1/*
2 * TLB Management (flush/create/diagnostics) for ARC700
3 *
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * vineetg: Aug 2011
11 *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
12 *
13 * vineetg: May 2011
14 *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 *   some of the LMBench tests improved amazingly
16 *      = page-fault thrice as fast (75 usec to 28 usec)
17 *      = mmap twice as fast (9.6 msec to 4.6 msec),
18 *      = fork (5.3 msec to 3.7 msec)
19 *
20 * vineetg: April 2011 :
21 *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 *      helps avoid a shift when preparing PD0 from PTE
23 *
24 * vineetg: April 2011 : Preparing for MMU V3
25 *  -MMU v2/v3 BCRs decoded differently
26 *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 *  -tlb_entry_erase( ) can be void
28 *  -local_flush_tlb_range( ):
29 *      = need not "ceil" @end
30 *      = walks MMU only if range spans < 32 entries, as opposed to 256
31 *
32 * Vineetg: Sept 10th 2008
33 *  -Changes related to MMU v2 (Rel 4.8)
34 *
35 * Vineetg: Aug 29th 2008
36 *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 *    it fails. Thus need to load it with ANY valid value before invoking
39 *    TLBIVUTLB cmd
40 *
41 * Vineetg: Aug 21th 2008:
42 *  -Reduced the duration of IRQ lockouts in TLB Flush routines
43 *  -Multiple copies of TLB erase code seperated into a "single" function
44 *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 *       in interrupt-safe region.
46 *
47 * Vineetg: April 23rd Bug #93131
48 *    Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49 *              flush is more than the size of TLB itself.
50 *
51 * Rahul Trivedi : Codito Technologies 2004
52 */
53
54#include <linux/module.h>
55#include <linux/bug.h>
56#include <asm/arcregs.h>
57#include <asm/setup.h>
58#include <asm/mmu_context.h>
59#include <asm/mmu.h>
60
61/*			Need for ARC MMU v2
62 *
63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
65 * map into same set, there would be contention for the 2 ways causing severe
66 * Thrashing.
67 *
68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
70 * Given this, the thrasing problem should never happen because once the 3
71 * J-TLB entries are created (even though 3rd will knock out one of the prev
72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
73 *
74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
75 * This is a simple design for keeping them in sync. So what do we do?
76 * The solution which James came up was pretty neat. It utilised the assoc
77 * of uTLBs by not invalidating always but only when absolutely necessary.
78 *
79 * - Existing TLB commands work as before
80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
81 * - New command (TLBIVUTLB) to invalidate uTLBs.
82 *
83 * The uTLBs need only be invalidated when pages are being removed from the
84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
85 * as a result of a miss, the removed entry is still allowed to exist in the
86 * uTLBs as it is still valid and present in the OS page table. This allows the
87 * full associativity of the uTLBs to hide the limited associativity of the main
88 * TLB.
89 *
90 * During a miss handler, the new "TLBWriteNI" command is used to load
91 * entries without clearing the uTLBs.
92 *
93 * When the OS page table is updated, TLB entries that may be associated with a
94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
95 * circumstance, the uTLBs must also be cleared. This is done by using the
96 * existing TLBWrite command. An explicit IVUTLB is also required for those
97 * corner cases when TLBWrite was not executed at all because the corresp
98 * J-TLB entry got evicted/replaced.
99 */
100
101
102/* A copy of the ASID from the PID reg is kept in asid_cache */
103DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104
105/*
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
108 */
109static inline void __tlb_entry_erase(void)
110{
111	write_aux_reg(ARC_REG_TLBPD1, 0);
112	write_aux_reg(ARC_REG_TLBPD0, 0);
113	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
114}
115
116static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
117{
118	unsigned int idx;
119
120	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
121
122	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
123	idx = read_aux_reg(ARC_REG_TLBINDEX);
124
125	return idx;
126}
127
128static void tlb_entry_erase(unsigned int vaddr_n_asid)
129{
130	unsigned int idx;
131
132	/* Locate the TLB entry for this vaddr + ASID */
133	idx = tlb_entry_lkup(vaddr_n_asid);
134
135	/* No error means entry found, zero it out */
136	if (likely(!(idx & TLB_LKUP_ERR))) {
137		__tlb_entry_erase();
138	} else {
139		/* Duplicate entry error */
140		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
141					   vaddr_n_asid);
142	}
143}
144
145/****************************************************************************
146 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
147 *
148 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
149 *
150 * utlb_invalidate ( )
151 *  -For v2 MMU calls Flush uTLB Cmd
152 *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
153 *      This is because in v1 TLBWrite itself invalidate uTLBs
154 ***************************************************************************/
155
156static void utlb_invalidate(void)
157{
158#if (CONFIG_ARC_MMU_VER >= 2)
159
160#if (CONFIG_ARC_MMU_VER == 2)
161	/* MMU v2 introduced the uTLB Flush command.
