1/* 2 * OMAP2/3/4 DPLL clock functions 3 * 4 * Copyright (C) 2005-2008 Texas Instruments, Inc. 5 * Copyright (C) 2004-2010 Nokia Corporation 6 * 7 * Contacts: 8 * Richard Woodruff <r-woodruff2@ti.com> 9 * Paul Walmsley 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 */ 15#undef DEBUG 16 17#include <linux/kernel.h> 18#include <linux/errno.h> 19#include <linux/clk-provider.h> 20#include <linux/io.h> 21 22#include <asm/div64.h> 23 24#include "clock.h" 25 26/* DPLL rate rounding: minimum DPLL multiplier, divider values */ 27#define DPLL_MIN_MULTIPLIER 2 28#define DPLL_MIN_DIVIDER 1 29 30/* Possible error results from _dpll_test_mult */ 31#define DPLL_MULT_UNDERFLOW -1 32 33/* 34 * Scale factor to mitigate roundoff errors in DPLL rate rounding. 35 * The higher the scale factor, the greater the risk of arithmetic overflow, 36 * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR 37 * must be a power of DPLL_SCALE_BASE. 38 */ 39#define DPLL_SCALE_FACTOR 64 40#define DPLL_SCALE_BASE 2 41#define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ 42 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) 43 44/* 45 * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx. 46 * From device data manual section 4.3 "DPLL and DLL Specifications". 47 */ 48#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000 49#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000 50 51/* _dpll_test_fint() return codes */ 52#define DPLL_FINT_UNDERFLOW -1 53#define DPLL_FINT_INVALID -2 54 55/* Private functions */ 56 57/* 58 * _dpll_test_fint - test whether an Fint value is valid for the DPLL 59 * @clk: DPLL struct clk to test 60 * @n: divider value (N) to test 61 * 62 * Tests whether a particular divider @n will result in a valid DPLL 63 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter 64 * Correction". Returns 0 if OK, -1 if the enclosing loop can terminate 65 * (assuming that it is counting N upwards), or -2 if the enclosing loop 66 * should skip to the next iteration (again assuming N is increasing). 67 */ 68static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n) 69{ 70 struct dpll_data *dd; 71 long fint, fint_min, fint_max; 72 int ret = 0; 73 74 dd = clk->dpll_data; 75 76 /* DPLL divider must result in a valid jitter correction val */ 77 fint = __clk_get_rate(__clk_get_parent(clk->hw.clk)) / n; 78 79 if (dd->flags & DPLL_J_TYPE) { 80 fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN; 81 fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX; 82 } else { 83 fint_min = ti_clk_features.fint_min; 84 fint_max = ti_clk_features.fint_max; 85 } 86 87 if (!fint_min || !fint_max) { 88 WARN(1, "No fint limits available!\n"); 89 return DPLL_FINT_INVALID; 90 } 91 92 if (fint < ti_clk_features.fint_min) { 93 pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n", 94 n); 95 dd->max_divider = n; 96 ret = DPLL_FINT_UNDERFLOW; 97 } else if (fint > ti_clk_features.fint_max) { 98 pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n", 99 n); 100 dd->min_divider = n; 101 ret = DPLL_FINT_INVALID; 102 } else if (fint > ti_clk_features.fint_band1_max && 103 fint < ti_clk_features.fint_band2_min) { 104 pr_debug("rejecting n=%d due to Fint failure\n", n); 105 ret = DPLL_FINT_INVALID; 106 } 107 108 return ret; 109} 110 111static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, 112 unsigned int m, unsigned int n) 113{ 114 unsigned long long num; 115 116 num = (unsigned long long)parent_rate * m; 117 do_div(num, n); 118 return num; 119} 120 121/* 122 * _dpll_test_mult - test a DPLL multiplier value 123 * @m: pointer to the DPLL m (multiplier) value under test 124 * @n: current DPLL n (divider) value under test 125 * @new_rate: pointer