1  <title>Image Formats</title>
2
3  <para>The V4L2 API was primarily designed for devices exchanging
4image data with applications. The
5<structname>v4l2_pix_format</structname> and <structname>v4l2_pix_format_mplane
6</structname> structures define the format and layout of an image in memory.
7The former is used with the single-planar API, while the latter is used with the
8multi-planar version (see <xref linkend="planar-apis"/>). Image formats are
9negotiated with the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video
10capturing and output, for overlay frame buffer formats see also
11&VIDIOC-G-FBUF;.)</para>
12
13<section>
14  <title>Single-planar format structure</title>
15  <table pgwide="1" frame="none" id="v4l2-pix-format">
16    <title>struct <structname>v4l2_pix_format</structname></title>
17    <tgroup cols="3">
18      &cs-str;
19      <tbody valign="top">
20	<row>
21	  <entry>__u32</entry>
22	  <entry><structfield>width</structfield></entry>
23	  <entry>Image width in pixels.</entry>
24	</row>
25	<row>
26	  <entry>__u32</entry>
27	  <entry><structfield>height</structfield></entry>
28	  <entry>Image height in pixels. If <structfield>field</structfield> is
29	  one of <constant>V4L2_FIELD_TOP</constant>, <constant>V4L2_FIELD_BOTTOM</constant>
30	  or <constant>V4L2_FIELD_ALTERNATE</constant> then height refers to the
31	  number of lines in the field, otherwise it refers to the number of
32	  lines in the frame (which is twice the field height for interlaced
33	  formats).</entry>
34	</row>
35	<row>
36	  <entry spanname="hspan">Applications set these fields to
37request an image size, drivers return the closest possible values. In
38case of planar formats the <structfield>width</structfield> and
39<structfield>height</structfield> applies to the largest plane. To
40avoid ambiguities drivers must return values rounded up to a multiple
41of the scale factor of any smaller planes. For example when the image
42format is YUV 4:2:0, <structfield>width</structfield> and
43<structfield>height</structfield> must be multiples of two.</entry>
44	</row>
45	<row>
46	  <entry>__u32</entry>
47	  <entry><structfield>pixelformat</structfield></entry>
48	  <entry>The pixel format or type of compression, set by the
49application. This is a little endian <link
50linkend="v4l2-fourcc">four character code</link>. V4L2 defines
51standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref
52linkend="yuv-formats" />, and reserved codes in <xref
53linkend="reserved-formats" /></entry>
54	</row>
55	<row>
56	  <entry>&v4l2-field;</entry>
57	  <entry><structfield>field</structfield></entry>
58	  <entry>Video images are typically interlaced. Applications
59can request to capture or output only the top or bottom field, or both
60fields interlaced or sequentially stored in one buffer or alternating
61in separate buffers. Drivers return the actual field order selected.
62For more details on fields see <xref linkend="field-order" />.</entry>
63	</row>
64	<row>
65	  <entry>__u32</entry>
66	  <entry><structfield>bytesperline</structfield></entry>
67	  <entry>Distance in bytes between the leftmost pixels in two
68adjacent lines.</entry>
69	</row>
70	<row>
71	  <entry spanname="hspan"><para>Both applications and drivers
72can set this field to request padding bytes at the end of each line.
73Drivers however may ignore the value requested by the application,
74returning <structfield>width</structfield> times bytes per pixel or a
75larger value required by the hardware. That implies applications can
76just set this field to zero to get a reasonable
77default.</para><para>Video hardware may access padding bytes,
78therefore they must reside in accessible memory. Consider cases where
79padding bytes after the last line of an image cross a system page
80boundary. Input devices may write padding bytes, the value is
81undefined. Output devices ignore the contents of padding
82bytes.</para><para>When the image format is planar the
83<structfield>bytesperline</structfield> value applies to the first
84plane and is divided by the same factor as the
85<structfield>width</structfield> field for the other planes. For
86example the Cb and Cr planes of a YUV 4:2:0 image have half as many
87padding bytes following each line as the Y plane. To avoid ambiguities
88drivers must return a <structfield>bytesperline</structfield> value
89rounded up to a multiple of the scale factor.</para>
90<para>For compressed formats the <structfield>bytesperline</structfield>
91value makes no sense. Applications and drivers must set this to 0 in
92that case.</para></entry>
93	</row>
94	<row>
95	  <entry>__u32</entry>
96	  <entry><structfield>sizeimage</structfield></entry>
97	  <entry>Size in bytes of the buffer to hold a complete image,
98set by the driver. Usually this is
99<structfield>bytesperline</structfield> times
100<structfield>height</structfield>. When the image consists of variable
101length compressed data this is the maximum number of bytes required to
102hold an image.</entry>
103	</row>
104	<row>
105	  <entry>&v4l2-colorspace;</entry>
106	  <entry><structfield>colorspace</structfield></entry>
107	  <entry>This information supplements the
108<structfield>pixelformat</structfield> and must be set by the driver for
109capture streams and by the application for output streams,
110see <xref linkend="colorspaces" />.</entry>
111	</row>
112	<row>
113	  <entry>__u32</entry>
114	  <entry><structfield>priv</structfield></entry>
115	  <entry><para>This field indicates whether the remaining fields of the
116<structname>v4l2_pix_format</structname> structure, also called the extended
117fields, are valid. When set to <constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, it
118indicates that the extended fields have been correctly initialized. When set to
119any other value it indicates that the extended fields contain undefined values.
120</para>
121<para>Applications that wish to use the pixel format extended fields must first
122ensure that the feature is supported by querying the device for the
123<link linkend="querycap"><constant>V4L2_CAP_EXT_PIX_FORMAT</constant></link>
124capability. If the capability isn't set the pixel format extended fields are not
125supported and using the extended fields will lead to undefined results.</para>
126<para>To use the extended fields, applications must set the
127<structfield>priv</structfield> field to
128<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, initialize all the extended fields
129and zero the unused bytes of the <structname>v4l2_format</structname>
130<structfield>raw_data</structfield> field.</para>
131<para>When the <structfield>priv</structfield> field isn't set to
132<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> drivers must act as if all the
133extended fields were set to zero. On return drivers must set the
134<structfield>priv</structfield> field to
135<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> and all the extended fields to
136applicable values.</para></entry>
137	</row>
138	<row>
139	  <entry>__u32</entry>
140	  <entry><structfield>flags</structfield></entry>
141	  <entry>Flags set by the application or driver, see <xref
142linkend="format-flags" />.</entry>
143	</row>
144	<row>
145	  <entry>&v4l2-ycbcr-encoding;</entry>
146	  <entry><structfield>ycbcr_enc</structfield></entry>
147	  <entry>This information supplements the
148<structfield>colorspace</structfield> and must be set by the driver for
149capture streams and by the application for output streams,
150see <xref linkend="colorspaces" />.</entry>
151	</row>
152	<row>
153	  <entry>&v4l2-quantization;</entry>
154	  <entry><structfield>quantization</structfield></entry>
155	  <entry>This information supplements the
156<structfield>colorspace</structfield> and must be set by the driver for
157capture streams and by the application for output streams,
158see <xref linkend="colorspaces" />.</entry>
159	</row>
160      </tbody>
161    </tgroup>
162  </table>
163</section>
164
165<section>
166  <title>Multi-planar format structures</title>
167  <para>The <structname>v4l2_plane_pix_format</structname> structures define
168    size and layout for each of the planes in a multi-planar format.
169    The <structname>v4l2_pix_format_mplane</structname> structure contains
170    information common to all planes (such as image width and height) and
171    an array of <structname>v4l2_plane_pix_format</structname> structures,
172    describing all planes of that format.</para>
173  <table pgwide="1" frame="none" id="v4l2-plane-pix-format">
174    <title>struct <structname>v4l2_plane_pix_format</structname></title>
175    <tgroup cols="3">
176      &cs-str;
177      <tbody valign="top">
178        <row>
179          <entry>__u32</entry>
180          <entry><structfield>sizeimage</structfield></entry>
181          <entry>Maximum size in bytes required for image data in this plane.
182          </entry>
183        </row>
184        <row>
185          <entry>__u32</entry>
186          <entry><structfield>bytesperline</structfield></entry>
187          <entry>Distance in bytes between the leftmost pixels in two adjacent
188            lines. See &v4l2-pix-format;.</entry>
189        </row>
190        <row>
191          <entry>__u16</entry>
192          <entry><structfield>reserved[6]</structfield></entry>
193          <entry>Reserved for future extensions. Should be zeroed by the
194           application.</entry>
195        </row>
196      </tbody>
197    </tgroup>
198  </table>
199  <table pgwide="1" frame="none" id="v4l2-pix-format-mplane">
200    <title>struct <structname>v4l2_pix_format_mplane</structname></title>
201    <tgroup cols="3">
202      &cs-str;
203      <tbody valign="top">
204        <row>
205          <entry>__u32</entry>
206          <entry><structfield>width</structfield></entry>
207          <entry>Image width in pixels. See &v4l2-pix-format;.</entry>
208        </row>
209        <row>
210          <entry>__u32</entry>
211          <entry><structfield>height</structfield></entry>
212          <entry>Image height in pixels. See &v4l2-pix-format;.</entry>
213        </row>
214        <row>
215          <entry>__u32</entry>
216          <entry><structfield>pixelformat</structfield></entry>
217          <entry>The pixel format. Both single- and multi-planar four character
218codes can be used.</entry>
219        </row>
220        <row>
221          <entry>&v4l2-field;</entry>
222          <entry><structfield>field</structfield></entry>
223          <entry>See &v4l2-pix-format;.</entry>
224        </row>
225        <row>
226          <entry>&v4l2-colorspace;</entry>
227          <entry><structfield>colorspace</structfield></entry>
228          <entry>See &v4l2-pix-format;.</entry>
229        </row>
230        <row>
231          <entry>&v4l2-plane-pix-format;</entry>
232          <entry><structfield>plane_fmt[VIDEO_MAX_PLANES]</structfield></entry>
233          <entry>An array of structures describing format of each plane this
234          pixel format consists of. The number of valid entries in this array
235          has to be put in the <structfield>num_planes</structfield>
236          field.</entry>
237        </row>
238        <row>
239          <entry>__u8</entry>
240          <entry><structfield>num_planes</structfield></entry>
241          <entry>Number of planes (i.e. separate memory buffers) for this format
242          and the number of valid entries in the
243          <structfield>plane_fmt</structfield> array.</entry>
244        </row>
245	<row>
246	  <entry>__u8</entry>
247	  <entry><structfield>flags</structfield></entry>
248	  <entry>Flags set by the application or driver, see <xref
249linkend="format-flags" />.</entry>
250	</row>
251	<row>
252	  <entry>&v4l2-ycbcr-encoding;</entry>
253	  <entry><structfield>ycbcr_enc</structfield></entry>
254	  <entry>This information supplements the
255<structfield>colorspace</structfield> and must be set by the driver for
256capture streams and by the application for output streams,
257see <xref linkend="colorspaces" />.</entry>
258	</row>
259	<row>
260	  <entry>&v4l2-quantization;</entry>
261	  <entry><structfield>quantization</structfield></entry>
262	  <entry>This information supplements the
263<structfield>colorspace</structfield> and must be set by the driver for
264capture streams and by the application for output streams,
265see <xref linkend="colorspaces" />.</entry>
266	</row>
267        <row>
268          <entry>__u8</entry>
269          <entry><structfield>reserved[8]</structfield></entry>
270          <entry>Reserved for future extensions. Should be zeroed by the
271           application.</entry>
272        </row>
273      </tbody>
274    </tgroup>
275  </table>
276</section>
277
278  <section>
279    <title>Standard Image Formats</title>
280
281    <para>In order to exchange images between drivers and
282applications, it is necessary to have standard image data formats
283which both sides will interpret the same way. V4L2 includes several
284such formats, and this section is intended to be an unambiguous
285specification of the standard image data formats in V4L2.</para>
286
287    <para>V4L2 drivers are not limited to these formats, however.
