *pdev)
1309{
1310	int i, irq, *irqs;
1311
1312	if (!cpu_pmu)
1313		return -ENODEV;
1314
1315	/* Don't bother with PPIs; they're already affine */
1316	irq = platform_get_irq(pdev, 0);
1317	if (irq >= 0 && irq_is_percpu(irq))
1318		goto out;
1319
1320	irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
1321	if (!irqs)
1322		return -ENOMEM;
1323
1324	for (i = 0; i < pdev->num_resources; ++i) {
1325		struct device_node *dn;
1326		int cpu;
1327
1328		dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
1329				      i);
1330		if (!dn) {
1331			pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
1332				of_node_full_name(pdev->dev.of_node), i);
1333			break;
1334		}
1335
1336		for_each_possible_cpu(cpu)
1337			if (arch_find_n_match_cpu_physical_id(dn, cpu, NULL))
1338				break;
1339
1340		of_node_put(dn);
1341		if (cpu >= nr_cpu_ids) {
1342			pr_warn("Failed to find logical CPU for %s\n",
1343				dn->name);
1344			break;
1345		}
1346
1347		irqs[i] = cpu;
1348	}
1349
1350	if (i == pdev->num_resources)
1351		cpu_pmu->irq_affinity = irqs;
1352	else
1353		kfree(irqs);
1354
1355out:
1356	cpu_pmu->plat_device = pdev;
1357	return 0;
1358}
1359
1360static struct platform_driver armpmu_driver = {
1361	.driver		= {
1362		.name	= "arm-pmu",
1363		.of_match_table = armpmu_of_device_ids,
1364	},
1365	.probe		= armpmu_device_probe,
1366};
1367
1368static int __init register_pmu_driver(void)
1369{
1370	return platform_driver_register(&armpmu_driver);
1371}
1372device_initcall(register_pmu_driver);
1373
1374static struct pmu_hw_events *armpmu_get_cpu_events(void)
1375{
1376	return this_cpu_ptr(&cpu_hw_events);
1377}
1378
1379static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1380{
1381	int cpu;
1382	for_each_possible_cpu(cpu) {
1383		struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1384		events->events = per_cpu(hw_events, cpu);
1385		events->used_mask = per_cpu(used_mask, cpu);
1386		raw_spin_lock_init(&events->pmu_lock);
1387	}
1388	armpmu->get_hw_events = armpmu_get_cpu_events;
1389}
1390
1391static int __init init_hw_perf_events(void)
1392{
1393	u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1394
1395	switch ((dfr >> 8) & 0xf) {
1396	case 0x1:	/* PMUv3 */
1397		cpu_pmu = armv8_pmuv3_pmu_init();
1398		break;
1399	}
1400
1401	if (cpu_pmu) {
1402		pr_info("enabled with %s PMU driver, %d counters available\n",
1403			cpu_pmu->name, cpu_pmu->num_events);
1404		cpu_pmu_init(cpu_pmu);
1405		armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1406	} else {
1407		pr_info("no hardware support available\n");
1408	}
1409
1410	return 0;
1411}
1412early_initcall(init_hw_perf_events);
1413
1414/*
1415 * Callchain handling code.
1416 */
1417struct frame_tail {
1418	struct frame_tail	__user *fp;
1419	unsigned long		lr;
1420} __attribute__((packed));
1421
1422/*
1423 * Get the return address for a single stackframe and return a pointer to the
1424 * next frame tail.
1425 */
1426static struct frame_tail __user *
1427user_backtrace(struct frame_tail __user *tail,
1428	       struct perf_callchain_entry *entry)
1429{
1430	struct frame_tail buftail;
1431	unsigned long err;
1432
1433	/* Also check accessibility of one struct frame_tail beyond */
1434	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1435		return NULL;
1436
1437	pagefault_disable();
1438	err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1439	pagefault_enable();
1440
1441	if (err)
1442		return NULL;
1443
1444	perf_callchain_store(entry, buftail.lr);
1445
1446	/*
1447	 * Frame pointers should strictly progress back up the stack
1448	 * (towards higher addresses).