to storage for the resulting rounded rate 126 * @target_rate: the desired DPLL rate 127 * @parent_rate: the DPLL's parent clock rate 128 * 129 * This code tests a DPLL multiplier value, ensuring that the 130 * resulting rate will not be higher than the target_rate, and that 131 * the multiplier value itself is valid for the DPLL. Initially, the 132 * integer pointed to by the m argument should be prescaled by 133 * multiplying by DPLL_SCALE_FACTOR. The code will replace this with 134 * a non-scaled m upon return. This non-scaled m will result in a 135 * new_rate as close as possible to target_rate (but not greater than 136 * target_rate) given the current (parent_rate, n, prescaled m) 137 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the 138 * non-scaled m attempted to underflow, which can allow the calling 139 * function to bail out early; or 0 upon success. 140 */ 141static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, 142 unsigned long target_rate, 143 unsigned long parent_rate) 144{ 145 int r = 0, carry = 0; 146 147 /* Unscale m and round if necessary */ 148 if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) 149 carry = 1; 150 *m = (*m / DPLL_SCALE_FACTOR) + carry; 151 152 /* 153 * The new rate must be <= the target rate to avoid programming 154 * a rate that is impossible for the hardware to handle 155 */ 156 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); 157 if (*new_rate > target_rate) { 158 (*m)--; 159 *new_rate = 0; 160 } 161 162 /* Guard against m underflow */ 163 if (*m < DPLL_MIN_MULTIPLIER) { 164 *m = DPLL_MIN_MULTIPLIER; 165 *new_rate = 0; 166 r = DPLL_MULT_UNDERFLOW; 167 } 168 169 if (*new_rate == 0) 170 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); 171 172 return r; 173} 174 175/** 176 * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not 177 * @v: bitfield value of the DPLL enable 178 * 179 * Checks given DPLL enable bitfield to see whether the DPLL is in bypass 180 * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise. 181 */ 182static int _omap2_dpll_is_in_bypass(u32 v) 183{ 184 u8 mask, val; 185 186 mask = ti_clk_features.dpll_bypass_vals; 187 188 /* 189 * Each set bit in the mask corresponds to a bypass value equal 190 * to the bitshift. Go through each set-bit in the mask and 191 * compare against the given register value. 192 */ 193 while (mask) { 194 val = __ffs(mask); 195 mask ^= (1 << val); 196 if (v == val) 197 return 1; 198 } 199 200 return 0; 201} 202 203/* Public functions */ 204u8 omap2_init_dpll_parent(struct clk_hw *hw) 205{ 206 struct clk_hw_omap *clk = to_clk_hw_omap(hw); 207 u32 v; 208 struct dpll_data *dd; 209 210 dd = clk->dpll_data; 211 if (!dd) 212 return -EINVAL; 213 214 v = omap2_clk_readl(clk, dd->control_reg); 215 v &= dd->enable_mask; 216 v >>= __ffs(dd->enable_mask); 217 218 /* Reparent the struct clk in case the dpll is in bypass */ 219 if (_omap2_dpll_is_in_bypass(v)) 220 return 1; 221 222 return 0; 223} 224 225/** 226 * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate 227 * @clk: struct clk * of a DPLL 228 * 229 * DPLLs can be locked or bypassed - basically, enabled or disabled. 230 * When locked, the DPLL output depends on the M and N values. When 231 * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock 232 * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and 233 * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively 234 * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. 