288Driver-specific formats are possible. In that case the application may
289depend on a codec to convert images to one of the standard formats
290when needed. But the data can still be stored and retrieved in the
291proprietary format. For example, a device may support a proprietary
292compressed format. Applications can still capture and save the data in
293the compressed format, saving much disk space, and later use a codec
294to convert the images to the X Windows screen format when the video is
295to be displayed.</para>
296
297    <para>Even so, ultimately, some standard formats are needed, so
298the V4L2 specification would not be complete without well-defined
299standard formats.</para>
300
301    <para>The V4L2 standard formats are mainly uncompressed formats. The
302pixels are always arranged in memory from left to right, and from top
303to bottom. The first byte of data in the image buffer is always for
304the leftmost pixel of the topmost row. Following that is the pixel
305immediately to its right, and so on until the end of the top row of
306pixels. Following the rightmost pixel of the row there may be zero or
307more bytes of padding to guarantee that each row of pixel data has a
308certain alignment. Following the pad bytes, if any, is data for the
309leftmost pixel of the second row from the top, and so on. The last row
310has just as many pad bytes after it as the other rows.</para>
311
312    <para>In V4L2 each format has an identifier which looks like
313<constant>PIX_FMT_XXX</constant>, defined in the <link
314linkend="videodev">videodev2.h</link> header file. These identifiers
315represent <link linkend="v4l2-fourcc">four character (FourCC) codes</link>
316which are also listed below, however they are not the same as those
317used in the Windows world.</para>
318
319    <para>For some formats, data is stored in separate, discontiguous
320memory buffers. Those formats are identified by a separate set of FourCC codes
321and are referred to as "multi-planar formats". For example, a YUV422 frame is
322normally stored in one memory buffer, but it can also be placed in two or three
323separate buffers, with Y component in one buffer and CbCr components in another
324in the 2-planar version or with each component in its own buffer in the
3253-planar case. Those sub-buffers are referred to as "planes".</para>
326  </section>
327
328  <section id="colorspaces">
329    <title>Colorspaces</title>
330
331    <para>'Color' is a very complex concept and depends on physics, chemistry and
332biology. Just because you have three numbers that describe the 'red', 'green'
333and 'blue' components of the color of a pixel does not mean that you can accurately
334display that color. A colorspace defines what it actually <emphasis>means</emphasis>
335to have an RGB value of e.g. (255,&nbsp;0,&nbsp;0). That is, which color should be
336reproduced on the screen in a perfectly calibrated environment.</para>
337
338    <para>In order to do that we first need to have a good definition of
339color, i.e. some way to uniquely and unambiguously define a color so that someone
340else can reproduce it. Human color vision is trichromatic since the human eye has
341color receptors that are sensitive to three different wavelengths of light. Hence
342the need to use three numbers to describe color. Be glad you are not a mantis shrimp
343as those are sensitive to 12 different wavelengths, so instead of RGB we would be
344using the ABCDEFGHIJKL colorspace...</para>
345
346    <para>Color exists only in the eye and brain and is the result of how strongly
347color receptors are stimulated. This is based on the Spectral
348Power Distribution (SPD) which is a graph showing the intensity (radiant power)
349of the light at wavelengths covering the visible spectrum as it enters the eye.
350The science of colorimetry is about the relationship between the SPD and color as
351perceived by the human brain.</para>
352
353    <para>Since the human eye has only three color receptors it is perfectly
354possible that different SPDs will result in the same stimulation of those receptors
355and are perceived as the same color, even though the SPD of the light is
356different.</para>
357
358   <para>In the 1920s experiments were devised to determine the relationship
359between SPDs and the perceived color and that resulted in the CIE 1931 standard
360that defines spectral weighting functions that model the perception of color.
361Specifically that standard defines functions that can take an SPD and calculate
362the stimulus for each color receptor. After some further mathematical transforms
363these stimuli are known as the <emphasis>CIE XYZ tristimulus</emphasis> values
364and these X, Y and Z values describe a color as perceived by a human unambiguously.
365These X, Y and Z values are all in the range [0&hellip;1].</para>
366
367   <para>The Y value in the CIE XYZ colorspace corresponds to luminance. Often
368the CIE XYZ colorspace is transformed to the normalized CIE xyY colorspace:</para>
369
370   <para>x = X / (X + Y + Z)</para>
371   <para>y = Y / (X + Y + Z)</para>
372
373   <para>The x and y values are the chromaticity coordinates and can be used to
374define a color without the luminance component Y. It is very confusing to
375have such similar names for these colorspaces. Just be aware that if colors
376are specified with lower case 'x' and 'y', then the CIE xyY colorspace is
377used. Upper case 'X' and 'Y' refer to the CIE XYZ colorspace. Also, y has nothing
378to do with luminance. Together x and y specify a color, and Y the luminance.
379That is really all you need to remember from a practical point of view. At
380the end of this section you will find reading resources that go into much more
381detail if you are interested.
382</para>
383
384   <para>A monitor or TV will reproduce colors by emitting light at three
385different wavelengths, the combination of which will stimulate the color receptors
386in the eye and thus cause the perception of color. Historically these wavelengths
387were defined by the red, green and blue phosphors used in the displays. These
388<emphasis>color primaries</emphasis> are part of what defines a colorspace.</para>
389
390    <para>Different display devices will have different primaries and some
391primaries are more suitable for some display technologies than others. This has
392resulted in a variety of colorspaces that are used for different display
393technologies or uses. To define a colorspace you need to define the three
394color primaries (these are typically defined as x,&nbsp;y chromaticity coordinates
395from the CIE xyY colorspace) but also the white reference: that is the color obtained
396when all three primaries are at maximum power. This determines the relative power
397or energy of the primaries. This is usually chosen to be close to daylight which has
398been defined as the CIE D65 Illuminant.</para>
399
400    <para>To recapitulate: the CIE XYZ colorspace uniquely identifies colors.
401Other colorspaces are defined by three chromaticity coordinates defined in the
402CIE xyY colorspace. Based on those a 3x3 matrix can be constructed that
403transforms CIE XYZ colors to colors in the new colorspace.
404</para>
405
406    <para>Both the CIE XYZ and the RGB colorspace that are derived from the
407specific chromaticity primaries are linear colorspaces. But neither the eye,
408nor display technology is linear. Doubling the values of all components in
409the linear colorspace will not be perceived as twice the intensity of the color.
410So each colorspace also defines a transfer function that takes a linear color
411component value and transforms it to the non-linear component value, which is a
412closer match to the non-linear performance of both the eye and displays. Linear
413component values are denoted RGB, non-linear are denoted as R'G'B'. In general
414colors used in graphics are all R'G'B', except in openGL which uses linear RGB.
415Special care should be taken when dealing with openGL to provide linear RGB colors
416or to use the built-in openGL support to apply the inverse transfer function.</para>
417
418    <para>The final piece that defines a colorspace is a function that
419transforms non-linear R'G'B' to non-linear Y'CbCr. This function is determined
420by the so-called luma coefficients. There may be multiple possible Y'CbCr
421encodings allowed for the same colorspace. Many encodings of color
422prefer to use luma (Y') and chroma (CbCr) instead of R'G'B'. Since the human
423eye is more sensitive to differences in luminance than in color this encoding
424allows one to reduce the amount of color information compared to the luma
425data. Note that the luma (Y') is unrelated to the Y in the CIE XYZ colorspace.
426Also note that Y'CbCr is often called YCbCr or YUV even though these are
427strictly speaking wrong.</para>
428
429    <para>Sometimes people confuse Y'CbCr as being a colorspace. This is not
430correct, it is just an encoding of an R'G'B' color into luma and chroma
431values. The underlying colorspace that is associated with the R'G'B' color
432is also associated with the Y'CbCr color.</para>
433
434    <para>The final step is how the RGB, R'G'B' or Y'CbCr values are
435quantized. The CIE XYZ colorspace where X, Y and Z are in the range
436[0&hellip;1] describes all colors that humans can perceive, but the transform to
437another colorspace will produce colors that are outside the [0&hellip;1] range.
