1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="lk-hacking-guide">
6 <bookinfo>
7  <title>Unreliable Guide To Hacking The Linux Kernel</title>
8  
9  <authorgroup>
10   <author>
11    <firstname>Rusty</firstname>
12    <surname>Russell</surname>
13    <affiliation>
14     <address>
15      <email>rusty@rustcorp.com.au</email>
16     </address>
17    </affiliation>
18   </author>
19  </authorgroup>
20
21  <copyright>
22   <year>2005</year>
23   <holder>Rusty Russell</holder>
24  </copyright>
25
26  <legalnotice>
27   <para>
28    This documentation is free software; you can redistribute
29    it and/or modify it under the terms of the GNU General Public
30    License as published by the Free Software Foundation; either
31    version 2 of the License, or (at your option) any later
32    version.
33   </para>
34   
35   <para>
36    This program is distributed in the hope that it will be
37    useful, but WITHOUT ANY WARRANTY; without even the implied
38    warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
39    See the GNU General Public License for more details.
40   </para>
41   
42   <para>
43    You should have received a copy of the GNU General Public
44    License along with this program; if not, write to the Free
45    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
46    MA 02111-1307 USA
47   </para>
48   
49   <para>
50    For more details see the file COPYING in the source
51    distribution of Linux.
52   </para>
53  </legalnotice>
54
55  <releaseinfo>
56   This is the first release of this document as part of the kernel tarball.
57  </releaseinfo>
58
59 </bookinfo>
60
61 <toc></toc>
62
63 <chapter id="introduction">
64  <title>Introduction</title>
65  <para>
66   Welcome, gentle reader, to Rusty's Remarkably Unreliable Guide to Linux
67   Kernel Hacking.  This document describes the common routines and
68   general requirements for kernel code: its goal is to serve as a
69   primer for Linux kernel development for experienced C
70   programmers.  I avoid implementation details: that's what the
71   code is for, and I ignore whole tracts of useful routines.
72  </para>
73  <para>
74   Before you read this, please understand that I never wanted to
75   write this document, being grossly under-qualified, but I always
76   wanted to read it, and this was the only way.  I hope it will
77   grow into a compendium of best practice, common starting points
78   and random information.
79  </para>
80 </chapter>
81
82 <chapter id="basic-players">
83  <title>The Players</title>
84
85  <para>
86   At any time each of the CPUs in a system can be:
87  </para>
88
89  <itemizedlist>
90   <listitem>
91    <para>
92     not associated with any process, serving a hardware interrupt;
93    </para>
94   </listitem>
95
96   <listitem>
97    <para>
98     not associated with any process, serving a softirq or tasklet;
99    </para>
100   </listitem>
101
102   <listitem>
103    <para>
104     running in kernel space, associated with a process (user context);
105    </para>
106   </listitem>
107
108   <listitem>
109    <para>
110     running a process in user space.
111    </para>
112   </listitem>
113  </itemizedlist>
114
115  <para>
116   There is an ordering between these.  The bottom two can preempt
117   each other, but above that is a strict hierarchy: each can only be
118   preempted by the ones above it.  For example, while a softirq is
119   running on a CPU, no other softirq will preempt it, but a hardware
120   interrupt can.  However, any other CPUs in the system execute
121   independently.
122  </para>
123
124  <para>
125   We'll see a number of ways that the user context can block
126   interrupts, to become truly non-preemptable.
127  </para>
128  
129  <sect1 id="basics-usercontext">
130   <title>User Context</title>
131
132   <para>
133    User context is when you are coming in from a system call or other
134    trap: like userspace, you can be preempted by more important tasks
135    and by interrupts.  You can sleep, by calling
136    <function>schedule()</function>.
137   </para>
138
139   <note>
140    <para>
141     You are always in user context on module load and unload,
142     and on operations on the block device layer.
143    </para>
144   </note>
145
146   <para>
147    In user context, the <varname>current</varname> pointer (indicating 
148    the task we are currently executing) is valid, and
149    <function>in_interrupt()</function>
150    (<filename>include/linux/interrupt.h</filename>) is <returnvalue>false
151    </returnvalue>.  
152   </para>
153
154   <caution>
155    <para>
156     Beware that if you have preemption or softirqs disabled
157     (see below), <function>in_interrupt()</function> will return a 
158     false positive.
159    </para>
160   </caution>
161  </sect1>
162
163  <sect1 id="basics-hardirqs">
164   <title>Hardware Interrupts (Hard IRQs)</title>
165
166   <para>
167    Timer ticks, <hardware>network cards</hardware> and 
168    <hardware>keyboard</hardware> are examples of real
169    hardware which produce interrupts at any time.  The kernel runs
170    interrupt handlers, which services the hardware.  The kernel
171    guarantees that this handler is never re-entered: if the same
172    interrupt arrives, it is queued (or dropped).  Because it
173    disables interrupts, this handler has to be fast: frequently it
174    simply acknowledges the interrupt, marks a 'software interrupt'
175    for execution and exits.
176   </para>
177
178   <para>
179    You can tell you are in a hardware interrupt, because 
180    <function>in_irq()</function> returns <returnvalue>true</returnvalue>.  
181   </para>
182   <caution>
183    <para>
184     Beware that this will return a false positive if interrupts are disabled 
185     (see below).
186    </para>
187   </caution>
188  </sect1>
189
190  <sect1 id="basics-softirqs">
191   <title>Software Interrupt Context: Softirqs and Tasklets</title>
192
193   <para>
194    Whenever a system call is about to return to userspace, or a
195    hardware interrupt handler exits, any 'software interrupts'
196    which are marked pending (usually by hardware interrupts) are
197    run (<filename>kernel/softirq.c</filename>).
