1/* 2 * linux/arch/arm/mm/nommu.c 3 * 4 * ARM uCLinux supporting functions. 5 */ 6#include <linux/module.h> 7#include <linux/mm.h> 8#include <linux/pagemap.h> 9#include <linux/io.h> 10#include <linux/memblock.h> 11#include <linux/kernel.h> 12 13#include <asm/cacheflush.h> 14#include <asm/sections.h> 15#include <asm/page.h> 16#include <asm/setup.h> 17#include <asm/traps.h> 18#include <asm/mach/arch.h> 19#include <asm/cputype.h> 20#include <asm/mpu.h> 21#include <asm/procinfo.h> 22 23#include "mm.h" 24 25#ifdef CONFIG_ARM_MPU 26struct mpu_rgn_info mpu_rgn_info; 27 28/* Region number */ 29static void rgnr_write(u32 v) 30{ 31 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v)); 32} 33 34/* Data-side / unified region attributes */ 35 36/* Region access control register */ 37static void dracr_write(u32 v) 38{ 39 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v)); 40} 41 42/* Region size register */ 43static void drsr_write(u32 v) 44{ 45 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v)); 46} 47 48/* Region base address register */ 49static void drbar_write(u32 v) 50{ 51 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v)); 52} 53 54static u32 drbar_read(void) 55{ 56 u32 v; 57 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v)); 58 return v; 59} 60/* Optional instruction-side region attributes */ 61 62/* I-side Region access control register */ 63static void iracr_write(u32 v) 64{ 65 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v)); 66} 67 68/* I-side Region size register */ 69static void irsr_write(u32 v) 70{ 71 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v)); 72} 73 74/* I-side Region base address register */ 75static void irbar_write(u32 v) 76{ 77 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v)); 78} 79 80static unsigned long irbar_read(void) 81{ 82 unsigned long v; 83 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v)); 84 return v; 85} 86 87/* MPU initialisation functions */ 88void __init sanity_check_meminfo_mpu(void) 89{ 90 int i; 91 phys_addr_t phys_offset = PHYS_OFFSET; 92 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; 93 struct memblock_region *reg; 94 bool first = true; 95 phys_addr_t mem_start; 96 phys_addr_t mem_end; 97 98 for_each_memblock(memory, reg) { 99 if (first) { 100 /* 101 * Initially only use memory continuous from 102 * PHYS_OFFSET */ 103 if (reg->base != phys_offset) 104 panic("First memory bank must be contiguous from PHYS_OFFSET"); 105 106 mem_start = reg->base; 107 mem_end = reg->base + reg->size; 108 specified_mem_size = reg->size; 109 first = false; 110 } else { 111 /* 112 * memblock auto merges contiguous blocks, remove 113 * all blocks afterwards 114 */ 115 pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n", 116 &mem_start, ®->base); 117 memblock_remove(reg->base, reg->size); 118 } 119 } 120 121 /* 122 * MPU has curious alignment requirements: Size must be power of 2, and 123 * region start must be aligned to the region size 124 */ 125 if (phys_offset != 0) 126 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); 127 128 /* 129 * Maximum aligned region might overflow phys_addr_t if phys_offset is 130 * 0. Hence we keep everything below 4G until we take the smaller of 131 * the aligned_region_size and rounded_mem_size, one of which is 132 * guaranteed to be smaller than the maximum physical address. 133 */ 134 aligned_region_size = (phys_offset - 1) ^ (phys_offset); 135 /* Find the max power-of-two sized region that fits inside our bank */ 136 rounded_mem_size = (1 << __fls(specified_mem_size)) - 1; 137 138 /* The actual region size is the smaller of the two */ 139 aligned_region_size = aligned_region_size < rounded_mem_size 140 ? aligned_region_size + 1 141 : rounded_mem_size + 1; 142 143 if (aligned_region_size != specified_mem_size) { 144 pr_warn("Truncating memory from %pa to %pa (MPU region constraints)", 145 &specified_mem_size, &aligned_region_size); 146 memblock_remove(mem_start + aligned_region_size, 147 specified_mem_size - aligned_round_size); 148 149 mem_end = mem_start + aligned_region_size; 150 } 151 152 pr_debug("MPU Region from %pa size %pa (end %pa))\n", 153 &phys_offset, &aligned_region_size, &mem_end); 154 155} 156 157static int mpu_present(void) 158{ 159 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); 160} 161 162static int mpu_max_regions(void) 163{ 164 /* 165 * We don't support a different number of I/D side regions so if we 166 * have separate instruction and data memory maps then return 167 * whichever side has a smaller number of supported regions. 168 */ 169 u32 dregions, iregions, mpuir; 170 mpuir = read_cpuid(CPUID_MPUIR); 171 172 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; 173 174 /* Check for separate d-side and i-side memory maps */ 175 if (mpuir & MPUIR_nU) 176 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; 177 178 /* Use the smallest of the two maxima */ 179 return min(dregions, iregions); 180} 181 182static int mpu_iside_independent(void) 183{ 184 /* MPUIR.nU specifies whether there is *not* a unified memory map */ 185 return read_cpuid(CPUID_MPUIR) & MPUIR_nU; 186} 187 188static int mpu_min_region_order(void) 189{ 190 u32 drbar_result, irbar_result; 191 /* We've kept a region free for this probing */ 192 rgnr_write(MPU_PROBE_REGION); 193 isb(); 194 /* 195 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum 196 * region order 197 */ 198 drbar_write(0xFFFFFFFC); 199 drbar_result = irbar_result = drbar_read(); 200 drbar_write(0x0); 201 /* If the MPU is non-unified, we use the larger of the two minima*/ 202 if (mpu_iside_independent()) { 203 irbar_write(0xFFFFFFFC); 204 irbar_result = irbar_read(); 205 irbar_write(0x0); 206 } 207 isb(); /* Ensure that MPU region operations have completed */ 208 /* Return whichever result is larger */ 209 return __ffs(max(drbar_result, irbar_result)); 210} 211 212static int mpu_setup_region(unsigned int number, phys_addr_t start, 213 unsigned int size_order, unsigned int properties) 214{ 215 u32 size_data; 216 217 /* We kept a region free for probing resolution of MPU regions*/ 218 if (number > mpu_max_regions() || number == MPU_PROBE_REGION) 219 return -ENOENT; 220 221 if (size_order > 32) 222 return -ENOMEM; 223 224 if (size_order < mpu_min_region_order()) 225 return -ENOMEM; 226 227 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */ 228 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; 229 230 dsb(); /* Ensure all previous data accesses occur with old mappings */ 231 rgnr_write(number); 232 isb(); 233 drbar_write(start); 234 dracr_write(properties); 235 isb(); /* Propagate properties before enabling region */ 236 drsr_write(size_data); 237 238 /* Check for independent I-side registers */ 239 if (mpu_iside_independent()) { 240 irbar_write(start); 241 iracr_write(properties); 242 isb(); 243 irsr_write(size_data); 244 } 245 isb(); 246 247 /* Store region info (we treat i/d side the same, so only store d) */ 248 mpu_rgn_info.rgns[number].dracr = properties; 249 mpu_rgn_info.rgns[number].drbar = start; 250 mpu_rgn_info.rgns[number].drsr = size_data; 251 return 0; 252} 253 254/* 255* Set up default MPU regions, doing nothing if there is no MPU 256*/ 257void __init mpu_setup(void) 258{ 259 int region_err; 260 if (!mpu_present()) 261 return; 262 263 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, 264 ilog2(meminfo.bank[0].size), 265 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); 266 if (region_err) { 267 panic("MPU region initialization failure! %d", region_err); 268 } else { 269 pr_info("Using ARMv7 PMSA Compliant MPU. " 270 "Region independence: %s, Max regions: %d\n", 271 mpu_iside_independent() ? "Yes" : "No", 272 mpu_max_regions()); 273 } 274} 275#else 276static void sanity_check_meminfo_mpu(void) {} 277static void __init mpu_setup(void) {} 278#endif /* CONFIG_ARM_MPU */ 279 280void __init arm_mm_memblock_reserve(void) 281{ 282#ifndef CONFIG_CPU_V7M 283 /* 284 * Register the exception vector page. 285 * some architectures which the DRAM is the exception vector to trap, 286 * alloc_page breaks with error, although it is not NULL, but "0." 287 */ 288 memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE); 289#else /* ifndef CONFIG_CPU_V7M */ 290 /* 291 * There is no dedicated vector page on V7-M. So nothing needs to be 292 * reserved here. 293 */ 294#endif 295} 296 297void __init sanity_check_meminfo(void) 298{ 299 phys_addr_t end; 300 sanity_check_meminfo_mpu(); 301 end = memblock_end_of_DRAM(); 302 high_memory = __va(end - 1) + 1; 303 memblock_set_current_limit(end); 304} 305 306/* 307 * early_paging_init() recreates boot time page table setup, allowing machines 308 * to switch over to a high (>4G) address space on LPAE systems 309 */ 310void __init early_paging_init(const struct machine_desc *mdesc, 311 struct proc_info_list *procinfo) 312{ 313} 314 315/* 316 * paging_init() sets up the page tables, initialises the zone memory 317 * maps, and sets up the zero page, bad page and bad page tables. 318 */ 319void __init paging_init(const struct machine_desc *mdesc) 320{ 321 early_trap_init((void *)CONFIG_VECTORS_BASE); 322 mpu_setup(); 323 bootmem_init(); 324} 325 326/* 327 * We don't need to do anything here for nommu machines. 328 */ 329void setup_mm_for_reboot(void) 330{ 331} 332 333void flush_dcache_page(struct page *page) 334{ 335 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 336} 337EXPORT_SYMBOL(flush_dcache_page); 338 339void flush_kernel_dcache_page(struct page *page) 340{ 341 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 342} 343EXPORT_SYMBOL(flush_kernel_dcache_page); 344 345void copy_to_user_page(struct vm_area_struct *vma, struct page *page, 346 unsigned long uaddr, void *dst, const void *src, 347 unsigned long len) 348{ 349 memcpy(dst, src, len); 350 if (vma->vm_flags & VM_EXEC) 351 __cpuc_coherent_user_range(uaddr, uaddr + len); 352} 353 354void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, 355 size_t size, unsigned int mtype) 356{ 357 if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) 358 return NULL; 359 return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); 360} 361EXPORT_SYMBOL(__arm_ioremap_pfn); 362 363void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset, 364 size_t size, unsigned int mtype, void *caller) 365{ 366 return __arm_ioremap_pfn(pfn, offset, size, mtype); 367} 368 369void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size, 370 unsigned int mtype) 371{ 372 return (void __iomem *)phys_addr; 373} 374EXPORT_SYMBOL(__arm_ioremap); 375 376void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); 377 378void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, 379 unsigned int mtype, void *caller) 380{ 381 return __arm_ioremap(phys_addr, size, mtype); 382} 383 384void (*arch_iounmap)(volatile void __iomem *); 385 386void __arm_iounmap(volatile void __iomem *addr) 387{ 388} 389EXPORT_SYMBOL(__arm_iounmap); 390