438Once clamped to the [0&hellip;1] range those colors can no longer be reproduced
439in that colorspace. This clamping is what reduces the extent or gamut of the
440colorspace. How the range of [0&hellip;1] is translated to integer values in the
441range of [0&hellip;255] (or higher, depending on the color depth) is called the
442quantization. This is <emphasis>not</emphasis> part of the colorspace
443definition. In practice RGB or R'G'B' values are full range, i.e. they
444use the full [0&hellip;255] range. Y'CbCr values on the other hand are limited
445range with Y' using [16&hellip;235] and Cb and Cr using [16&hellip;240].</para>
446
447    <para>Unfortunately, in some cases limited range RGB is also used
448where the components use the range [16&hellip;235]. And full range Y'CbCr also exists
449using the [0&hellip;255] range.</para>
450
451    <para>In order to correctly interpret a color you need to know the
452quantization range, whether it is R'G'B' or Y'CbCr, the used Y'CbCr encoding
453and the colorspace.
454From that information you can calculate the corresponding CIE XYZ color
455and map that again to whatever colorspace your display device uses.</para>
456
457    <para>The colorspace definition itself consists of the three
458chromaticity primaries, the white reference chromaticity, a transfer
459function and the luma coefficients needed to transform R'G'B' to Y'CbCr. While
460some colorspace standards correctly define all four, quite often the colorspace
461standard only defines some, and you have to rely on other standards for
462the missing pieces. The fact that colorspaces are often a mix of different
463standards also led to very confusing naming conventions where the name of
464a standard was used to name a colorspace when in fact that standard was
465part of various other colorspaces as well.</para>
466
467    <para>If you want to read more about colors and colorspaces, then the
468following resources are useful: <xref linkend="poynton" /> is a good practical
469book for video engineers, <xref linkend="colimg" /> has a much broader scope and
470describes many more aspects of color (physics, chemistry, biology, etc.).
471The <ulink url="http://www.brucelindbloom.com">http://www.brucelindbloom.com</ulink>
472website is an excellent resource, especially with respect to the mathematics behind
473colorspace conversions. The wikipedia <ulink url="http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space">CIE 1931 colorspace</ulink> article
474is also very useful.</para>
475  </section>
476
477  <section>
478    <title>Defining Colorspaces in V4L2</title>
479    <para>In V4L2 colorspaces are defined by three values. The first is the colorspace
480identifier (&v4l2-colorspace;) which defines the chromaticities, the transfer
481function, the default Y'CbCr encoding and the default quantization method. The second
482is the Y'CbCr encoding identifier (&v4l2-ycbcr-encoding;) to specify non-standard
483Y'CbCr encodings and the third is the quantization identifier (&v4l2-quantization;)
484to specify non-standard quantization methods. Most of the time only the colorspace
485field of &v4l2-pix-format; or &v4l2-pix-format-mplane; needs to be filled in. Note
486that the default R'G'B' quantization is full range for all colorspaces except for
487BT.2020 which uses limited range R'G'B' quantization.</para>
488
489    <table pgwide="1" frame="none" id="v4l2-colorspace">
490      <title>V4L2 Colorspaces</title>
491      <tgroup cols="2" align="left">
492	&cs-def;
493	<thead>
494	  <row>
495	    <entry>Identifier</entry>
496	    <entry>Details</entry>
497	  </row>
498	</thead>
499	<tbody valign="top">
500	  <row>
501	    <entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry>
502	    <entry>See <xref linkend="col-smpte-170m" />.</entry>
503	  </row>
504	  <row>
505	    <entry><constant>V4L2_COLORSPACE_REC709</constant></entry>
506	    <entry>See <xref linkend="col-rec709" />.</entry>
507	  </row>
508	  <row>
509	    <entry><constant>V4L2_COLORSPACE_SRGB</constant></entry>
510	    <entry>See <xref linkend="col-srgb" />.</entry>
511	  </row>
512	  <row>
513	    <entry><constant>V4L2_COLORSPACE_ADOBERGB</constant></entry>
514	    <entry>See <xref linkend="col-adobergb" />.</entry>
515	  </row>
516	  <row>
517	    <entry><constant>V4L2_COLORSPACE_BT2020</constant></entry>
518	    <entry>See <xref linkend="col-bt2020" />.</entry>
519	  </row>
520	  <row>
521	    <entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry>
522	    <entry>See <xref linkend="col-smpte-240m" />.</entry>
523	  </row>
524	  <row>
525	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry>
526	    <entry>See <xref linkend="col-sysm" />.</entry>
527	  </row>
528	  <row>
529	    <entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry>
530	    <entry>See <xref linkend="col-sysbg" />.</entry>
531	  </row>
532	  <row>
533	    <entry><constant>V4L2_COLORSPACE_JPEG</constant></entry>
534	    <entry>See <xref linkend="col-jpeg" />.</entry>
535	  </row>
536	</tbody>
537      </tgroup>
538    </table>
539
540    <table pgwide="1" frame="none" id="v4l2-ycbcr-encoding">
541      <title>V4L2 Y'CbCr Encodings</title>
542      <tgroup cols="2" align="left">
543	&cs-def;
544	<thead>
545	  <row>
546	    <entry>Identifier</entry>
547	    <entry>Details</entry>
548	  </row>
549	</thead>
550	<tbody valign="top">
551	  <row>
552	    <entry><constant>V4L2_YCBCR_ENC_DEFAULT</constant></entry>
553	    <entry>Use the default Y'CbCr encoding as defined by the colorspace.</entry>
554	  </row>
555	  <row>
556	    <entry><constant>V4L2_YCBCR_ENC_601</constant></entry>
557	    <entry>Use the BT.601 Y'CbCr encoding.</entry>
558	  </row>
559	  <row>
560	    <entry><constant>V4L2_YCBCR_ENC_709</constant></entry>
561	    <entry>Use the Rec. 709 Y'CbCr encoding.</entry>
562	  </row>
563	  <row>
564	    <entry><constant>V4L2_YCBCR_ENC_XV601</constant></entry>
565	    <entry>Use the extended gamut xvYCC BT.601 encoding.</entry>
566	  </row>
567	  <row>
568	    <entry><constant>V4L2_YCBCR_ENC_XV709</constant></entry>
569	    <entry>Use the extended gamut xvYCC Rec. 709 encoding.</entry>
570	  </row>
571	  <row>
572	    <entry><constant>V4L2_YCBCR_ENC_SYCC</constant></entry>
573	    <entry>Use the extended gamut sYCC encoding.</entry>
574	  </row>
575	  <row>
576	    <entry><constant>V4L2_YCBCR_ENC_BT2020</constant></entry>
577	    <entry>Use the default non-constant luminance BT.2020 Y'CbCr encoding.</entry>
578	  </row>
579	  <row>
580	    <entry><constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant></entry>
581	    <entry>Use the constant luminance BT.2020 Yc'CbcCrc encoding.</entry>
582	  </row>
583	</tbody>
584      </tgroup>
585    </table>
586
587    <table pgwide="1" frame="none" id="v4l2-quantization">
588      <title>V4L2 Quantization Methods</title>
589      <tgroup cols="2" align="left">
590	&cs-def;
591	<thead>
592	  <row>
593	    <entry>Identifier</entry>
594	    <entry>Details</entry>
595	  </row>
596	</thead>
597	<tbody valign="top">
598	  <row>
599	    <entry><constant>V4L2_QUANTIZATION_DEFAULT</constant></entry>
600	    <entry>Use the default quantization encoding as defined by the colorspace.
601This is always full range for R'G'B' (except for the BT.2020 colorspace) and usually
602limited range for Y'CbCr.</entry>
603	  </row>
604	  <row>
605	    <entry><constant>V4L2_QUANTIZATION_FULL_RANGE</constant></entry>
606	    <entry>Use the full range quantization encoding. I.e. the range [0&hellip;1]
607is mapped to [0&hellip;255] (with possible clipping to [1&hellip;254] to avoid the
6080x00 and 0xff values). Cb and Cr are mapped from [-0.5&hellip;0.5] to [0&hellip;255]
609(with possible clipping to [1&hellip;254] to avoid the 0x00 and 0xff values).</entry>
610	  </row>
611	  <row>
612	    <entry><constant>V4L2_QUANTIZATION_LIM_RANGE</constant></entry>
613	    <entry>Use the limited range quantization encoding. I.e. the range [0&hellip;1]
614is mapped to [16&hellip;235]. Cb and Cr are mapped from [-0.5&hellip;0.5] to [16&hellip;240].
615</entry>
616	  </row>
617	</tbody>
618      </tgroup>
619    </table>
620  </section>
621
622  <section>
623    <title>Detailed Colorspace Descriptions</title>
624    <section id="col-smpte-170m">
625      <title>Colorspace SMPTE 170M (<constant>V4L2_COLORSPACE_SMPTE170M</constant>)</title>
626      <para>The <xref linkend="smpte170m" /> standard defines the colorspace used by NTSC and PAL and by SDTV
627in general. The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>.