198   </para>
199
200   <para>
201    Much of the real interrupt handling work is done here.  Early in
202    the transition to <acronym>SMP</acronym>, there were only 'bottom
203    halves' (BHs), which didn't take advantage of multiple CPUs.  Shortly 
204    after we switched from wind-up computers made of match-sticks and snot,
205    we abandoned this limitation and switched to 'softirqs'.
206   </para>
207
208   <para>
209    <filename class="headerfile">include/linux/interrupt.h</filename> lists the
210    different softirqs.  A very important softirq is the
211    timer softirq (<filename
212    class="headerfile">include/linux/timer.h</filename>): you can
213    register to have it call functions for you in a given length of
214    time.
215   </para>
216
217   <para>
218    Softirqs are often a pain to deal with, since the same softirq
219    will run simultaneously on more than one CPU.  For this reason,
220    tasklets (<filename
221    class="headerfile">include/linux/interrupt.h</filename>) are more
222    often used: they are dynamically-registrable (meaning you can have
223    as many as you want), and they also guarantee that any tasklet
224    will only run on one CPU at any time, although different tasklets
225    can run simultaneously.
226   </para>
227   <caution>
228    <para>
229     The name 'tasklet' is misleading: they have nothing to do with 'tasks',
230     and probably more to do with some bad vodka Alexey Kuznetsov had at the 
231     time.
232    </para>
233   </caution>
234
235   <para>
236    You can tell you are in a softirq (or tasklet)
237    using the <function>in_softirq()</function> macro 
238    (<filename class="headerfile">include/linux/interrupt.h</filename>).
239   </para>
240   <caution>
241    <para>
242     Beware that this will return a false positive if a bh lock (see below)
243     is held.
244    </para>
245   </caution>
246  </sect1>
247 </chapter>
248
249 <chapter id="basic-rules">
250  <title>Some Basic Rules</title>
251
252  <variablelist>
253   <varlistentry>
254    <term>No memory protection</term>
255    <listitem>
256     <para>
257      If you corrupt memory, whether in user context or
258      interrupt context, the whole machine will crash.  Are you
259      sure you can't do what you want in userspace?
260     </para>
261    </listitem>
262   </varlistentry>
263
264   <varlistentry>
265    <term>No floating point or <acronym>MMX</acronym></term>
266    <listitem>
267     <para>
268      The <acronym>FPU</acronym> context is not saved; even in user
269      context the <acronym>FPU</acronym> state probably won't
270      correspond with the current process: you would mess with some
271      user process' <acronym>FPU</acronym> state.  If you really want
272      to do this, you would have to explicitly save/restore the full
273      <acronym>FPU</acronym> state (and avoid context switches).  It
274      is generally a bad idea; use fixed point arithmetic first.
275     </para>
276    </listitem>
277   </varlistentry>
278
279   <varlistentry>
280    <term>A rigid stack limit</term>
281    <listitem>
282     <para>
283      Depending on configuration options the kernel stack is about 3K to 6K for most 32-bit architectures: it's
284      about 14K on most 64-bit archs, and often shared with interrupts
285      so you can't use it all.  Avoid deep recursion and huge local
286      arrays on the stack (allocate them dynamically instead).
287     </para>
288    </listitem>
289   </varlistentry>
290
291   <varlistentry>
292    <term>The Linux kernel is portable</term>
293    <listitem>
294     <para>
295      Let's keep it that way.  Your code should be 64-bit clean,
296      and endian-independent.  You should also minimize CPU
297      specific stuff, e.g. inline assembly should be cleanly
298      encapsulated and minimized to ease porting.  Generally it
299      should be restricted to the architecture-dependent part of
300      the kernel tree.
301     </para>
302    </listitem>
303   </varlistentry>
304  </variablelist>
305 </chapter>
306
307 <chapter id="ioctls">
308  <title>ioctls: Not writing a new system call</title>
309
310  <para>
311   A system call generally looks like this
312  </para>
313
314  <programlisting>
315asmlinkage long sys_mycall(int arg)
316{
317        return 0; 
318}
319  </programlisting>
320
321  <para>
322   First, in most cases you don't want to create a new system call.
323   You create a character device and implement an appropriate ioctl
324   for it.  This is much more flexible than system calls, doesn't have
325   to be entered in every architecture's
326   <filename class="headerfile">include/asm/unistd.h</filename> and
327   <filename>arch/kernel/entry.S</filename> file, and is much more
328   likely to be accepted by Linus.
329  </para>
330
331  <para>
332   If all your routine does is read or write some parameter, consider
333   implementing a <function>sysfs</function> interface instead.
334  </para>
335
336  <para>
337   Inside the ioctl you're in user context to a process.  When a
338   error occurs you return a negated errno (see
339   <filename class="headerfile">include/linux/errno.h</filename>),
340   otherwise you return <returnvalue>0</returnvalue>.
341  </para>
342
343  <para>
344   After you slept you should check if a signal occurred: the
345   Unix/Linux way of handling signals is to temporarily exit the
346   system call with the <constant>-ERESTARTSYS</constant> error.  The
347   system call entry code will switch back to user context, process
348   the signal handler and then your system call will be restarted
349   (unless the user disabled that).  So you should be prepared to
350   process the restart, e.g. if you're in the middle of manipulating
351   some data structure.