162	 * There was however an obscure hardware bug, where uTLB flush would
163	 * fail when a prior probe for J-TLB (both totally unrelated) would
164	 * return lkup err - because the entry didnt exist in MMU.
165	 * The Workround was to set Index reg with some valid value, prior to
166	 * flush. This was fixed in MMU v3 hence not needed any more
167	 */
168	unsigned int idx;
169
170	/* make sure INDEX Reg is valid */
171	idx = read_aux_reg(ARC_REG_TLBINDEX);
172
173	/* If not write some dummy val */
174	if (unlikely(idx & TLB_LKUP_ERR))
175		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
176#endif
177
178	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
179#endif
180
181}
182
183static void tlb_entry_insert(unsigned int pd0, unsigned int pd1)
184{
185	unsigned int idx;
186
187	/*
188	 * First verify if entry for this vaddr+ASID already exists
189	 * This also sets up PD0 (vaddr, ASID..) for final commit
190	 */
191	idx = tlb_entry_lkup(pd0);
192
193	/*
194	 * If Not already present get a free slot from MMU.
195	 * Otherwise, Probe would have located the entry and set INDEX Reg
196	 * with existing location. This will cause Write CMD to over-write
197	 * existing entry with new PD0 and PD1
198	 */
199	if (likely(idx & TLB_LKUP_ERR))
200		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
201
202	/* setup the other half of TLB entry (pfn, rwx..) */
203	write_aux_reg(ARC_REG_TLBPD1, pd1);
204
205	/*
206	 * Commit the Entry to MMU
207	 * It doesnt sound safe to use the TLBWriteNI cmd here
208	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
209	 */
210	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
211}
212
213/*
214 * Un-conditionally (without lookup) erase the entire MMU contents
215 */
216
217noinline void local_flush_tlb_all(void)
218{
219	unsigned long flags;
220	unsigned int entry;
221	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
222
223	local_irq_save(flags);
224
225	/* Load PD0 and PD1 with template for a Blank Entry */
226	write_aux_reg(ARC_REG_TLBPD1, 0);
227	write_aux_reg(ARC_REG_TLBPD0, 0);
228
229	for (entry = 0; entry < mmu->num_tlb; entry++) {
230		/* write this entry to the TLB */
231		write_aux_reg(ARC_REG_TLBINDEX, entry);
232		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
233	}
234
235	utlb_invalidate();
236
237	local_irq_restore(flags);
238}
239
240/*
241 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
242 */
243noinline void local_flush_tlb_mm(struct mm_struct *mm)
244{
245	/*
246	 * Small optimisation courtesy IA64
247	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
248	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
249	 * all other cases are NOPs, hence this check.
250	 */
251	if (atomic_read(&mm->mm_users) == 0)
252		return;
253
254	/*
255	 * - Move to a new ASID, but only if the mm is still wired in
256	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
257	 *    causing h/w - s/w ASID to get out of sync)
258	 * - Also get_new_mmu_context() new implementation allocates a new
259	 *   ASID only if it is not allocated already - so unallocate first
260	 */
261	destroy_context(mm);
262	if (current->mm == mm)
263		get_new_mmu_context(mm);
264}
265
266/*
267 * Flush a Range of TLB entries for userland.
268 * @start is inclusive, while @end is exclusive
269 * Difference between this and Kernel Range Flush is
270 *  -Here the fastest way (if range is too large) is to move to next ASID
271 *      without doing any explicit Shootdown
272 *  -In case of kernel Flush, entry has to be shot down explictly
273 */
274void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
275			   unsigned long end)
276{
277	const unsigned int cpu = smp_processor_id();
278	unsigned long flags;
279
280	/* If range @start to @end is more than 32 TLB entries deep,
281	 * its better to move to a new ASID rather than searching for
282	 * individual entries and then shooting them down
283	 *
284	 * The calc above is rough, doesn't account for unaligned parts,
285	 * since this is heuristics based anyways
286	 */
287	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
288		local_flush_tlb_mm(vma->vm_mm);
289		return;
290	}
291
292	/*
293	 * @start moved to page start: this alone suffices for checking
294	 * loop end condition below, w/o need for aligning @end to end
295	 * e.g. 2000 to 4001 will anyhow loop twice
296	 */
297	start &= PAGE_MASK;
298
299	local_irq_save(flags);
300
301	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
302		while (start < end) {
303			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
304			start += PAGE_SIZE;
305		}
306	}
307
308	utlb_invalidate();
309
310	local_irq_restore(flags);
311}
312
313/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
314 *  @start, @end interpreted as kvaddr
315 * Interestingly, shared TLB entries can also be flushed using just
316 * @start,@end alone (interpreted as user vaddr), although technically SASID
317 * is also needed. However our smart TLbProbe lookup takes care of that.