628The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and
629the white reference are:</para>
630      <table frame="none">
631        <title>SMPTE 170M Chromaticities</title>
632        <tgroup cols="3" align="left">
633          &cs-str;
634    	<thead>
635    	  <row>
636    	    <entry>Color</entry>
637    	    <entry>x</entry>
638    	    <entry>y</entry>
639    	  </row>
640    	</thead>
641          <tbody valign="top">
642            <row>
643              <entry>Red</entry>
644              <entry>0.630</entry>
645              <entry>0.340</entry>
646            </row>
647            <row>
648              <entry>Green</entry>
649              <entry>0.310</entry>
650              <entry>0.595</entry>
651            </row>
652            <row>
653              <entry>Blue</entry>
654              <entry>0.155</entry>
655              <entry>0.070</entry>
656            </row>
657            <row>
658              <entry>White Reference (D65)</entry>
659              <entry>0.3127</entry>
660              <entry>0.3290</entry>
661            </row>
662          </tbody>
663        </tgroup>
664      </table>
665      <para>The red, green and blue chromaticities are also often referred to
666as the SMPTE C set, so this colorspace is sometimes called SMPTE C as well.</para>
667      <variablelist>
668	<varlistentry>
669          <term>The transfer function defined for SMPTE 170M is the same as the
670one defined in Rec. 709.</term>
671	  <listitem>
672            <para>L' = -1.099(-L)<superscript>0.45</superscript>&nbsp;+&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&le;&nbsp;-0.018</para>
673            <para>L' = 4.5L&nbsp;for&nbsp;-0.018&nbsp;&lt;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
674            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&ge;&nbsp;0.018</para>
675	  </listitem>
676	</varlistentry>
677      </variablelist>
678      <variablelist>
679	<varlistentry>
680          <term>Inverse Transfer function:</term>
681	  <listitem>
682            <para>L = -((L'&nbsp;-&nbsp;0.099)&nbsp;/&nbsp;-1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&le;&nbsp;-0.081</para>
683            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;-0.081&nbsp;&lt;&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
684            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
685	  </listitem>
686	</varlistentry>
687      </variablelist>
688      <variablelist>
689	<varlistentry>
690      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with
691the following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
692	  <listitem>
693            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
694            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
695            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
696	  </listitem>
697	</varlistentry>
698      </variablelist>
699      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
700clamped to the range [-0.5&hellip;0.5]. This conversion to Y'CbCr is identical to the one
701defined in the <xref linkend="itu601" /> standard and this colorspace is sometimes called BT.601 as well, even
702though BT.601 does not mention any color primaries.</para>
703      <para>The default quantization is limited range, but full range is possible although
704rarely seen.</para>
705    </section>
706
707    <section id="col-rec709">
708      <title>Colorspace Rec. 709 (<constant>V4L2_COLORSPACE_REC709</constant>)</title>
709      <para>The <xref linkend="itu709" /> standard defines the colorspace used by HDTV in general. The default
710Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_709</constant>. The default Y'CbCr quantization is
711limited range. The chromaticities of the primary colors and the white reference are:</para>
712      <table frame="none">
713        <title>Rec. 709 Chromaticities</title>
714        <tgroup cols="3" align="left">
715          &cs-str;
716    	<thead>
717    	  <row>
718    	    <entry>Color</entry>
719    	    <entry>x</entry>
720    	    <entry>y</entry>
721    	  </row>
722    	</thead>
723          <tbody valign="top">
724            <row>
725              <entry>Red</entry>
726              <entry>0.640</entry>
727              <entry>0.330</entry>
728            </row>
729            <row>
730              <entry>Green</entry>
731              <entry>0.300</entry>
732              <entry>0.600</entry>
733            </row>
734            <row>
735              <entry>Blue</entry>
736              <entry>0.150</entry>
737              <entry>0.060</entry>
738            </row>
739            <row>
740              <entry>White Reference (D65)</entry>
741              <entry>0.3127</entry>
742              <entry>0.3290</entry>
743            </row>
744          </tbody>
745        </tgroup>
746      </table>
747      <para>The full name of this standard is Rec. ITU-R BT.709-5.</para>
748      <variablelist>
749	<varlistentry>
750          <term>Transfer function. Normally L is in the range [0&hellip;1], but for the extended
751gamut xvYCC encoding values outside that range are allowed.</term>
752	  <listitem>
753            <para>L' = -1.099(-L)<superscript>0.45</superscript>&nbsp;+&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&le;&nbsp;-0.018</para>
754            <para>L' = 4.5L&nbsp;for&nbsp;-0.018&nbsp;&lt;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
755            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;L&nbsp;&ge;&nbsp;0.018</para>
756	  </listitem>
757	</varlistentry>
758      </variablelist>
759      <variablelist>
760	<varlistentry>
761          <term>Inverse Transfer function:</term>
762	  <listitem>
763            <para>L = -((L'&nbsp;-&nbsp;0.099)&nbsp;/&nbsp;-1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&le;&nbsp;-0.081</para>
764            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;-0.081&nbsp;&lt;&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
765            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
766	  </listitem>
767	</varlistentry>
768      </variablelist>
769      <variablelist>
770	<varlistentry>
771      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
772<constant>V4L2_YCBCR_ENC_709</constant> encoding:</term>
773	  <listitem>
774            <para>Y'&nbsp;=&nbsp;0.2126R'&nbsp;+&nbsp;0.7152G'&nbsp;+&nbsp;0.0722B'</para>
775            <para>Cb&nbsp;=&nbsp;-0.1146R'&nbsp;-&nbsp;0.3854G'&nbsp;+&nbsp;0.5B'</para>
776            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4542G'&nbsp;-&nbsp;0.0458B'</para>
777	  </listitem>
778	</varlistentry>
779      </variablelist>
780      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
781clamped to the range [-0.5&hellip;0.5].</para>
782      <para>The default quantization is limited range, but full range is possible although
783rarely seen.</para>
784      <para>The <constant>V4L2_YCBCR_ENC_709</constant> encoding described above is the default
785for this colorspace, but it can be overridden with <constant>V4L2_YCBCR_ENC_601</constant>, in which
786case the BT.601 Y'CbCr encoding is used.</para>
787      <para>Two additional extended gamut Y'CbCr encodings are also possible with this colorspace:</para>
788      <variablelist>
789	<varlistentry>
790      	  <term>The xvYCC 709 encoding (<constant>V4L2_YCBCR_ENC_XV709</constant>, <xref linkend="xvycc" />)
791is similar to the Rec. 709 encoding, but it allows for R', G' and B' values that are outside the range
792[0&hellip;1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
793	  <listitem>
794            <para>Y'&nbsp;=&nbsp;(219&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.2126R'&nbsp;+&nbsp;0.7152G'&nbsp;+&nbsp;0.0722B')&nbsp;+&nbsp;(16&nbsp;/&nbsp;256)</para>
795            <para>Cb&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(-0.1146R'&nbsp;-&nbsp;0.3854G'&nbsp;+&nbsp;0.5B')</para>
796            <para>Cr&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.5R'&nbsp;-&nbsp;0.4542G'&nbsp;-&nbsp;0.0458B')</para>
797	  </listitem>
798	</varlistentry>
799      </variablelist>
800      <variablelist>
801	<varlistentry>
802         <term>The xvYCC 601 encoding (<constant>V4L2_YCBCR_ENC_XV601</constant>, <xref linkend="xvycc" />) is similar
803to the BT.601 encoding, but it allows for R', G' and B' values that are outside the range
804[0&hellip;1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
805	  <listitem>
806            <para>Y'&nbsp;=&nbsp;(219&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B')&nbsp;+&nbsp;(16&nbsp;/&nbsp;256)</para>
807            <para>Cb&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B')</para>
808            <para>Cr&nbsp;=&nbsp;(224&nbsp;/&nbsp;256)&nbsp;*&nbsp;(0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B')</para>
809	  </listitem>
810	</varlistentry>
811      </variablelist>
812      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are clamped
813to the range [-0.5&hellip;0.5]. The non-standard xvYCC 709 or xvYCC 601 encodings can be used by
814selecting <constant>V4L2_YCBCR_ENC_XV709</constant> or <constant>V4L2_YCBCR_ENC_XV601</constant>.
815The xvYCC encodings always use full range quantization.</para>
816    </section>
817
818    <section id="col-srgb">
819      <title>Colorspace sRGB (<constant>V4L2_COLORSPACE_SRGB</constant>)</title>
820      <para>The <xref linkend="srgb" /> standard defines the colorspace used by most webcams and computer graphics. The
821default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SYCC</constant>. The default Y'CbCr quantization
822is full range. The chromaticities of the primary colors and the white reference are:</para>
823      <table frame="none">
824        <title>sRGB Chromaticities</title>
825        <tgroup cols="3" align="left">
826          &cs-str;
827    	<thead>
828    	  <row>
829    	    <entry>Color</entry>
830    	    <entry>x</entry>
831    	    <entry>y</entry>
832    	  </row>
833    	</thead>
834          <tbody valign="top">
835            <row>
836              <entry>Red</entry>
837              <entry>0.640</entry>
838              <entry>0.330</entry>
839            </row>
840            <row>
841              <entry>Green</entry>
842              <entry>0.300</entry>
843              <entry>0.600</entry>
844            </row>
845            <row>
846              <entry>Blue</entry>
847              <entry>0.150</entry>
848              <entry>0.060</entry>
849            </row>
850            <row>
851              <entry>White Reference (D65)</entry>
852              <entry>0.3127</entry>
853              <entry>0.3290</entry>
854            </row>
855          </tbody>
856        </tgroup>
857      </table>
858      <para>These chromaticities are identical to the Rec. 709 colorspace.</para>
859      <variablelist>
860	<varlistentry>
861          <term>Transfer function. Note that negative values for L are only used by the Y'CbCr conversion.</term>
862	  <listitem>
863            <para>L' = -1.055(-L)<superscript>1/2.4</superscript>&nbsp;+&nbsp;0.055&nbsp;for&nbsp;L&nbsp;&lt;&nbsp;-0.0031308</para>
864            <para>L' = 12.92L&nbsp;for&nbsp;-0.0031308&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;0.0031308</para>
865            <para>L' = 1.055L<superscript>1/2.4</superscript>&nbsp;-&nbsp;0.055&nbsp;for&nbsp;0.0031308&nbsp;&lt;&nbsp;L&nbsp;&le;&nbsp;1</para>
866	  </listitem>
867	</varlistentry>
868	<varlistentry>
869          <term>Inverse Transfer function:</term>
870	  <listitem>
871            <para>L = -((-L'&nbsp;+&nbsp;0.055)&nbsp;/&nbsp;1.055)<superscript>2.4</superscript>&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;-0.04045</para>
872            <para>L = L'&nbsp;/&nbsp;12.92&nbsp;for&nbsp;-0.04045&nbsp;&le;&nbsp;L'&nbsp;&le;&nbsp;0.04045</para>
873            <para>L = ((L'&nbsp;+&nbsp;0.055)&nbsp;/&nbsp;1.055)<superscript>2.4</superscript>&nbsp;for&nbsp;L'&nbsp;&gt;&nbsp;0.04045</para>
874	  </listitem>
875	</varlistentry>
876      </variablelist>
877      <variablelist>
878	<varlistentry>
879      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
880<constant>V4L2_YCBCR_ENC_SYCC</constant> encoding as defined by <xref linkend="sycc" />:</term>
881	  <listitem>
882            <para>Y'&nbsp;=&nbsp;0.2990R'&nbsp;+&nbsp;0.5870G'&nbsp;+&nbsp;0.1140B'</para>
883            <para>Cb&nbsp;=&nbsp;-0.1687R'&nbsp;-&nbsp;0.3313G'&nbsp;+&nbsp;0.5B'</para>
884            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4187G'&nbsp;-&nbsp;0.0813B'</para>
885	  </listitem>
886	</varlistentry>
887      </variablelist>
888      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are clamped
889to the range [-0.5&hellip;0.5]. The <constant>V4L2_YCBCR_ENC_SYCC</constant> quantization is always
890full range. Although this Y'CbCr encoding looks very similar to the <constant>V4L2_YCBCR_ENC_XV601</constant>
891encoding, it is not. The <constant>V4L2_YCBCR_ENC_XV601</constant> scales and offsets the Y'CbCr
892values before quantization, but this encoding does not do that.</para>
893    </section>
894
895    <section id="col-adobergb">
896      <title>Colorspace Adobe RGB (<constant>V4L2_COLORSPACE_ADOBERGB</constant>)</title>
897      <para>The <xref linkend="adobergb" /> standard defines the colorspace used by computer graphics
898that use the AdobeRGB colorspace. This is also known as the <xref linkend="oprgb" /> standard.