352  </para>
353
354  <programlisting>
355if (signal_pending(current))
356        return -ERESTARTSYS;
357  </programlisting>
358
359  <para>
360   If you're doing longer computations: first think userspace. If you
361   <emphasis>really</emphasis> want to do it in kernel you should
362   regularly check if you need to give up the CPU (remember there is
363   cooperative multitasking per CPU).  Idiom:
364  </para>
365
366  <programlisting>
367cond_resched(); /* Will sleep */ 
368  </programlisting>
369
370  <para>
371   A short note on interface design: the UNIX system call motto is
372   "Provide mechanism not policy".
373  </para>
374 </chapter>
375
376 <chapter id="deadlock-recipes">
377  <title>Recipes for Deadlock</title>
378
379  <para>
380   You cannot call any routines which may sleep, unless:
381  </para>
382  <itemizedlist>
383   <listitem>
384    <para>
385     You are in user context.
386    </para>
387   </listitem>
388
389   <listitem>
390    <para>
391     You do not own any spinlocks.
392    </para>
393   </listitem>
394
395   <listitem>
396    <para>
397     You have interrupts enabled (actually, Andi Kleen says
398     that the scheduling code will enable them for you, but
399     that's probably not what you wanted).
400    </para>
401   </listitem>
402  </itemizedlist>
403
404  <para>
405   Note that some functions may sleep implicitly: common ones are
406   the user space access functions (*_user) and memory allocation
407   functions without <symbol>GFP_ATOMIC</symbol>.
408  </para>
409
410  <para>
411   You should always compile your kernel
412   <symbol>CONFIG_DEBUG_ATOMIC_SLEEP</symbol> on, and it will warn
413   you if you break these rules.  If you <emphasis>do</emphasis> break
414   the rules, you will eventually lock up your box.
415  </para>
416
417  <para>
418   Really.
419  </para>
420 </chapter>
421
422 <chapter id="common-routines">
423  <title>Common Routines</title>
424
425  <sect1 id="routines-printk">
426   <title>
427    <function>printk()</function>
428    <filename class="headerfile">include/linux/kernel.h</filename>
429   </title>
430
431   <para>
432    <function>printk()</function> feeds kernel messages to the
433    console, dmesg, and the syslog daemon.  It is useful for debugging
434    and reporting errors, and can be used inside interrupt context,
435    but use with caution: a machine which has its console flooded with
436    printk messages is unusable.  It uses a format string mostly
437    compatible with ANSI C printf, and C string concatenation to give
438    it a first "priority" argument:
439   </para>
440
441   <programlisting>
442printk(KERN_INFO "i = %u\n", i);
443   </programlisting>
444
445   <para>
446    See <filename class="headerfile">include/linux/kernel.h</filename>;
447    for other KERN_ values; these are interpreted by syslog as the
448    level.  Special case: for printing an IP address use
449   </para>
450
451   <programlisting>
452__be32 ipaddress;
453printk(KERN_INFO "my ip: %pI4\n", &amp;ipaddress);
454   </programlisting>
455
456   <para>
457    <function>printk()</function> internally uses a 1K buffer and does
458    not catch overruns.  Make sure that will be enough.
459   </para>
460
461   <note>
462    <para>
463     You will know when you are a real kernel hacker
464     when you start typoing printf as printk in your user programs :)
465    </para>
466   </note>
467
468   <!--- From the Lions book reader department --> 
469
470   <note>
471    <para>
472     Another sidenote: the original Unix Version 6 sources had a
473     comment on top of its printf function: "Printf should not be
474     used for chit-chat".  You should follow that advice.
475    </para>
476   </note>
477  </sect1>
478
479  <sect1 id="routines-copy">
480   <title>
481    <function>copy_[to/from]_user()</function>
482    /
483    <function>get_user()</function>
484    /
485    <function>put_user()</function>
486    <filename class="headerfile">include/asm/uaccess.h</filename>
487   </title>  
488
489   <para>
490    <emphasis>[SLEEPS]</emphasis>
491   </para>
492
493   <para>
494    <function>put_user()</function> and <function>get_user()</function>
495    are used to get and put single values (such as an int, char, or
496    long) from and to userspace.  A pointer into userspace should
497    never be simply dereferenced: data should be copied using these
498    routines.  Both return <constant>-EFAULT</constant> or 0.
499   </para>
500   <para>
501    <function>copy_to_user()</function> and
502    <function>copy_from_user()</function> are more general: they copy
503    an arbitrary amount of data to and from userspace.
504    <caution>
505     <para>
506      Unlike <function>put_user()</function> and
507      <function>get_user()</function>, they return the amount of
508      uncopied data (ie. <returnvalue>0</returnvalue> still means
509      success).
510     </para>
511    </caution>
512    [Yes, this moronic interface makes me cringe.  The flamewar comes up every year or so. --RR.]
513   </para>
514   <para>
515    The functions may sleep implicitly. This should never be called
516    outside user context (it makes no sense), with interrupts
517    disabled, or a spinlock held.
518   </para>
519  </sect1>
520
521  <sect1 id="routines-kmalloc">
522   <title><function>kmalloc()</function>/<function>kfree()</function>
523    <filename class="headerfile">include/linux/slab.h</filename></title>
524
525   <para>
526    <emphasis>[MAY SLEEP: SEE BELOW]</emphasis>
527   </para>
528
529   <para>
530    These routines are used to dynamically request pointer-aligned
531    chunks of memory, like malloc and free do in userspace, but
532    <function>kmalloc()</function> takes an extra flag word.