235 * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is 236 * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 237 * if the clock @clk is not a DPLL. 238 */ 239unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk) 240{ 241 long long dpll_clk; 242 u32 dpll_mult, dpll_div, v; 243 struct dpll_data *dd; 244 245 dd = clk->dpll_data; 246 if (!dd) 247 return 0; 248 249 /* Return bypass rate if DPLL is bypassed */ 250 v = omap2_clk_readl(clk, dd->control_reg); 251 v &= dd->enable_mask; 252 v >>= __ffs(dd->enable_mask); 253 254 if (_omap2_dpll_is_in_bypass(v)) 255 return __clk_get_rate(dd->clk_bypass); 256 257 v = omap2_clk_readl(clk, dd->mult_div1_reg); 258 dpll_mult = v & dd->mult_mask; 259 dpll_mult >>= __ffs(dd->mult_mask); 260 dpll_div = v & dd->div1_mask; 261 dpll_div >>= __ffs(dd->div1_mask); 262 263 dpll_clk = (long long) __clk_get_rate(dd->clk_ref) * dpll_mult; 264 do_div(dpll_clk, dpll_div + 1); 265 266 return dpll_clk; 267} 268 269/* DPLL rate rounding code */ 270 271/** 272 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL 273 * @clk: struct clk * for a DPLL 274 * @target_rate: desired DPLL clock rate 275 * 276 * Given a DPLL and a desired target rate, round the target rate to a 277 * possible, programmable rate for this DPLL. Attempts to select the 278 * minimum possible n. Stores the computed (m, n) in the DPLL's 279 * dpll_data structure so set_rate() will not need to call this 280 * (expensive) function again. Returns ~0 if the target rate cannot 281 * be rounded, or the rounded rate upon success. 282 */ 283long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate, 284 unsigned long *parent_rate) 285{ 286 struct clk_hw_omap *clk = to_clk_hw_omap(hw); 287 int m, n, r, scaled_max_m; 288 int min_delta_m = INT_MAX, min_delta_n = INT_MAX; 289 unsigned long scaled_rt_rp; 290 unsigned long new_rate = 0; 291 struct dpll_data *dd; 292 unsigned long ref_rate; 293 long delta; 294 long prev_min_delta = LONG_MAX; 295 const char *clk_name; 296 297 if (!clk || !clk->dpll_data) 298 return ~0; 299 300 dd = clk->dpll_data; 301 302 ref_rate = __clk_get_rate(dd->clk_ref); 303 clk_name = __clk_get_name(hw->clk); 304 pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n", 305 clk_name, target_rate); 306 307 scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR); 308 scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR; 309 310 dd->last_rounded_rate = 0; 311 312 for (n = dd->min_divider; n <= dd->max_divider; n++) { 313 314 /* Is the (input clk, divider) pair valid for the DPLL? */ 315 r = _dpll_test_fint(clk, n); 316 if (r == DPLL_FINT_UNDERFLOW) 317 break; 318 else if (r == DPLL_FINT_INVALID) 319 continue; 320 321 /* Compute the scaled DPLL multiplier, based on the divider */ 322 m = scaled_rt_rp * n; 323 324 /* 325 * Since we're counting n up, a m overflow means we 326 * can bail out completely (since as n increases in 327 * the next iteration, there's no way that m can 328 * increase beyond the current m) 329 */ 330 if (m > scaled_max_m) 331 break; 332 333 r = _dpll_test_mult(&m, n, &new_rate, target_rate, 334 ref_rate); 335 336 /* m can't be set low enough for this n - try with a larger n */ 337 if (r == DPLL_MULT_UNDERFLOW) 338 continue; 339 340 /* skip rates above our target rate */ 341 delta = target_rate - new_rate; 342 if (delta < 0) 343 continue; 344 345 if (delta < prev_min_delta) { 346 prev_min_delta = delta; 347 min_delta_m = m; 348 min_delta_n = n; 349 } 350 351 pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n", 352 clk_name, m, n, new_rate); 353 354 if (delta == 0) 355 break; 356 } 357 358 if (prev_min_delta == LONG_MAX) { 359 pr_debug("clock: %s: cannot round to rate %lu\n", 360 clk_name, target_rate); 361 return ~0; 362 } 363 364 dd->last_rounded_m = min_delta_m; 365 dd->last_rounded_n = min_delta_n; 366 dd->last_rounded_rate = target_rate - prev_min_delta; 367 368 return dd->last_rounded_rate; 369} 370 371