899The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr
900quantization is limited range. The chromaticities of the primary colors and the white reference
901are:</para>
902      <table frame="none">
903        <title>Adobe RGB Chromaticities</title>
904        <tgroup cols="3" align="left">
905          &cs-str;
906    	<thead>
907    	  <row>
908    	    <entry>Color</entry>
909    	    <entry>x</entry>
910    	    <entry>y</entry>
911    	  </row>
912    	</thead>
913          <tbody valign="top">
914            <row>
915              <entry>Red</entry>
916              <entry>0.6400</entry>
917              <entry>0.3300</entry>
918            </row>
919            <row>
920              <entry>Green</entry>
921              <entry>0.2100</entry>
922              <entry>0.7100</entry>
923            </row>
924            <row>
925              <entry>Blue</entry>
926              <entry>0.1500</entry>
927              <entry>0.0600</entry>
928            </row>
929            <row>
930              <entry>White Reference (D65)</entry>
931              <entry>0.3127</entry>
932              <entry>0.3290</entry>
933            </row>
934          </tbody>
935        </tgroup>
936      </table>
937      <variablelist>
938	<varlistentry>
939          <term>Transfer function:</term>
940	  <listitem>
941            <para>L' = L<superscript>1/2.19921875</superscript></para>
942	  </listitem>
943	</varlistentry>
944	<varlistentry>
945          <term>Inverse Transfer function:</term>
946	  <listitem>
947            <para>L = L'<superscript>2.19921875</superscript></para>
948	  </listitem>
949	</varlistentry>
950      </variablelist>
951      <variablelist>
952	<varlistentry>
953      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
954following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
955	  <listitem>
956            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
957            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
958            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
959	  </listitem>
960	</varlistentry>
961      </variablelist>
962      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
963clamped to the range [-0.5&hellip;0.5]. This transform is identical to one defined in
964SMPTE 170M/BT.601. The Y'CbCr quantization is limited range.</para>
965    </section>
966
967    <section id="col-bt2020">
968      <title>Colorspace BT.2020 (<constant>V4L2_COLORSPACE_BT2020</constant>)</title>
969      <para>The <xref linkend="itu2020" /> standard defines the colorspace used by Ultra-high definition
970television (UHDTV). The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_BT2020</constant>.
971The default R'G'B' quantization is limited range (!), and so is the default Y'CbCr quantization.
972The chromaticities of the primary colors and the white reference are:</para>
973      <table frame="none">
974        <title>BT.2020 Chromaticities</title>
975        <tgroup cols="3" align="left">
976          &cs-str;
977    	<thead>
978    	  <row>
979    	    <entry>Color</entry>
980    	    <entry>x</entry>
981    	    <entry>y</entry>
982    	  </row>
983    	</thead>
984          <tbody valign="top">
985            <row>
986              <entry>Red</entry>
987              <entry>0.708</entry>
988              <entry>0.292</entry>
989            </row>
990            <row>
991              <entry>Green</entry>
992              <entry>0.170</entry>
993              <entry>0.797</entry>
994            </row>
995            <row>
996              <entry>Blue</entry>
997              <entry>0.131</entry>
998              <entry>0.046</entry>
999            </row>
1000            <row>
1001              <entry>White Reference (D65)</entry>
1002              <entry>0.3127</entry>
1003              <entry>0.3290</entry>
1004            </row>
1005          </tbody>
1006        </tgroup>
1007      </table>
1008      <variablelist>
1009	<varlistentry>
1010          <term>Transfer function (same as Rec. 709):</term>
1011	  <listitem>
1012            <para>L' = 4.5L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
1013            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1014	  </listitem>
1015	</varlistentry>
1016	<varlistentry>
1017          <term>Inverse Transfer function:</term>
1018	  <listitem>
1019            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
1020            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
1021	  </listitem>
1022	</varlistentry>
1023      </variablelist>
1024      <variablelist>
1025	<varlistentry>
1026      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1027following <constant>V4L2_YCBCR_ENC_BT2020</constant> encoding:</term>
1028	  <listitem>
1029            <para>Y'&nbsp;=&nbsp;0.2627R'&nbsp;+&nbsp;0.6780G'&nbsp;+&nbsp;0.0593B'</para>
1030            <para>Cb&nbsp;=&nbsp;-0.1396R'&nbsp;-&nbsp;0.3604G'&nbsp;+&nbsp;0.5B'</para>
1031            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4598G'&nbsp;-&nbsp;0.0402B'</para>
1032	  </listitem>
1033	</varlistentry>
1034      </variablelist>
1035      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1036clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.</para>
1037      <para>There is also an alternate constant luminance R'G'B' to Yc'CbcCrc
1038(<constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant>) encoding:</para>
1039      <variablelist>
1040	<varlistentry>
1041      	  <term>Luma:</term>
1042	  <listitem>
1043            <para>Yc'&nbsp;=&nbsp;(0.2627R&nbsp;+&nbsp;0.6780G&nbsp;+&nbsp;0.0593B)'</para>
1044	  </listitem>
1045	</varlistentry>
1046      </variablelist>
1047      <variablelist>
1048	<varlistentry>
1049      	  <term>B'&nbsp;-&nbsp;Yc'&nbsp;&le;&nbsp;0:</term>
1050	  <listitem>
1051            <para>Cbc&nbsp;=&nbsp;(B'&nbsp;-&nbsp;Yc')&nbsp;/&nbsp;1.9404</para>
1052	  </listitem>
1053	</varlistentry>
1054      </variablelist>
1055      <variablelist>
1056	<varlistentry>
1057      	  <term>B'&nbsp;-&nbsp;Yc'&nbsp;&gt;&nbsp;0:</term>
1058	  <listitem>
1059            <para>Cbc&nbsp;=&nbsp;(B'&nbsp;-&nbsp;Yc')&nbsp;/&nbsp;1.5816</para>
1060	  </listitem>
1061	</varlistentry>
1062      </variablelist>
1063      <variablelist>
1064	<varlistentry>
1065      	  <term>R'&nbsp;-&nbsp;Yc'&nbsp;&le;&nbsp;0:</term>
1066	  <listitem>
1067            <para>Crc&nbsp;=&nbsp;(R'&nbsp;-&nbsp;Y')&nbsp;/&nbsp;1.7184</para>
1068	  </listitem>
1069	</varlistentry>
1070      </variablelist>
1071      <variablelist>
1072	<varlistentry>
1073      	  <term>R'&nbsp;-&nbsp;Yc'&nbsp;&gt;&nbsp;0:</term>
1074	  <listitem>
1075            <para>Crc&nbsp;=&nbsp;(R'&nbsp;-&nbsp;Y')&nbsp;/&nbsp;0.9936</para>
1076	  </listitem>
1077	</varlistentry>
1078      </variablelist>
1079      <para>Yc' is clamped to the range [0&hellip;1] and Cbc and Crc are
1080clamped to the range [-0.5&hellip;0.5]. The Yc'CbcCrc quantization is limited range.</para>
1081    </section>
1082
1083    <section id="col-smpte-240m">
1084      <title>Colorspace SMPTE 240M (<constant>V4L2_COLORSPACE_SMPTE240M</constant>)</title>
1085      <para>The <xref linkend="smpte240m" /> standard was an interim standard used during the early days of HDTV (1988-1998).
1086It has been superseded by Rec. 709. The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SMPTE240M</constant>.
1087The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the
1088white reference are:</para>
1089      <table frame="none">
1090        <title>SMPTE 240M Chromaticities</title>
1091        <tgroup cols="3" align="left">
1092          &cs-str;
1093    	<thead>
1094    	  <row>
1095    	    <entry>Color</entry>
1096    	    <entry>x</entry>
1097    	    <entry>y</entry>
1098    	  </row>
1099    	</thead>
1100          <tbody valign="top">
1101            <row>
1102              <entry>Red</entry>
1103              <entry>0.630</entry>
1104              <entry>0.340</entry>
1105            </row>
1106            <row>
1107              <entry>Green</entry>
1108              <entry>0.310</entry>
1109              <entry>0.595</entry>
1110            </row>
1111            <row>
1112              <entry>Blue</entry>
1113              <entry>0.155</entry>
1114              <entry>0.070</entry>
1115            </row>
1116            <row>
1117              <entry>White Reference (D65)</entry>
1118              <entry>0.3127</entry>
1119              <entry>0.3290</entry>
1120            </row>
1121          </tbody>
1122        </tgroup>
1123      </table>
1124      <para>These chromaticities are identical to the SMPTE 170M colorspace.</para>
1125      <variablelist>
1126	<varlistentry>
1127          <term>Transfer function:</term>
1128	  <listitem>
1129            <para>L' = 4L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.0228</para>
1130            <para>L' = 1.1115L<superscript>0.45</superscript>&nbsp;-&nbsp;0.1115&nbsp;for&nbsp;0.0228&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1131	  </listitem>
1132	</varlistentry>
1133	<varlistentry>
1134          <term>Inverse Transfer function:</term>
1135	  <listitem>
1136            <para>L = L'&nbsp;/&nbsp;4&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L'&nbsp;&lt;&nbsp;0.0913</para>
1137            <para>L = ((L'&nbsp;+&nbsp;0.1115)&nbsp;/&nbsp;1.1115)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.0913</para>
1138	  </listitem>
1139	</varlistentry>
1140      </variablelist>
1141      <variablelist>
1142	<varlistentry>
1143      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1144following <constant>V4L2_YCBCR_ENC_SMPTE240M</constant> encoding:</term>
1145	  <listitem>
1146            <para>Y'&nbsp;=&nbsp;0.2122R'&nbsp;+&nbsp;0.7013G'&nbsp;+&nbsp;0.0865B'</para>
1147            <para>Cb&nbsp;=&nbsp;-0.1161R'&nbsp;-&nbsp;0.3839G'&nbsp;+&nbsp;0.5B'</para>
1148            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.4451G'&nbsp;-&nbsp;0.0549B'</para>
1149	  </listitem>
1150	</varlistentry>
1151      </variablelist>
1152      <para>Yc' is clamped to the range [0&hellip;1] and Cbc and Crc are
1153clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.</para>
1154    </section>
1155
1156    <section id="col-sysm">
1157      <title>Colorspace NTSC 1953 (<constant>V4L2_COLORSPACE_470_SYSTEM_M</constant>)</title>
1158      <para>This standard defines the colorspace used by NTSC in 1953. In practice this
1159colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding
1160is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr quantization is limited range.