533    Important values:
534   </para>
535
536   <variablelist>
537    <varlistentry>
538     <term>
539      <constant>
540       GFP_KERNEL
541      </constant>
542     </term>
543     <listitem>
544      <para>
545       May sleep and swap to free memory. Only allowed in user
546       context, but is the most reliable way to allocate memory.
547      </para>
548     </listitem>
549    </varlistentry>
550    
551    <varlistentry>
552     <term>
553      <constant>
554       GFP_ATOMIC
555      </constant>
556     </term>
557     <listitem>
558      <para>
559       Don't sleep. Less reliable than <constant>GFP_KERNEL</constant>,
560       but may be called from interrupt context. You should
561       <emphasis>really</emphasis> have a good out-of-memory
562       error-handling strategy.
563      </para>
564     </listitem>
565    </varlistentry>
566    
567    <varlistentry>
568     <term>
569      <constant>
570       GFP_DMA
571      </constant>
572     </term>
573     <listitem>
574      <para>
575       Allocate ISA DMA lower than 16MB. If you don't know what that
576       is you don't need it.  Very unreliable.
577      </para>
578     </listitem>
579    </varlistentry>
580   </variablelist>
581
582   <para>
583    If you see a <errorname>sleeping function called from invalid
584    context</errorname> warning message, then maybe you called a
585    sleeping allocation function from interrupt context without
586    <constant>GFP_ATOMIC</constant>.  You should really fix that.
587    Run, don't walk.
588   </para>
589
590   <para>
591    If you are allocating at least <constant>PAGE_SIZE</constant>
592    (<filename class="headerfile">include/asm/page.h</filename>) bytes,
593    consider using <function>__get_free_pages()</function>
594
595    (<filename class="headerfile">include/linux/mm.h</filename>).  It
596    takes an order argument (0 for page sized, 1 for double page, 2
597    for four pages etc.) and the same memory priority flag word as
598    above.
599   </para>
600
601   <para>
602    If you are allocating more than a page worth of bytes you can use
603    <function>vmalloc()</function>.  It'll allocate virtual memory in
604    the kernel map.  This block is not contiguous in physical memory,
605    but the <acronym>MMU</acronym> makes it look like it is for you
606    (so it'll only look contiguous to the CPUs, not to external device
607    drivers).  If you really need large physically contiguous memory
608    for some weird device, you have a problem: it is poorly supported
609    in Linux because after some time memory fragmentation in a running
610    kernel makes it hard.  The best way is to allocate the block early
611    in the boot process via the <function>alloc_bootmem()</function>
612    routine.
613   </para>
614
615   <para>
616    Before inventing your own cache of often-used objects consider
617    using a slab cache in
618    <filename class="headerfile">include/linux/slab.h</filename>
619   </para>
620  </sect1>
621
622  <sect1 id="routines-current">
623   <title><function>current</function>
624    <filename class="headerfile">include/asm/current.h</filename></title>
625
626   <para>
627    This global variable (really a macro) contains a pointer to
628    the current task structure, so is only valid in user context.
629    For example, when a process makes a system call, this will
630    point to the task structure of the calling process.  It is
631    <emphasis>not NULL</emphasis> in interrupt context.
632   </para>
633  </sect1>
634
635  <sect1 id="routines-udelay">
636   <title><function>mdelay()</function>/<function>udelay()</function>
637     <filename class="headerfile">include/asm/delay.h</filename>
638     <filename class="headerfile">include/linux/delay.h</filename>
639   </title>
640
641   <para>
642    The <function>udelay()</function> and <function>ndelay()</function> functions can be used for small pauses.
643    Do not use large values with them as you risk
644    overflow - the helper function <function>mdelay()</function> is useful
645    here, or consider <function>msleep()</function>.
646   </para> 
647  </sect1>
648 
649  <sect1 id="routines-endian">
650   <title><function>cpu_to_be32()</function>/<function>be32_to_cpu()</function>/<function>cpu_to_le32()</function>/<function>le32_to_cpu()</function>
651     <filename class="headerfile">include/asm/byteorder.h</filename>
652   </title>
653
654   <para>
655    The <function>cpu_to_be32()</function> family (where the "32" can
656    be replaced by 64 or 16, and the "be" can be replaced by "le") are
657    the general way to do endian conversions in the kernel: they
658    return the converted value.  All variations supply the reverse as
659    well: <function>be32_to_cpu()</function>, etc.
660   </para>
661
662   <para>
663    There are two major variations of these functions: the pointer
664    variation, such as <function>cpu_to_be32p()</function>, which take
665    a pointer to the given type, and return the converted value.  The
666    other variation is the "in-situ" family, such as
667    <function>cpu_to_be32s()</function>, which convert value referred
668    to by the pointer, and return void.
669   </para> 
670  </sect1>
671
672  <sect1 id="routines-local-irqs">
673   <title><function>local_irq_save()</function>/<function>local_irq_restore()</function>
674    <filename class="headerfile">include/linux/irqflags.h</filename>
675   </title>
676
677   <para>
678    These routines disable hard interrupts on the local CPU, and
679    restore them.  They are reentrant; saving the previous state in
680    their one <varname>unsigned long flags</varname> argument.  If you
681    know that interrupts are enabled, you can simply use
682    <function>local_irq_disable()</function> and
683    <function>local_irq_enable()</function>.