318 */
319void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
320{
321	unsigned long flags;
322
323	/* exactly same as above, except for TLB entry not taking ASID */
324
325	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
326		local_flush_tlb_all();
327		return;
328	}
329
330	start &= PAGE_MASK;
331
332	local_irq_save(flags);
333	while (start < end) {
334		tlb_entry_erase(start);
335		start += PAGE_SIZE;
336	}
337
338	utlb_invalidate();
339
340	local_irq_restore(flags);
341}
342
343/*
344 * Delete TLB entry in MMU for a given page (??? address)
345 * NOTE One TLB entry contains translation for single PAGE
346 */
347
348void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
349{
350	const unsigned int cpu = smp_processor_id();
351	unsigned long flags;
352
353	/* Note that it is critical that interrupts are DISABLED between
354	 * checking the ASID and using it flush the TLB entry
355	 */
356	local_irq_save(flags);
357
358	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
359		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
360		utlb_invalidate();
361	}
362
363	local_irq_restore(flags);
364}
365
366#ifdef CONFIG_SMP
367
368struct tlb_args {
369	struct vm_area_struct *ta_vma;
370	unsigned long ta_start;
371	unsigned long ta_end;
372};
373
374static inline void ipi_flush_tlb_page(void *arg)
375{
376	struct tlb_args *ta = arg;
377
378	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
379}
380
381static inline void ipi_flush_tlb_range(void *arg)
382{
383	struct tlb_args *ta = arg;
384
385	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
386}
387
388static inline void ipi_flush_tlb_kernel_range(void *arg)
389{
390	struct tlb_args *ta = (struct tlb_args *)arg;
391
392	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
393}
394
395void flush_tlb_all(void)
396{
397	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
398}
399
400void flush_tlb_mm(struct mm_struct *mm)
401{
402	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
403			 mm, 1);
404}
405
406void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
407{
408	struct tlb_args ta = {
409		.ta_vma = vma,
410		.ta_start = uaddr
411	};
412
413	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
414}
415
416void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
417		     unsigned long end)
418{
419	struct tlb_args ta = {
420		.ta_vma = vma,
421		.ta_start = start,
422		.ta_end = end
423	};
424
425	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
426}
427
428void flush_tlb_kernel_range(unsigned long start, unsigned long end)
429{
430	struct tlb_args ta = {
431		.ta_start = start,
432		.ta_end = end
433	};
434
435	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
436}
437#endif
438
439/*
440 * Routine to create a TLB entry
441 */
442void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
443{
444	unsigned long flags;
445	unsigned int asid_or_sasid, rwx;
446	unsigned long pd0, pd1;
447
448	/*
449	 * create_tlb() assumes that current->mm == vma->mm, since
450	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
451	 * -completes the lazy write to SASID reg (again valid for curr tsk)
452	 *
453	 * Removing the assumption involves
454	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
455	 * -Fix the TLB paranoid debug code to not trigger false negatives.
456	 * -More importantly it makes this handler inconsistent with fast-path
457	 *  TLB Refill handler which always deals with "current"
458	 *
459	 * Lets see the use cases when current->mm != vma->mm and we land here
460	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
461	 *     Here VM wants to pre-install a TLB entry for user stack while
462	 *     current->mm still points to pre-execve mm (hence the condition).
463	 *     However the stack vaddr is soon relocated (randomization) and
464	 *     move_page_tables() tries to undo that TLB entry.
465	 *     Thus not creating TLB entry is not any worse.
466	 *
467	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
468	 *     breakpoint in debugged task. Not creating a TLB now is not
469	 *     performance critical.
470	 *
471	 * Both the cases above are not good enough for code churn.