1449	 */
1450	if (tail >= buftail.fp)
1451		return NULL;
1452
1453	return buftail.fp;
1454}
1455
1456#ifdef CONFIG_COMPAT
1457/*
1458 * The registers we're interested in are at the end of the variable
1459 * length saved register structure. The fp points at the end of this
1460 * structure so the address of this struct is:
1461 * (struct compat_frame_tail *)(xxx->fp)-1
1462 *
1463 * This code has been adapted from the ARM OProfile support.
1464 */
1465struct compat_frame_tail {
1466	compat_uptr_t	fp; /* a (struct compat_frame_tail *) in compat mode */
1467	u32		sp;
1468	u32		lr;
1469} __attribute__((packed));
1470
1471static struct compat_frame_tail __user *
1472compat_user_backtrace(struct compat_frame_tail __user *tail,
1473		      struct perf_callchain_entry *entry)
1474{
1475	struct compat_frame_tail buftail;
1476	unsigned long err;
1477
1478	/* Also check accessibility of one struct frame_tail beyond */
1479	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1480		return NULL;
1481
1482	pagefault_disable();
1483	err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1484	pagefault_enable();
1485
1486	if (err)
1487		return NULL;
1488
1489	perf_callchain_store(entry, buftail.lr);
1490
1491	/*
1492	 * Frame pointers should strictly progress back up the stack
1493	 * (towards higher addresses).
1494	 */
1495	if (tail + 1 >= (struct compat_frame_tail __user *)
1496			compat_ptr(buftail.fp))
1497		return NULL;
1498
1499	return (struct compat_frame_tail __user *)compat_ptr(buftail.fp) - 1;
1500}
1501#endif /* CONFIG_COMPAT */
1502
1503void perf_callchain_user(struct perf_callchain_entry *entry,
1504			 struct pt_regs *regs)
1505{
1506	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1507		/* We don't support guest os callchain now */
1508		return;
1509	}
1510
1511	perf_callchain_store(entry, regs->pc);
1512
1513	if (!compat_user_mode(regs)) {
1514		/* AARCH64 mode */
1515		struct frame_tail __user *tail;
1516
1517		tail = (struct frame_tail __user *)regs->regs[29];
1518
1519		while (entry->nr < PERF_MAX_STACK_DEPTH &&
1520		       tail && !((unsigned long)tail & 0xf))
1521			tail = user_backtrace(tail, entry);
1522	} else {
1523#ifdef CONFIG_COMPAT
1524		/* AARCH32 compat mode */
1525		struct compat_frame_tail __user *tail;
1526
1527		tail = (struct compat_frame_tail __user *)regs->compat_fp - 1;
1528
1529		while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1530			tail && !((unsigned long)tail & 0x3))
1531			tail = compat_user_backtrace(tail, entry);
1532#endif
1533	}
1534}
1535
1536/*
1537 * Gets called by walk_stackframe() for every stackframe. This will be called
1538 * whist unwinding the stackframe and is like a subroutine return so we use
1539 * the PC.
1540 */
1541static int callchain_trace(struct stackframe *frame, void *data)
1542{
1543	struct perf_callchain_entry *entry = data;
1544	perf_callchain_store(entry, frame->pc);
1545	return 0;
1546}
1547
1548void perf_callchain_kernel(struct perf_callchain_entry *entry,
1549			   struct pt_regs *regs)
1550{
1551	struct stackframe frame;
1552
1553	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1554		/* We don't support guest os callchain now */
1555		return;
1556	}
1557
1558	frame.fp = regs->regs[29];
1559	frame.sp = regs->sp;
1560	frame.pc = regs->pc;
1561
1562	walk_stackframe(&frame, callchain_trace, entry);
1563}
1564
1565unsigned long perf_instruction_pointer(struct pt_regs *regs)
1566{
1567	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1568		return perf_guest_cbs->get_guest_ip();
1569
1570	return instruction_pointer(regs);
1571}
1572
1573unsigned long perf_misc_flags(struct pt_regs *regs)
1574{
1575	int misc = 0;
1576
1577	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1578		if (perf_guest_cbs->is_user_mode())
1579			misc |= PERF_RECORD_MISC_GUEST_USER;
1580		else
1581			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1582	} else {
1583		if (user_mode(regs))
1584			misc |= PERF_RECORD_MISC_USER;
1585		else
1586			misc |= PERF_RECORD_MISC_KERNEL;
1587	}
1588
1589	return misc;
1590}
1591