684   </para>
685  </sect1>
686
687  <sect1 id="routines-softirqs">
688   <title><function>local_bh_disable()</function>/<function>local_bh_enable()</function>
689    <filename class="headerfile">include/linux/interrupt.h</filename></title>
690
691   <para>
692    These routines disable soft interrupts on the local CPU, and
693    restore them.  They are reentrant; if soft interrupts were
694    disabled before, they will still be disabled after this pair
695    of functions has been called.  They prevent softirqs and tasklets
696    from running on the current CPU.
697   </para>
698  </sect1>
699
700  <sect1 id="routines-processorids">
701   <title><function>smp_processor_id</function>()
702    <filename class="headerfile">include/asm/smp.h</filename></title>
703   
704   <para>
705    <function>get_cpu()</function> disables preemption (so you won't
706    suddenly get moved to another CPU) and returns the current
707    processor number, between 0 and <symbol>NR_CPUS</symbol>.  Note
708    that the CPU numbers are not necessarily continuous.  You return
709    it again with <function>put_cpu()</function> when you are done.
710   </para>
711   <para>
712    If you know you cannot be preempted by another task (ie. you are
713    in interrupt context, or have preemption disabled) you can use
714    smp_processor_id().
715   </para>
716  </sect1>
717
718  <sect1 id="routines-init">
719   <title><type>__init</type>/<type>__exit</type>/<type>__initdata</type>
720    <filename class="headerfile">include/linux/init.h</filename></title>
721
722   <para>
723    After boot, the kernel frees up a special section; functions
724    marked with <type>__init</type> and data structures marked with
725    <type>__initdata</type> are dropped after boot is complete: similarly
726    modules discard this memory after initialization.  <type>__exit</type>
727    is used to declare a function which is only required on exit: the
728    function will be dropped if this file is not compiled as a module.
729    See the header file for use. Note that it makes no sense for a function
730    marked with <type>__init</type> to be exported to modules with 
731    <function>EXPORT_SYMBOL()</function> - this will break.
732   </para>
733
734  </sect1>
735
736  <sect1 id="routines-init-again">
737   <title><function>__initcall()</function>/<function>module_init()</function>
738    <filename class="headerfile">include/linux/init.h</filename></title>
739   <para>
740    Many parts of the kernel are well served as a module
741    (dynamically-loadable parts of the kernel).  Using the
742    <function>module_init()</function> and
743    <function>module_exit()</function> macros it is easy to write code
744    without #ifdefs which can operate both as a module or built into
745    the kernel.
746   </para>
747
748   <para>
749    The <function>module_init()</function> macro defines which
750    function is to be called at module insertion time (if the file is
751    compiled as a module), or at boot time: if the file is not
752    compiled as a module the <function>module_init()</function> macro
753    becomes equivalent to <function>__initcall()</function>, which
754    through linker magic ensures that the function is called on boot.
755   </para>
756
757   <para>
758    The function can return a negative error number to cause
759    module loading to fail (unfortunately, this has no effect if
760    the module is compiled into the kernel).  This function is
761    called in user context with interrupts enabled, so it can sleep.
762   </para>
763  </sect1>
764  
765  <sect1 id="routines-moduleexit">
766   <title> <function>module_exit()</function>
767    <filename class="headerfile">include/linux/init.h</filename> </title>
768
769   <para>
770    This macro defines the function to be called at module removal
771    time (or never, in the case of the file compiled into the
772    kernel).  It will only be called if the module usage count has
773    reached zero.  This function can also sleep, but cannot fail:
774    everything must be cleaned up by the time it returns.
775   </para>
776
777   <para>
778    Note that this macro is optional: if it is not present, your
779    module will not be removable (except for 'rmmod -f').
780   </para>
781  </sect1>
782
783  <sect1 id="routines-module-use-counters">
784   <title> <function>try_module_get()</function>/<function>module_put()</function>
785    <filename class="headerfile">include/linux/module.h</filename></title>
786
787   <para>
788    These manipulate the module usage count, to protect against
789    removal (a module also can't be removed if another module uses one
790    of its exported symbols: see below).  Before calling into module
791    code, you should call <function>try_module_get()</function> on
792    that module: if it fails, then the module is being removed and you
793    should act as if it wasn't there.  Otherwise, you can safely enter
794    the module, and call <function>module_put()</function> when you're
795    finished.
796   </para>
797
798   <para>
799   Most registerable structures have an
800   <structfield>owner</structfield> field, such as in the
801   <structname>file_operations</structname> structure. Set this field
802   to the macro <symbol>THIS_MODULE</symbol>.
803   </para>
804  </sect1>
805
806 <!-- add info on new-style module refcounting here -->
807 </chapter>
808
809 <chapter id="queues">
810  <title>Wait Queues
811   <filename class="headerfile">include/linux/wait.h</filename>
812  </title>
813  <para>
814   <emphasis>[SLEEPS]</emphasis>
815  </para>
816
817  <para>
818   A wait queue is used to wait for someone to wake you up when a
819   certain condition is true.  They must be used carefully to ensure
820   there is no race condition.  You declare a
821   <type>wait_queue_head_t</type>, and then processes which want to
822   wait for that condition declare a <type>wait_queue_t</type>
823   referring to themselves, and place that in the queue.
824  </para>
825
826  <sect1 id="queue-declaring">
827   <title>Declaring</title>
828   
829   <para>
830    You declare a <type>wait_queue_head_t</type> using the
831    <function>DECLARE_WAIT_QUEUE_HEAD()</function> macro, or using the
832    <function>init_waitqueue_head()</function> routine in your
833    initialization code.