1161The chromaticities of the primary colors and the white reference are:</para>
1162      <table frame="none">
1163        <title>NTSC 1953 Chromaticities</title>
1164        <tgroup cols="3" align="left">
1165          &cs-str;
1166    	<thead>
1167    	  <row>
1168    	    <entry>Color</entry>
1169    	    <entry>x</entry>
1170    	    <entry>y</entry>
1171    	  </row>
1172    	</thead>
1173          <tbody valign="top">
1174            <row>
1175              <entry>Red</entry>
1176              <entry>0.67</entry>
1177              <entry>0.33</entry>
1178            </row>
1179            <row>
1180              <entry>Green</entry>
1181              <entry>0.21</entry>
1182              <entry>0.71</entry>
1183            </row>
1184            <row>
1185              <entry>Blue</entry>
1186              <entry>0.14</entry>
1187              <entry>0.08</entry>
1188            </row>
1189            <row>
1190              <entry>White Reference (C)</entry>
1191              <entry>0.310</entry>
1192              <entry>0.316</entry>
1193            </row>
1194          </tbody>
1195        </tgroup>
1196      </table>
1197      <para>Note that this colorspace uses Illuminant C instead of D65 as the
1198white reference. To correctly convert an image in this colorspace to another
1199that uses D65 you need to apply a chromatic adaptation algorithm such as the
1200Bradford method.</para>
1201      <variablelist>
1202	<varlistentry>
1203          <term>The transfer function was never properly defined for NTSC 1953. The
1204Rec. 709 transfer function is recommended in the literature:</term>
1205	  <listitem>
1206            <para>L' = 4.5L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
1207            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1208	  </listitem>
1209	</varlistentry>
1210	<varlistentry>
1211          <term>Inverse Transfer function:</term>
1212	  <listitem>
1213            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
1214            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
1215	  </listitem>
1216	</varlistentry>
1217      </variablelist>
1218      <variablelist>
1219	<varlistentry>
1220      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1221following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
1222	  <listitem>
1223            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
1224            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
1225            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
1226	  </listitem>
1227	</varlistentry>
1228      </variablelist>
1229      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1230clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.
1231This transform is identical to one defined in SMPTE 170M/BT.601.</para>
1232    </section>
1233
1234    <section id="col-sysbg">
1235      <title>Colorspace EBU Tech. 3213 (<constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant>)</title>
1236      <para>The <xref linkend="tech3213" /> standard defines the colorspace used by PAL/SECAM in 1975. In practice this
1237colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding
1238is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr quantization is limited range.
1239The chromaticities of the primary colors and the white reference are:</para>
1240      <table frame="none">
1241        <title>EBU Tech. 3213 Chromaticities</title>
1242        <tgroup cols="3" align="left">
1243          &cs-str;
1244    	<thead>
1245    	  <row>
1246    	    <entry>Color</entry>
1247    	    <entry>x</entry>
1248    	    <entry>y</entry>
1249    	  </row>
1250    	</thead>
1251          <tbody valign="top">
1252            <row>
1253              <entry>Red</entry>
1254              <entry>0.64</entry>
1255              <entry>0.33</entry>
1256            </row>
1257            <row>
1258              <entry>Green</entry>
1259              <entry>0.29</entry>
1260              <entry>0.60</entry>
1261            </row>
1262            <row>
1263              <entry>Blue</entry>
1264              <entry>0.15</entry>
1265              <entry>0.06</entry>
1266            </row>
1267            <row>
1268              <entry>White Reference (D65)</entry>
1269              <entry>0.3127</entry>
1270              <entry>0.3290</entry>
1271            </row>
1272          </tbody>
1273        </tgroup>
1274      </table>
1275      <variablelist>
1276	<varlistentry>
1277          <term>The transfer function was never properly defined for this colorspace.
1278The Rec. 709 transfer function is recommended in the literature:</term>
1279	  <listitem>
1280            <para>L' = 4.5L&nbsp;for&nbsp;0&nbsp;&le;&nbsp;L&nbsp;&lt;&nbsp;0.018</para>
1281            <para>L' = 1.099L<superscript>0.45</superscript>&nbsp;-&nbsp;0.099&nbsp;for&nbsp;0.018&nbsp;&le;&nbsp;L&nbsp;&le;&nbsp;1</para>
1282	  </listitem>
1283	</varlistentry>
1284	<varlistentry>
1285          <term>Inverse Transfer function:</term>
1286	  <listitem>
1287            <para>L = L'&nbsp;/&nbsp;4.5&nbsp;for&nbsp;L'&nbsp;&lt;&nbsp;0.081</para>
1288            <para>L = ((L'&nbsp;+&nbsp;0.099)&nbsp;/&nbsp;1.099)<superscript>1/0.45</superscript>&nbsp;for&nbsp;L'&nbsp;&ge;&nbsp;0.081</para>
1289	  </listitem>
1290	</varlistentry>
1291      </variablelist>
1292      <variablelist>
1293	<varlistentry>
1294      	  <term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
1295following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
1296	  <listitem>
1297            <para>Y'&nbsp;=&nbsp;0.299R'&nbsp;+&nbsp;0.587G'&nbsp;+&nbsp;0.114B'</para>
1298            <para>Cb&nbsp;=&nbsp;-0.169R'&nbsp;-&nbsp;0.331G'&nbsp;+&nbsp;0.5B'</para>
1299            <para>Cr&nbsp;=&nbsp;0.5R'&nbsp;-&nbsp;0.419G'&nbsp;-&nbsp;0.081B'</para>
1300	  </listitem>
1301	</varlistentry>
1302      </variablelist>
1303      <para>Y' is clamped to the range [0&hellip;1] and Cb and Cr are
1304clamped to the range [-0.5&hellip;0.5]. The Y'CbCr quantization is limited range.
1305This transform is identical to one defined in SMPTE 170M/BT.601.</para>
1306    </section>
1307
1308    <section id="col-jpeg">
1309      <title>Colorspace JPEG (<constant>V4L2_COLORSPACE_JPEG</constant>)</title>
1310      <para>This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities
1311of the primary colors and the white reference are identical to sRGB. The Y'CbCr encoding is
1312<constant>V4L2_YCBCR_ENC_601</constant> with full range quantization where
1313Y' is scaled to [0&hellip;255] and Cb/Cr are scaled to [-128&hellip;128] and
1314then clipped to [-128&hellip;127].</para>
1315      <para>Note that the JPEG standard does not actually store colorspace information.