472	 */
473	if (current->active_mm != vma->vm_mm)
474		return;
475
476	local_irq_save(flags);
477
478	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), address);
479
480	address &= PAGE_MASK;
481
482	/* update this PTE credentials */
483	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
484
485	/* Create HW TLB(PD0,PD1) from PTE  */
486
487	/* ASID for this task */
488	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
489
490	pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
491
492	/*
493	 * ARC MMU provides fully orthogonal access bits for K/U mode,
494	 * however Linux only saves 1 set to save PTE real-estate
495	 * Here we convert 3 PTE bits into 6 MMU bits:
496	 * -Kernel only entries have Kr Kw Kx 0 0 0
497	 * -User entries have mirrored K and U bits
498	 */
499	rwx = pte_val(*ptep) & PTE_BITS_RWX;
500
501	if (pte_val(*ptep) & _PAGE_GLOBAL)
502		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
503	else
504		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
505
506	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
507
508	tlb_entry_insert(pd0, pd1);
509
510	local_irq_restore(flags);
511}
512
513/*
514 * Called at the end of pagefault, for a userspace mapped page
515 *  -pre-install the corresponding TLB entry into MMU
516 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
517 *  	flush_dcache_page(), copy_user_page()
518 *
519 * Note that flush (when done) involves both WBACK - so physical page is
520 * in sync as well as INV - so any non-congruent aliases don't remain
521 */
522void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
523		      pte_t *ptep)
524{
525	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
526	unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
527	struct page *page = pfn_to_page(pte_pfn(*ptep));
528
529	create_tlb(vma, vaddr, ptep);
530
531	if (page == ZERO_PAGE(0)) {
532		return;
533	}
534
535	/*
536	 * Exec page : Independent of aliasing/page-color considerations,
537	 *	       since icache doesn't snoop dcache on ARC, any dirty
538	 *	       K-mapping of a code page needs to be wback+inv so that
539	 *	       icache fetch by userspace sees code correctly.
540	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
541	 *	       so userspace sees the right data.
542	 *  (Avoids the flush for Non-exec + congruent mapping case)
543	 */
544	if ((vma->vm_flags & VM_EXEC) ||
545	     addr_not_cache_congruent(paddr, vaddr)) {
546
547		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
548		if (dirty) {
549			/* wback + inv dcache lines */
550			__flush_dcache_page(paddr, paddr);
551
552			/* invalidate any existing icache lines */
553			if (vma->vm_flags & VM_EXEC)
554				__inv_icache_page(paddr, vaddr);
555		}
556	}
557}
558
559/* Read the Cache Build Confuration Registers, Decode them and save into
560 * the cpuinfo structure for later use.
561 * No Validation is done here, simply read/convert the BCRs
562 */
563void read_decode_mmu_bcr(void)
564{
565	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
566	unsigned int tmp;
567	struct bcr_mmu_1_2 {
568#ifdef CONFIG_CPU_BIG_ENDIAN
569		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
570#else
571		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
572#endif
573	} *mmu2;
574
575	struct bcr_mmu_3 {
576#ifdef CONFIG_CPU_BIG_ENDIAN
577	unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
578		     u_itlb:4, u_dtlb:4;
579#else
580	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
581		     ways:4, ver:8;
582#endif
583	} *mmu3;
584
585	tmp = read_aux_reg(ARC_REG_MMU_BCR);
586	mmu->ver = (tmp >> 24);
587
588	if (mmu->ver <= 2) {
589		mmu2 = (struct bcr_mmu_1_2 *)&tmp;
590		mmu->pg_sz = PAGE_SIZE;
591		mmu->sets = 1 << mmu2->sets;
592		mmu->ways = 1 << mmu2->ways;
593		mmu->u_dtlb = mmu2->u_dtlb;
594		mmu->u_itlb = mmu2->u_itlb;
595	} else {
596		mmu3 = (struct bcr_mmu_3 *)&tmp;
597		mmu->pg_sz = 512 << mmu3->pg_sz;
598		mmu->sets = 1 << mmu3->sets;
599		mmu->ways = 1 << mmu3->ways;
600		mmu->u_dtlb = mmu3->u_dtlb;
601		mmu->u_itlb = mmu3->u_itlb;
602	}
603
604	mmu->num_tlb = mmu->sets * mmu->ways;
605}
606
607char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
608{
609	int n = 0;
610	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
611
612	n += scnprintf(buf + n, len - n,
613		      "MMU [v%x]\t: %dk PAGE, JTLB %d (%dx%d), uDTLB %d, uITLB %d %s\n",
614		       p_mmu->ver, TO_KB(p_mmu->pg_sz),
615		       p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
616		       p_mmu->u_dtlb, p_mmu->u_itlb,
617		       IS_ENABLED(CONFIG_ARC_MMU_SASID) ? ",SASID" : "");
618
619	return buf;
620}
621
622void arc_mmu_init(void)
623{
624	char str[256];
625	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
626
627	printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
628
629	/* For efficiency sake, kernel is compile time built for a MMU ver
630	 * This must match the hardware it is running on.