834   </para>
835  </sect1>
836  
837  <sect1 id="queue-waitqueue">
838   <title>Queuing</title>
839   
840   <para>
841    Placing yourself in the waitqueue is fairly complex, because you
842    must put yourself in the queue before checking the condition.
843    There is a macro to do this:
844    <function>wait_event_interruptible()</function>
845
846    <filename class="headerfile">include/linux/wait.h</filename> The
847    first argument is the wait queue head, and the second is an
848    expression which is evaluated; the macro returns
849    <returnvalue>0</returnvalue> when this expression is true, or
850    <returnvalue>-ERESTARTSYS</returnvalue> if a signal is received.
851    The <function>wait_event()</function> version ignores signals.
852   </para>
853 
854  </sect1>
855
856  <sect1 id="queue-waking">
857   <title>Waking Up Queued Tasks</title>
858   
859   <para>
860    Call <function>wake_up()</function>
861
862    <filename class="headerfile">include/linux/wait.h</filename>;,
863    which will wake up every process in the queue.  The exception is
864    if one has <constant>TASK_EXCLUSIVE</constant> set, in which case
865    the remainder of the queue will not be woken.  There are other variants
866    of this basic function available in the same header.
867   </para>
868  </sect1>
869 </chapter>
870
871 <chapter id="atomic-ops">
872  <title>Atomic Operations</title>
873
874  <para>
875   Certain operations are guaranteed atomic on all platforms.  The
876   first class of operations work on <type>atomic_t</type>
877
878   <filename class="headerfile">include/asm/atomic.h</filename>; this
879   contains a signed integer (at least 32 bits long), and you must use
880   these functions to manipulate or read atomic_t variables.
881   <function>atomic_read()</function> and
882   <function>atomic_set()</function> get and set the counter,
883   <function>atomic_add()</function>,
884   <function>atomic_sub()</function>,
885   <function>atomic_inc()</function>,
886   <function>atomic_dec()</function>, and
887   <function>atomic_dec_and_test()</function> (returns
888   <returnvalue>true</returnvalue> if it was decremented to zero).
889  </para>
890
891  <para>
892   Yes.  It returns <returnvalue>true</returnvalue> (i.e. != 0) if the
893   atomic variable is zero.
894  </para>
895
896  <para>
897   Note that these functions are slower than normal arithmetic, and
898   so should not be used unnecessarily.
899  </para>
900
901  <para>
902   The second class of atomic operations is atomic bit operations on an
903   <type>unsigned long</type>, defined in
904
905   <filename class="headerfile">include/linux/bitops.h</filename>.  These
906   operations generally take a pointer to the bit pattern, and a bit
907   number: 0 is the least significant bit.
908   <function>set_bit()</function>, <function>clear_bit()</function>
909   and <function>change_bit()</function> set, clear, and flip the
910   given bit.  <function>test_and_set_bit()</function>,
911   <function>test_and_clear_bit()</function> and
912   <function>test_and_change_bit()</function> do the same thing,
913   except return true if the bit was previously set; these are
914   particularly useful for atomically setting flags.
915  </para>
916  
917  <para>
918   It is possible to call these operations with bit indices greater
919   than BITS_PER_LONG.  The resulting behavior is strange on big-endian
920   platforms though so it is a good idea not to do this.
921  </para>
922 </chapter>
923
924 <chapter id="symbols">
925  <title>Symbols</title>
926
927  <para>
928   Within the kernel proper, the normal linking rules apply
929   (ie. unless a symbol is declared to be file scope with the
930   <type>static</type> keyword, it can be used anywhere in the
931   kernel).  However, for modules, a special exported symbol table is
932   kept which limits the entry points to the kernel proper.  Modules
933   can also export symbols.
934  </para>
935
936  <sect1 id="sym-exportsymbols">
937   <title><function>EXPORT_SYMBOL()</function>
938    <filename class="headerfile">include/linux/export.h</filename></title>
939
940   <para>
941    This is the classic method of exporting a symbol: dynamically
942    loaded modules will be able to use the symbol as normal.
943   </para>
944  </sect1>
945
946  <sect1 id="sym-exportsymbols-gpl">
947   <title><function>EXPORT_SYMBOL_GPL()</function>
948    <filename class="headerfile">include/linux/export.h</filename></title>
949
950   <para>
951    Similar to <function>EXPORT_SYMBOL()</function> except that the
952    symbols exported by <function>EXPORT_SYMBOL_GPL()</function> can
953    only be seen by modules with a
954    <function>MODULE_LICENSE()</function> that specifies a GPL
955    compatible license.  It implies that the function is considered
956    an internal implementation issue, and not really an interface.
957   </para>
958  </sect1>
959 </chapter>
960
961 <chapter id="conventions">
962  <title>Routines and Conventions</title>
963
964  <sect1 id="conventions-doublelinkedlist">
965   <title>Double-linked lists
966    <filename class="headerfile">include/linux/list.h</filename></title>
967
968   <para>
969    There used to be three sets of linked-list routines in the kernel
970    headers, but this one is the winner.  If you don't have some
971    particular pressing need for a single list, it's a good choice.
972   </para>
973
974   <para>
975    In particular, <function>list_for_each_entry</function> is useful.
976   </para>
977  </sect1>
978
979  <sect1 id="convention-returns">
980   <title>Return Conventions</title>
981
982   <para>
983    For code called in user context, it's very common to defy C
984    convention, and return <returnvalue>0</returnvalue> for success,
985    and a negative error number
986    (eg. <returnvalue>-EFAULT</returnvalue>) for failure.  This can be
987    unintuitive at first, but it's fairly widespread in the kernel.
