1/*
2 *  arch/arm/include/asm/pgtable-2level.h
3 *
4 *  Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASM_PGTABLE_2LEVEL_H
11#define _ASM_PGTABLE_2LEVEL_H
12
13#define __PAGETABLE_PMD_FOLDED
14
15/*
16 * Hardware-wise, we have a two level page table structure, where the first
17 * level has 4096 entries, and the second level has 256 entries.  Each entry
18 * is one 32-bit word.  Most of the bits in the second level entry are used
19 * by hardware, and there aren't any "accessed" and "dirty" bits.
20 *
21 * Linux on the other hand has a three level page table structure, which can
22 * be wrapped to fit a two level page table structure easily - using the PGD
23 * and PTE only.  However, Linux also expects one "PTE" table per page, and
24 * at least a "dirty" bit.
25 *
26 * Therefore, we tweak the implementation slightly - we tell Linux that we
27 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
28 * hardware pointers to the second level.)  The second level contains two
29 * hardware PTE tables arranged contiguously, preceded by Linux versions
30 * which contain the state information Linux needs.  We, therefore, end up
31 * with 512 entries in the "PTE" level.
32 *
33 * This leads to the page tables having the following layout:
34 *
35 *    pgd             pte
36 * |        |
37 * +--------+
38 * |        |       +------------+ +0
39 * +- - - - +       | Linux pt 0 |
40 * |        |       +------------+ +1024
41 * +--------+ +0    | Linux pt 1 |
42 * |        |-----> +------------+ +2048
43 * +- - - - + +4    |  h/w pt 0  |
44 * |        |-----> +------------+ +3072
45 * +--------+ +8    |  h/w pt 1  |
46 * |        |       +------------+ +4096
47 *
48 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
49 * PTE_xxx for definitions of bits appearing in the "h/w pt".
50 *
51 * PMD_xxx definitions refer to bits in the first level page table.
52 *
53 * The "dirty" bit is emulated by only granting hardware write permission
54 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
55 * means that a write to a clean page will cause a permission fault, and
56 * the Linux MM layer will mark the page dirty via handle_pte_fault().
57 * For the hardware to notice the permission change, the TLB entry must
58 * be flushed, and ptep_set_access_flags() does that for us.
59 *
60 * The "accessed" or "young" bit is emulated by a similar method; we only
61 * allow accesses to the page if the "young" bit is set.  Accesses to the
62 * page will cause a fault, and handle_pte_fault() will set the young bit
63 * for us as long as the page is marked present in the corresponding Linux
64 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
65 * up to date.
66 *
67 * However, when the "young" bit is cleared, we deny access to the page
68 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
69 * for us in this case, which means the TLB will retain the transation
70 * until either the TLB entry is evicted under pressure, or a context
71 * switch which changes the user space mapping occurs.
72 */
73#define PTRS_PER_PTE		512
74#define PTRS_PER_PMD		1
75#define PTRS_PER_PGD		2048
76
77#define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
78#define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
79#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
80
81/*
82 * PMD_SHIFT determines the size of the area a second-level page table can map
83 * PGDIR_SHIFT determines what a third-level page table entry can map
84 */
85#define PMD_SHIFT		21
86#define PGDIR_SHIFT		21
87
88#define PMD_SIZE		(1UL << PMD_SHIFT)
89#define PMD_MASK		(~(PMD_SIZE-1))
90#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
91#define PGDIR_MASK		(~(PGDIR_SIZE-1))
92
93/*
94 * section address mask and size definitions.
95 */
96#define SECTION_SHIFT		20
97#define SECTION_SIZE		(1UL << SECTION_SHIFT)
98#define SECTION_MASK		(~(SECTION_SIZE-1))
99
100/*
101 * ARMv6 supersection address mask and size definitions.
102 */
103#define SUPERSECTION_SHIFT	24
104#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
105#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
106
107#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
108
109/*
110 * "Linux" PTE definitions.
111 *
112 * We keep two sets of PTEs - the hardware and the linux version.
113 * This allows greater flexibility in the way we map the Linux bits
114 * onto the hardware tables, and allows us to have YOUNG and DIRTY
115 * bits.
116 *
117 * The PTE table pointer refers to the hardware entries; the "Linux"
118 * entries are stored 1024 bytes below.
119 */
120#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
121#define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
122#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
123#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
124#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
125#define L_PTE_USER		(_AT(pteval_t, 1) << 8)
126#define L_PTE_XN		(_AT(pteval_t, 1) << 9)
127#define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
128#define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
129
130/*
131 * These are the memory types, defined to be compatible with
132 * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
133 */
134#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
135#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
136#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
137#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
138#define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
139#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
140#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
141#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
142#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
143#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
144#define L_PTE_MT_VECTORS	(_AT(pteval_t, 0x0f) << 2)	/* 1111 */
145#define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
146
147#ifndef __ASSEMBLY__
148
149/*
150 * The "pud_xxx()" functions here are trivial when the pmd is folded into
151 * the pud: the pud entry is never bad, always exists, and can't be set or
152 * cleared.
153 */
154#define pud_none(pud)		(0)
155#define pud_bad(pud)		(0)
156#define pud_present(pud)	(1)
157#define pud_clear(pudp)		do { } while (0)
158#define set_pud(pud,pudp)	do { } while (0)
159
160static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
161{
162	return (pmd_t *)pud;
163}
164
165#define pmd_large(pmd)		(pmd_val(pmd) & 2)
166#define pmd_bad(pmd)		(pmd_val(pmd) & 2)
167
168#define copy_pmd(pmdpd,pmdps)		\
169	do {				\
170		pmdpd[0] = pmdps[0];	\
171		pmdpd[1] = pmdps[1];	\
172		flush_pmd_entry(pmdpd);	\
173	} while (0)
174
175#define pmd_clear(pmdp)			\
176	do {				\
177		pmdp[0] = __pmd(0);	\
178		pmdp[1] = __pmd(0);	\
179		clean_pmd_entry(pmdp);	\
180	} while (0)
181
182/* we don't need complex calculations here as the pmd is folded into the pgd */
183#define pmd_addr_end(addr,end) (end)
184
185#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
186#define pte_special(pte)	(0)
187static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
188
189/*
190 * We don't have huge page support for short descriptors, for the moment
191 * define empty stubs for use by pin_page_for_write.
192 */
193#define pmd_hugewillfault(pmd)	(0)
194#define pmd_thp_or_huge(pmd)	(0)
195
196#endif /* __ASSEMBLY__ */
197
198#endif /* _ASM_PGTABLE_2LEVEL_H */
199