631	 * Linux built for MMU V2, if run on MMU V1 will break down because V1
632	 *  hardware doesn't understand cmds such as WriteNI, or IVUTLB
633	 * On the other hand, Linux built for V1 if run on MMU V2 will do
634	 *   un-needed workarounds to prevent memcpy thrashing.
635	 * Similarly MMU V3 has new features which won't work on older MMU
636	 */
637	if (mmu->ver != CONFIG_ARC_MMU_VER) {
638		panic("MMU ver %d doesn't match kernel built for %d...\n",
639		      mmu->ver, CONFIG_ARC_MMU_VER);
640	}
641
642	if (mmu->pg_sz != PAGE_SIZE)
643		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
644
645	/* Enable the MMU */
646	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
647
648	/* In smp we use this reg for interrupt 1 scratch */
649#ifndef CONFIG_SMP
650	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
651	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
652#endif
653}
654
655/*
656 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
657 * The mapping is Column-first.
658 *		---------------------	-----------
659 *		|way0|way1|way2|way3|	|way0|way1|
660 *		---------------------	-----------
661 * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
662 * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
663 *		~		    ~	~	  ~
664 * [set127]	| 508| 509| 510| 511|	| 254| 255|
665 *		---------------------	-----------
666 * For normal operations we don't(must not) care how above works since
667 * MMU cmd getIndex(vaddr) abstracts that out.
668 * However for walking WAYS of a SET, we need to know this
669 */
670#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
671
672/* Handling of Duplicate PD (TLB entry) in MMU.
673 * -Could be due to buggy customer tapeouts or obscure kernel bugs
674 * -MMU complaints not at the time of duplicate PD installation, but at the
675 *      time of lookup matching multiple ways.
676 * -Ideally these should never happen - but if they do - workaround by deleting
677 *      the duplicate one.
678 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
679 */
680volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
681
682void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
683			  struct pt_regs *regs)
684{
685	int set, way, n;
686	unsigned long flags, is_valid;
687	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
688	unsigned int pd0[mmu->ways], pd1[mmu->ways];
689
690	local_irq_save(flags);
691
692	/* re-enable the MMU */
693	write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
694
695	/* loop thru all sets of TLB */
696	for (set = 0; set < mmu->sets; set++) {
697
698		/* read out all the ways of current set */
699		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
700			write_aux_reg(ARC_REG_TLBINDEX,
701					  SET_WAY_TO_IDX(mmu, set, way));
702			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
703			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
704			pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
705			is_valid |= pd0[way] & _PAGE_PRESENT;
706		}
707
708		/* If all the WAYS in SET are empty, skip to next SET */
709		if (!is_valid)
710			continue;
711
712		/* Scan the set for duplicate ways: needs a nested loop */
713		for (way = 0; way < mmu->ways - 1; way++) {
714			if (!pd0[way])
715				continue;
716
717			for (n = way + 1; n < mmu->ways; n++) {
718				if ((pd0[way] & PAGE_MASK) ==
719				    (pd0[n] & PAGE_MASK)) {
720
721					if (dup_pd_verbose) {
722						pr_info("Duplicate PD's @"
723							"[%d:%d]/[%d:%d]\n",
724						     set, way, set, n);
725						pr_info("TLBPD0[%u]: %08x\n",
726						     way, pd0[way]);
727					}
728
729					/*
730					 * clear entry @way and not @n. This is
731					 * critical to our optimised loop
732					 */
733					pd0[way] = pd1[way] = 0;
734					write_aux_reg(ARC_REG_TLBINDEX,
735						SET_WAY_TO_IDX(mmu, set, way));
736					__tlb_entry_erase();
737				}
738			}
739		}
740	}
741
742	local_irq_restore(flags);
743}
744
745/***********************************************************************
746 * Diagnostic Routines
747 *  -Called from Low Level TLB Hanlders if things don;t look good
748 **********************************************************************/
749
750#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
751
752/*
753 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
754 * don't match
755 */
756void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
757{
758	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
759	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
760
761	__asm__ __volatile__("flag 1");
762}
763
764void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
765{
766	unsigned int mmu_asid;
767
768	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
769
770	/*
771	 * At the time of a TLB miss/installation
772	 *   - HW version needs to match SW version
773	 *   - SW needs to have a valid ASID
774	 */
775	if (addr < 0x70000000 &&
776	    ((mm_asid == MM_CTXT_NO_ASID) ||
777	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
778		print_asid_mismatch(mm_asid, mmu_asid, 0);
779}
780#endif
781