988   </para>
989
990   <para>
991    Using <function>ERR_PTR()</function>
992
993    <filename class="headerfile">include/linux/err.h</filename>; to
994    encode a negative error number into a pointer, and
995    <function>IS_ERR()</function> and <function>PTR_ERR()</function>
996    to get it back out again: avoids a separate pointer parameter for
997    the error number.  Icky, but in a good way.
998   </para>
999  </sect1>
1000
1001  <sect1 id="conventions-borkedcompile">
1002   <title>Breaking Compilation</title>
1003
1004   <para>
1005    Linus and the other developers sometimes change function or
1006    structure names in development kernels; this is not done just to
1007    keep everyone on their toes: it reflects a fundamental change
1008    (eg. can no longer be called with interrupts on, or does extra
1009    checks, or doesn't do checks which were caught before).  Usually
1010    this is accompanied by a fairly complete note to the linux-kernel
1011    mailing list; search the archive.  Simply doing a global replace
1012    on the file usually makes things <emphasis>worse</emphasis>.
1013   </para>
1014  </sect1>
1015
1016  <sect1 id="conventions-initialising">
1017   <title>Initializing structure members</title>
1018
1019   <para>
1020    The preferred method of initializing structures is to use
1021    designated initialisers, as defined by ISO C99, eg:
1022   </para>
1023   <programlisting>
1024static struct block_device_operations opt_fops = {
1025        .open               = opt_open,
1026        .release            = opt_release,
1027        .ioctl              = opt_ioctl,
1028        .check_media_change = opt_media_change,
1029};
1030   </programlisting>
1031   <para>
1032    This makes it easy to grep for, and makes it clear which
1033    structure fields are set.  You should do this because it looks
1034    cool.
1035   </para>
1036  </sect1>
1037
1038  <sect1 id="conventions-gnu-extns">
1039   <title>GNU Extensions</title>
1040
1041   <para>
1042    GNU Extensions are explicitly allowed in the Linux kernel.
1043    Note that some of the more complex ones are not very well
1044    supported, due to lack of general use, but the following are
1045    considered standard (see the GCC info page section "C
1046    Extensions" for more details - Yes, really the info page, the
1047    man page is only a short summary of the stuff in info).
1048   </para>
1049   <itemizedlist>
1050    <listitem>
1051     <para>
1052      Inline functions
1053     </para>
1054    </listitem>
1055    <listitem>
1056     <para>
1057      Statement expressions (ie. the ({ and }) constructs).
1058     </para>
1059    </listitem>
1060    <listitem>
1061     <para>
1062      Declaring attributes of a function / variable / type
1063      (__attribute__)
1064     </para>
1065    </listitem>
1066    <listitem>
1067     <para>
1068      typeof
1069     </para>
1070    </listitem>
1071    <listitem>
1072     <para>
1073      Zero length arrays
1074     </para>
1075    </listitem>
1076    <listitem>
1077     <para>
1078      Macro varargs
1079     </para>
1080    </listitem>
1081    <listitem>
1082     <para>
1083      Arithmetic on void pointers
1084     </para>
1085    </listitem>
1086    <listitem>
1087     <para>
1088      Non-Constant initializers
1089     </para>
1090    </listitem>
1091    <listitem>
1092     <para>
1093      Assembler Instructions (not outside arch/ and include/asm/)
1094     </para>
1095    </listitem>
1096    <listitem>
1097     <para>
1098      Function names as strings (__func__).
1099     </para>
1100    </listitem>
1101    <listitem>
1102     <para>
1103      __builtin_constant_p()
1104     </para>
1105    </listitem>
1106   </itemizedlist>
1107
1108   <para>
1109    Be wary when using long long in the kernel, the code gcc generates for
1110    it is horrible and worse: division and multiplication does not work
1111    on i386 because the GCC runtime functions for it are missing from
1112    the kernel environment.
1113   </para>
1114
1115    <!-- FIXME: add a note about ANSI aliasing cleanness -->
1116  </sect1>
1117
1118  <sect1 id="conventions-cplusplus">
1119   <title>C++</title>
1120   
1121   <para>
1122    Using C++ in the kernel is usually a bad idea, because the
1123    kernel does not provide the necessary runtime environment
1124    and the include files are not tested for it.  It is still
1125    possible, but not recommended.  If you really want to do
1126    this, forget about exceptions at least.
1127   </para>
1128  </sect1>
1129
1130  <sect1 id="conventions-ifdef">
1131   <title>&num;if</title>
1132   
1133   <para>
1134    It is generally considered cleaner to use macros in header files
1135    (or at the top of .c files) to abstract away functions rather than
1136    using `#if' pre-processor statements throughout the source code.
1137   </para>
1138  </sect1>
1139 </chapter>
1140
1141 <chapter id="submitting">
1142  <title>Putting Your Stuff in the Kernel</title>
1143
1144  <para>
1145   In order to get your stuff into shape for official inclusion, or
1146   even to make a neat patch, there's administrative work to be
1147   done:
1148  </para>
1149  <itemizedlist>
1150   <listitem>
1151    <para>
1152     Figure out whose pond you've been pissing in.  Look at the top of
1153     the source files, inside the <filename>MAINTAINERS</filename>
1154     file, and last of all in the <filename>CREDITS</filename> file.
1155     You should coordinate with this person to make sure you're not
1156     duplicating effort, or trying something that's already been
1157     rejected.