1316So if something other than sRGB is used, then the driver will have to set that information
1317explicitly. Effectively <constant>V4L2_COLORSPACE_JPEG</constant> can be considered to be
1318an abbreviation for <constant>V4L2_COLORSPACE_SRGB</constant>, <constant>V4L2_YCBCR_ENC_601</constant>
1319and <constant>V4L2_QUANTIZATION_FULL_RANGE</constant>.</para>
1320    </section>
1321
1322  </section>
1323
1324  <section id="pixfmt-indexed">
1325    <title>Indexed Format</title>
1326
1327    <para>In this format each pixel is represented by an 8 bit index
1328into a 256 entry ARGB palette. It is intended for <link
1329linkend="osd">Video Output Overlays</link> only. There are no ioctls to
1330access the palette, this must be done with ioctls of the Linux framebuffer API.</para>
1331
1332    <table pgwide="0" frame="none">
1333      <title>Indexed Image Format</title>
1334      <tgroup cols="37" align="center">
1335	<colspec colname="id" align="left" />
1336	<colspec colname="fourcc" />
1337	<colspec colname="bit" />
1338
1339	<colspec colnum="4" colname="b07" align="center" />
1340	<colspec colnum="5" colname="b06" align="center" />
1341	<colspec colnum="6" colname="b05" align="center" />
1342	<colspec colnum="7" colname="b04" align="center" />
1343	<colspec colnum="8" colname="b03" align="center" />
1344	<colspec colnum="9" colname="b02" align="center" />
1345	<colspec colnum="10" colname="b01" align="center" />
1346	<colspec colnum="11" colname="b00" align="center" />
1347
1348	<spanspec namest="b07" nameend="b00" spanname="b0" />
1349	<spanspec namest="b17" nameend="b10" spanname="b1" />
1350	<spanspec namest="b27" nameend="b20" spanname="b2" />
1351	<spanspec namest="b37" nameend="b30" spanname="b3" />
1352	<thead>
1353	  <row>
1354	    <entry>Identifier</entry>
1355	    <entry>Code</entry>
1356	    <entry>&nbsp;</entry>
1357	    <entry spanname="b0">Byte&nbsp;0</entry>
1358	  </row>
1359	  <row>
1360	    <entry>&nbsp;</entry>
1361	    <entry>&nbsp;</entry>
1362	    <entry>Bit</entry>
1363	    <entry>7</entry>
1364	    <entry>6</entry>
1365	    <entry>5</entry>
1366	    <entry>4</entry>
1367	    <entry>3</entry>
1368	    <entry>2</entry>
1369	    <entry>1</entry>
1370	    <entry>0</entry>
1371	  </row>
1372	</thead>
1373	<tbody valign="top">
1374	  <row id="V4L2-PIX-FMT-PAL8">
1375	    <entry><constant>V4L2_PIX_FMT_PAL8</constant></entry>
1376	    <entry>'PAL8'</entry>
1377	    <entry></entry>
1378	    <entry>i<subscript>7</subscript></entry>
1379	    <entry>i<subscript>6</subscript></entry>
1380	    <entry>i<subscript>5</subscript></entry>
1381	    <entry>i<subscript>4</subscript></entry>
1382	    <entry>i<subscript>3</subscript></entry>
1383	    <entry>i<subscript>2</subscript></entry>
1384	    <entry>i<subscript>1</subscript></entry>
1385	    <entry>i<subscript>0</subscript></entry>
1386	  </row>
1387	</tbody>
1388      </tgroup>
1389    </table>
1390  </section>
1391
1392  <section id="pixfmt-rgb">
1393    <title>RGB Formats</title>
1394
1395    &sub-packed-rgb;
1396    &sub-sbggr8;
1397    &sub-sgbrg8;
1398    &sub-sgrbg8;
1399    &sub-srggb8;
1400    &sub-sbggr16;
1401    &sub-srggb10;
1402    &sub-srggb10p;
1403    &sub-srggb10alaw8;
1404    &sub-srggb10dpcm8;
1405    &sub-srggb12;
1406  </section>
1407
1408  <section id="yuv-formats">
1409    <title>YUV Formats</title>
1410
1411    <para>YUV is the format native to TV broadcast and composite video
1412signals. It separates the brightness information (Y) from the color
1413information (U and V or Cb and Cr). The color information consists of
1414red and blue <emphasis>color difference</emphasis> signals, this way
1415the green component can be reconstructed by subtracting from the
1416brightness component. See <xref linkend="colorspaces" /> for conversion
1417examples. YUV was chosen because early television would only transmit
1418brightness information. To add color in a way compatible with existing
1419receivers a new signal carrier was added to transmit the color
1420difference signals. Secondary in the YUV format the U and V components
1421usually have lower resolution than the Y component. This is an analog
1422video compression technique taking advantage of a property of the
1423human visual system, being more sensitive to brightness
1424information.</para>
1425
1426    &sub-packed-yuv;
1427    &sub-grey;
1428    &sub-y10;
1429    &sub-y12;
1430    &sub-y10b;
1431    &sub-y16;
1432    &sub-uv8;
1433    &sub-yuyv;
1434    &sub-uyvy;
1435    &sub-yvyu;
1436    &sub-vyuy;
1437    &sub-y41p;
1438    &sub-yuv420;
1439    &sub-yuv420m;
1440    &sub-yvu420m;
1441    &sub-yuv410;
1442    &sub-yuv422p;
1443    &sub-yuv411p;
1444    &sub-nv12;
1445    &sub-nv12m;
1446    &sub-nv12mt;
1447    &sub-nv16;
1448    &sub-nv16m;
1449    &sub-nv24;
1450    &sub-m420;
1451  </section>
1452
1453  <section>
1454    <title>Compressed Formats</title>
1455
1456    <table pgwide="1" frame="none" id="compressed-formats">
1457      <title>Compressed Image Formats</title>
1458      <tgroup cols="3" align="left">
1459	&cs-def;
1460	<thead>
1461	  <row>
1462	    <entry>Identifier</entry>
1463	    <entry>Code</entry>
1464	    <entry>Details</entry>
1465	  </row>
1466	</thead>
1467	<tbody valign="top">
1468	 <row id="V4L2-PIX-FMT-JPEG">
1469	    <entry><constant>V4L2_PIX_FMT_JPEG</constant></entry>
1470	    <entry>'JPEG'</entry>
1471	    <entry>TBD. See also &VIDIOC-G-JPEGCOMP;,
1472	    &VIDIOC-S-JPEGCOMP;.</entry>
1473	  </row>
1474	  <row id="V4L2-PIX-FMT-MPEG">
1475	    <entry><constant>V4L2_PIX_FMT_MPEG</constant></entry>
1476	    <entry>'MPEG'</entry>
1477	    <entry>MPEG multiplexed stream. The actual format is determined by
1478extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
1479<xref linkend="mpeg-control-id" />.</entry>
1480	  </row>
1481	  <row id="V4L2-PIX-FMT-H264">
1482		<entry><constant>V4L2_PIX_FMT_H264</constant></entry>
1483		<entry>'H264'</entry>
1484		<entry>H264 video elementary stream with start codes.</entry>
1485	  </row>
1486	  <row id="V4L2-PIX-FMT-H264-NO-SC">
1487		<entry><constant>V4L2_PIX_FMT_H264_NO_SC</constant></entry>
1488		<entry>'AVC1'</entry>
1489		<entry>H264 video elementary stream without start codes.</entry>
1490	  </row>
1491	  <row id="V4L2-PIX-FMT-H264-MVC">
1492		<entry><constant>V4L2_PIX_FMT_H264_MVC</constant></entry>
1493		<entry>'M264'</entry>
1494		<entry>H264 MVC video elementary stream.</entry>
1495	  </row>
1496	  <row id="V4L2-PIX-FMT-H263">
1497		<entry><constant>V4L2_PIX_FMT_H263</constant></entry>
1498		<entry>'H263'</entry>
1499		<entry>H263 video elementary stream.</entry>
1500	  </row>
1501	  <row id="V4L2-PIX-FMT-MPEG1">
1502		<entry><constant>V4L2_PIX_FMT_MPEG1</constant></entry>
1503		<entry>'MPG1'</entry>
1504		<entry>MPEG1 video elementary stream.</entry>
1505	  </row>
1506	  <row id="V4L2-PIX-FMT-MPEG2">
1507		<entry><constant>V4L2_PIX_FMT_MPEG2</constant></entry>
1508		<entry>'MPG2'</entry>
1509		<entry>MPEG2 video elementary stream.</entry>
1510	  </row>
1511	  <row id="V4L2-PIX-FMT-MPEG4">
1512		<entry><constant>V4L2_PIX_FMT_MPEG4</constant></entry>
1513		<entry>'MPG4'</entry>
1514		<entry>MPEG4 video elementary stream.</entry>
1515	  </row>
1516	  <row id="V4L2-PIX-FMT-XVID">
1517		<entry><constant>V4L2_PIX_FMT_XVID</constant></entry>
1518		<entry>'XVID'</entry>
1519		<entry>Xvid video elementary stream.</entry>
1520	  </row>
1521	  <row id="V4L2-PIX-FMT-VC1-ANNEX-G">
1522		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_G</constant></entry>
1523		<entry>'VC1G'</entry>
1524		<entry>VC1, SMPTE 421M Annex G compliant stream.</entry>
1525	  </row>
1526	  <row id="V4L2-PIX-FMT-VC1-ANNEX-L">
1527		<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_L</constant></entry>
1528		<entry>'VC1L'</entry>
1529		<entry>VC1, SMPTE 421M Annex L compliant stream.</entry>
1530	  </row>
1531	  <row id="V4L2-PIX-FMT-VP8">
1532		<entry><constant>V4L2_PIX_FMT_VP8</constant></entry>
1533		<entry>'VP80'</entry>
1534		<entry>VP8 video elementary stream.</entry>
1535	  </row>
1536	</tbody>
1537      </tgroup>
1538    </table>
1539  </section>
1540
1541  <section id="sdr-formats">
1542    <title>SDR Formats</title>
1543
1544    <para>These formats are used for <link linkend="sdr">SDR Capture</link>
1545interface only.</para>
1546
1547    &sub-sdr-cu08;
1548    &sub-sdr-cu16le;
1549    &sub-sdr-cs08;
1550    &sub-sdr-cs14le;
1551    &sub-sdr-ru12le;
1552
1553  </section>
1554
1555  <section id="pixfmt-reserved">
1556    <title>Reserved Format Identifiers</title>
1557
1558    <para>These formats are not defined by this specification, they
1559are just listed for reference and to avoid naming conflicts. If you
1560want to register your own format, send an e-mail to the linux-media mailing
1561list &v4l-ml; for inclusion in the <filename>videodev2.h</filename>
1562file. If you want to share your format with other developers add a
1563link to your documentation and send a copy to the linux-media mailing list
1564for inclusion in this section. If you think your format should be listed
1565in a standard format section please make a proposal on the linux-media mailing
1566list.</para>
1567
1568    <table pgwide="1" frame="none" id="reserved-formats">
1569      <title>Reserved Image Formats</title>
1570      <tgroup cols="3" align="left">
1571	&cs-def;
1572	<thead>
1573	  <row>
1574	    <entry>Identifier</entry>
1575	    <entry>Code</entry>
1576	    <entry>Details</entry>
1577	  </row>
1578	</thead>
1579	<tbody valign="top">
1580	  <row id="V4L2-PIX-FMT-DV">
1581	    <entry><constant>V4L2_PIX_FMT_DV</constant></entry>
1582	    <entry>'dvsd'</entry>
1583	    <entry>unknown</entry>
1584	  </row>
1585	  <row id="V4L2-PIX-FMT-ET61X251">
1586	    <entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry>
1587	    <entry>'E625'</entry>
1588	    <entry>Compressed format of the ET61X251 driver.</entry>
1589	  </row>
1590	  <row id="V4L2-PIX-FMT-HI240">
1591	    <entry><constant>V4L2_PIX_FMT_HI240</constant></entry>
1592	    <entry>'HI24'</entry>
1593	    <entry><para>8 bit RGB format used by the BTTV driver.</para></entry>
1594	  </row>
1595	  <row id="V4L2-PIX-FMT-HM12">
1596	    <entry><constant>V4L2_PIX_FMT_HM12</constant></entry>
1597	    <entry>'HM12'</entry>
1598	    <entry><para>YUV 4:2:0 format used by the
1599IVTV driver, <ulink url="http://www.ivtvdriver.org/">
1600http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
1601kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
1602</para></entry>
1603	  </row>
1604	  <row id="V4L2-PIX-FMT-CPIA1">
1605	    <entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
1606	    <entry>'CPIA'</entry>
1607	    <entry>YUV format used by the gspca cpia1 driver.</entry>
1608	  </row>
1609	  <row id="V4L2-PIX-FMT-JPGL">
1610	    <entry><constant>V4L2_PIX_FMT_JPGL</constant></entry>
1611	    <entry>'JPGL'</entry>
1612	    <entry>JPEG-Light format (Pegasus Lossless JPEG)
1613			used in Divio webcams NW 80x.</entry>
1614	  </row>
1615	  <row id="V4L2-PIX-FMT-SPCA501">
1616	    <entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
1617	    <entry>'S501'</entry>
1618	    <entry>YUYV per line used by the gspca driver.</entry>
1619	  </row>
1620	  <row id="V4L2-PIX-FMT-SPCA505">
1621	    <entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry>
1622	    <entry>'S505'</entry>
1623	    <entry>YYUV per line used by the gspca driver.</entry>
1624	  </row>
1625	  <row id="V4L2-PIX-FMT-SPCA508">
1626	    <entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry>
1627	    <entry>'S508'</entry>
1628	    <entry>YUVY per line used by the gspca driver.</entry>
1629	  </row>
1630	  <row id="V4L2-PIX-FMT-SPCA561">
1631	    <entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry>
1632	    <entry>'S561'</entry>
1633	    <entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
1634	  </row>
1635	  <row id="V4L2-PIX-FMT-PAC207">
1636	    <entry><constant>V4L2_PIX_FMT_PAC207</constant></entry>
1637	    <entry>'P207'</entry>
1638	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
1639	  </row>
1640	  <row id="V4L2-PIX-FMT-MR97310A">
1641	    <entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry>
1642	    <entry>'M310'</entry>
1643	    <entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
1644	  </row>
1645	  <row id="V4L2-PIX-FMT-JL2005BCD">
1646	    <entry><constant>V4L2_PIX_FMT_JL2005BCD</constant></entry>
1647	    <entry>'JL20'</entry>
1648	    <entry>JPEG compressed RGGB Bayer format used by the gspca driver.</entry>
1649	  </row>
1650	  <row id="V4L2-PIX-FMT-OV511">
1651	    <entry><constant>V4L2_PIX_FMT_OV511</constant></entry>
1652	    <entry>'O511'</entry>
1653	    <entry>OV511 JPEG format used by the gspca driver.</entry>
1654	  </row>
1655	  <row id="V4L2-PIX-FMT-OV518">
1656	    <entry><constant>V4L2_PIX_FMT_OV518</constant></entry>
1657	    <entry>'O518'</entry>
1658	    <entry>OV518 JPEG format used by the gspca driver.</entry>
1659	  </row>
1660	  <row id="V4L2-PIX-FMT-PJPG">
1661	    <entry><constant>V4L2_PIX_FMT_PJPG</constant></entry>
1662	    <entry>'PJPG'</entry>
1663	    <entry>Pixart 73xx JPEG format used by the gspca driver.</entry>
1664	  </row>
1665	  <row id="V4L2-PIX-FMT-SE401">
1666	    <entry><constant>V4L2_PIX_FMT_SE401</constant></entry>
1667	    <entry>'S401'</entry>
1668	    <entry>Compressed RGB format used by the gspca se401 driver</entry>
1669	  </row>
1670	  <row id="V4L2-PIX-FMT-SQ905C">
1671	    <entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry>
1672	    <entry>'905C'</entry>
1673	    <entry>Compressed RGGB bayer format used by the gspca driver.</entry>
1674	  </row>
1675	  <row id="V4L2-PIX-FMT-MJPEG">
1676	    <entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry>
1677	    <entry>'MJPG'</entry>
1678	    <entry>Compressed format used by the Zoran driver</entry>
1679	  </row>
1680	  <row id="V4L2-PIX-FMT-PWC1">
1681	    <entry><constant>V4L2_PIX_FMT_PWC1</constant></entry>
1682	    <entry>'PWC1'</entry>
1683	    <entry>Compressed format of the PWC driver.</entry>
1684	  </row>
1685	  <row id="V4L2-PIX-FMT-PWC2">
1686	    <entry><constant>V4L2_PIX_FMT_PWC2</constant></entry>
1687	    <entry>'PWC2'</entry>
1688	    <entry>Compressed format of the PWC driver.</entry>
1689	  </row>
1690	  <row id="V4L2-PIX-FMT-SN9C10X">
1691	    <entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry>
1692	    <entry>'S910'</entry>
1693	    <entry>Compressed format of the SN9C102 driver.</entry>
1694	  </row>
1695	  <row id="V4L2-PIX-FMT-SN9C20X-I420">
1696	    <entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry>
1697	    <entry>'S920'</entry>
1698	    <entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
1699	  </row>
1700	  <row id="V4L2-PIX-FMT-SN9C2028">
1701	    <entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
1702	    <entry>'SONX'</entry>
1703	    <entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
1704	  </row>
1705	  <row id="V4L2-PIX-FMT-STV0680">
1706	    <entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
1707	    <entry>'S680'</entry>
1708	    <entry>Bayer format of the gspca stv0680 driver.</entry>
1709	  </row>
1710	  <row id="V4L2-PIX-FMT-WNVA">
1711	    <entry><constant>V4L2_PIX_FMT_WNVA</constant></entry>
1712	    <entry>'WNVA'</entry>
1713	    <entry><para>Used by the Winnov Videum driver, <ulink
1714url="http://www.thedirks.org/winnov/">
1715http://www.thedirks.org/winnov/</ulink></para></entry>
1716	  </row>
1717	  <row id="V4L2-PIX-FMT-TM6000">
1718	    <entry><constant>V4L2_PIX_FMT_TM6000</constant></entry>
1719	    <entry>'TM60'</entry>
1720	    <entry><para>Used by Trident tm6000</para></entry>
1721	  </row>
1722	  <row id="V4L2-PIX-FMT-CIT-YYVYUY">
1723	    <entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
1724	    <entry>'CITV'</entry>
1725	    <entry><para>Used by xirlink CIT, found at IBM webcams.</para>
1726	           <para>Uses one line of Y then 1 line of VYUY</para>
1727	    </entry>
1728	  </row>
1729	  <row id="V4L2-PIX-FMT-KONICA420">
1730	    <entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
1731	    <entry>'KONI'</entry>
1732	    <entry><para>Used by Konica webcams.</para>
1733	           <para>YUV420 planar in blocks of 256 pixels.</para>
1734	    </entry>
1735	  </row>
1736	  <row id="V4L2-PIX-FMT-YYUV">
1737	    <entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
1738	    <entry>'YYUV'</entry>
1739	    <entry>unknown</entry>
1740	  </row>
1741	  <row id="V4L2-PIX-FMT-Y4">
1742	    <entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
1743	    <entry>'Y04 '</entry>
1744	    <entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
1745the other bits are set to 0.</entry>
1746	  </row>
1747	  <row id="V4L2-PIX-FMT-Y6">
1748	    <entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
1749	    <entry>'Y06 '</entry>
1750	    <entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
1751the other bits are set to 0.</entry>
1752	  </row>
1753	  <row id="V4L2-PIX-FMT-S5C-UYVY-JPG">
1754	    <entry><constant>V4L2_PIX_FMT_S5C_UYVY_JPG</constant></entry>
1755	    <entry>'S5CI'</entry>
1756	    <entry>Two-planar format used by Samsung S5C73MX cameras. The
1757first plane contains interleaved JPEG and UYVY image data, followed by meta data
1758in form of an array of offsets to the UYVY data blocks. The actual pointer array
1759follows immediately the interleaved JPEG/UYVY data, the number of entries in
1760this array equals the height of the UYVY image. Each entry is a 4-byte unsigned
1761integer in big endian order and it's an offset to a single pixel line of the
1762UYVY image. The first plane can start either with JPEG or UYVY data chunk. The
1763size of a single UYVY block equals the UYVY image's width multiplied by 2. The
1764size of a JPEG chunk depends on the image and can vary with each line.
1765<para>The second plane, at an offset of 4084 bytes, contains a 4-byte offset to
1766the pointer array in the first plane. This offset is followed by a 4-byte value
1767indicating size of the pointer array. All numbers in the second plane are also
1768in big endian order. Remaining data in the second plane is undefined. The
1769information in the second plane allows to easily find location of the pointer
1770array, which can be different for each frame. The size of the pointer array is
1771constant for given UYVY image height.</para>
1772<para>In order to extract UYVY and JPEG frames an application can initially set
1773a data pointer to the start of first plane and then add an offset from the first
1774entry of the pointers table. Such a pointer indicates start of an UYVY image
1775pixel line. Whole UYVY line can be copied to a separate buffer. These steps
1776should be repeated for each line, i.e. the number of entries in the pointer
1777array. Anything what's in between the UYVY lines is JPEG data and should be
1778concatenated to form the JPEG stream. </para>
1779</entry>
1780	  </row>
1781	</tbody>
1782      </tgroup>
1783    </table>
1784
1785    <table frame="none" pgwide="1" id="format-flags">
1786      <title>Format Flags</title>
1787      <tgroup cols="3">
1788	&cs-def;
1789	<tbody valign="top">
1790	  <row>
1791	    <entry><constant>V4L2_PIX_FMT_FLAG_PREMUL_ALPHA</constant></entry>
1792	    <entry>0x00000001</entry>
1793	    <entry>The color values are premultiplied by the alpha channel
1794value. For example, if a light blue pixel with 50% transparency was described by
1795RGBA values (128, 192, 255, 128), the same pixel described with premultiplied
1796colors would be described by RGBA values (64, 96, 128, 128) </entry>
1797	  </row>
1798	</tbody>
1799      </tgroup>
1800    </table>
1801  </section>
1802