1158    </para>
1159
1160    <para>
1161     Make sure you put your name and EMail address at the top of
1162     any files you create or mangle significantly.  This is the
1163     first place people will look when they find a bug, or when
1164     <emphasis>they</emphasis> want to make a change.
1165    </para>
1166   </listitem>
1167
1168   <listitem>
1169    <para>
1170     Usually you want a configuration option for your kernel hack.
1171     Edit <filename>Kconfig</filename> in the appropriate directory.
1172     The Config language is simple to use by cut and paste, and there's
1173     complete documentation in
1174     <filename>Documentation/kbuild/kconfig-language.txt</filename>.
1175    </para>
1176
1177    <para>
1178     In your description of the option, make sure you address both the
1179     expert user and the user who knows nothing about your feature.  Mention
1180     incompatibilities and issues here.  <emphasis> Definitely
1181     </emphasis> end your description with <quote> if in doubt, say N
1182     </quote> (or, occasionally, `Y'); this is for people who have no
1183     idea what you are talking about.
1184    </para>
1185   </listitem>
1186
1187   <listitem>
1188    <para>
1189     Edit the <filename>Makefile</filename>: the CONFIG variables are
1190     exported here so you can usually just add a "obj-$(CONFIG_xxx) +=
1191     xxx.o" line.  The syntax is documented in
1192     <filename>Documentation/kbuild/makefiles.txt</filename>.
1193    </para>
1194   </listitem>
1195
1196   <listitem>
1197    <para>
1198     Put yourself in <filename>CREDITS</filename> if you've done
1199     something noteworthy, usually beyond a single file (your name
1200     should be at the top of the source files anyway).
1201     <filename>MAINTAINERS</filename> means you want to be consulted
1202     when changes are made to a subsystem, and hear about bugs; it
1203     implies a more-than-passing commitment to some part of the code.
1204    </para>
1205   </listitem>
1206   
1207   <listitem>
1208    <para>
1209     Finally, don't forget to read <filename>Documentation/SubmittingPatches</filename>
1210     and possibly <filename>Documentation/SubmittingDrivers</filename>.
1211    </para>
1212   </listitem>
1213  </itemizedlist>
1214 </chapter>
1215
1216 <chapter id="cantrips">
1217  <title>Kernel Cantrips</title>
1218
1219  <para>
1220   Some favorites from browsing the source.  Feel free to add to this
1221   list.
1222  </para>
1223
1224  <para>
1225   <filename>arch/x86/include/asm/delay.h:</filename>
1226  </para>
1227  <programlisting>
1228#define ndelay(n) (__builtin_constant_p(n) ? \
1229        ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
1230        __ndelay(n))
1231  </programlisting>
1232
1233  <para>
1234   <filename>include/linux/fs.h</filename>:
1235  </para>
1236  <programlisting>
1237/*
1238 * Kernel pointers have redundant information, so we can use a
1239 * scheme where we can return either an error code or a dentry
1240 * pointer with the same return value.
1241 *
1242 * This should be a per-architecture thing, to allow different
1243 * error and pointer decisions.
1244 */
1245 #define ERR_PTR(err)    ((void *)((long)(err)))
1246 #define PTR_ERR(ptr)    ((long)(ptr))
1247 #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))
1248</programlisting>
1249
1250  <para>
1251   <filename>arch/x86/include/asm/uaccess_32.h:</filename>
1252  </para>
1253
1254  <programlisting>
1255#define copy_to_user(to,from,n)                         \
1256        (__builtin_constant_p(n) ?                      \
1257         __constant_copy_to_user((to),(from),(n)) :     \
1258         __generic_copy_to_user((to),(from),(n)))
1259  </programlisting>
1260
1261  <para>
1262   <filename>arch/sparc/kernel/head.S:</filename>
1263  </para>
1264
1265  <programlisting>
1266/*
1267 * Sun people can't spell worth damn. "compatability" indeed.
1268 * At least we *know* we can't spell, and use a spell-checker.
1269 */
1270
1271/* Uh, actually Linus it is I who cannot spell. Too much murky
1272 * Sparc assembly will do this to ya.
1273 */
1274C_LABEL(cputypvar):
1275        .asciz "compatibility"
1276
1277/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
1278        .align 4
1279C_LABEL(cputypvar_sun4m):
1280        .asciz "compatible"
1281  </programlisting>
1282
1283  <para>
1284   <filename>arch/sparc/lib/checksum.S:</filename>
1285  </para>
1286
1287  <programlisting>
1288        /* Sun, you just can't beat me, you just can't.  Stop trying,
1289         * give up.  I'm serious, I am going to kick the living shit
1290         * out of you, game over, lights out.
1291         */
1292  </programlisting>
1293 </chapter>
1294
1295 <chapter id="credits">
1296  <title>Thanks</title>
1297
1298  <para>
1299   Thanks to Andi Kleen for the idea, answering my questions, fixing
1300   my mistakes, filling content, etc.  Philipp Rumpf for more spelling
1301   and clarity fixes, and some excellent non-obvious points.  Werner
1302   Almesberger for giving me a great summary of
1303   <function>disable_irq()</function>, and Jes Sorensen and Andrea
1304   Arcangeli added caveats. Michael Elizabeth Chastain for checking
1305   and adding to the Configure section. <!-- Rusty insisted on this
1306   bit; I didn't do it! --> Telsa Gwynne for teaching me DocBook. 
1307  </para>
1308 </chapter>
1309</book>
1310
1311