1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="drmDevelopersGuide"> 6 <bookinfo> 7 <title>Linux DRM Developer's Guide</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Jesse</firstname> 12 <surname>Barnes</surname> 13 <contrib>Initial version</contrib> 14 <affiliation> 15 <orgname>Intel Corporation</orgname> 16 <address> 17 <email>jesse.barnes@intel.com</email> 18 </address> 19 </affiliation> 20 </author> 21 <author> 22 <firstname>Laurent</firstname> 23 <surname>Pinchart</surname> 24 <contrib>Driver internals</contrib> 25 <affiliation> 26 <orgname>Ideas on board SPRL</orgname> 27 <address> 28 <email>laurent.pinchart@ideasonboard.com</email> 29 </address> 30 </affiliation> 31 </author> 32 <author> 33 <firstname>Daniel</firstname> 34 <surname>Vetter</surname> 35 <contrib>Contributions all over the place</contrib> 36 <affiliation> 37 <orgname>Intel Corporation</orgname> 38 <address> 39 <email>daniel.vetter@ffwll.ch</email> 40 </address> 41 </affiliation> 42 </author> 43 </authorgroup> 44 45 <copyright> 46 <year>2008-2009</year> 47 <year>2013-2014</year> 48 <holder>Intel Corporation</holder> 49 </copyright> 50 <copyright> 51 <year>2012</year> 52 <holder>Laurent Pinchart</holder> 53 </copyright> 54 55 <legalnotice> 56 <para> 57 The contents of this file may be used under the terms of the GNU 58 General Public License version 2 (the "GPL") as distributed in 59 the kernel source COPYING file. 60 </para> 61 </legalnotice> 62 63 <revhistory> 64 <!-- Put document revisions here, newest first. --> 65 <revision> 66 <revnumber>1.0</revnumber> 67 <date>2012-07-13</date> 68 <authorinitials>LP</authorinitials> 69 <revremark>Added extensive documentation about driver internals. 70 </revremark> 71 </revision> 72 </revhistory> 73 </bookinfo> 74 75<toc></toc> 76 77<part id="drmCore"> 78 <title>DRM Core</title> 79 <partintro> 80 <para> 81 This first part of the DRM Developer's Guide documents core DRM code, 82 helper libraries for writing drivers and generic userspace interfaces 83 exposed by DRM drivers. 84 </para> 85 </partintro> 86 87 <chapter id="drmIntroduction"> 88 <title>Introduction</title> 89 <para> 90 The Linux DRM layer contains code intended to support the needs 91 of complex graphics devices, usually containing programmable 92 pipelines well suited to 3D graphics acceleration. Graphics 93 drivers in the kernel may make use of DRM functions to make 94 tasks like memory management, interrupt handling and DMA easier, 95 and provide a uniform interface to applications. 96 </para> 97 <para> 98 A note on versions: this guide covers features found in the DRM 99 tree, including the TTM memory manager, output configuration and 100 mode setting, and the new vblank internals, in addition to all 101 the regular features found in current kernels. 102 </para> 103 <para> 104 [Insert diagram of typical DRM stack here] 105 </para> 106 </chapter> 107 108 <!-- Internals --> 109 110 <chapter id="drmInternals"> 111 <title>DRM Internals</title> 112 <para> 113 This chapter documents DRM internals relevant to driver authors 114 and developers working to add support for the latest features to 115 existing drivers. 116 </para> 117 <para> 118 First, we go over some typical driver initialization 119 requirements, like setting up command buffers, creating an 120 initial output configuration, and initializing core services. 121 Subsequent sections cover core internals in more detail, 122 providing implementation notes and examples. 123 </para> 124 <para> 125 The DRM layer provides several services to graphics drivers, 126 many of them driven by the application interfaces it provides 127 through libdrm, the library that wraps most of the DRM ioctls. 128 These include vblank event handling, memory 129 management, output management, framebuffer management, command 130 submission & fencing, suspend/resume support, and DMA 131 services. 132 </para> 133 134 <!-- Internals: driver init --> 135 136 <sect1> 137 <title>Driver Initialization</title> 138 <para> 139 At the core of every DRM driver is a <structname>drm_driver</structname> 140 structure. Drivers typically statically initialize a drm_driver structure, 141 and then pass it to one of the <function>drm_*_init()</function> functions 142 to register it with the DRM subsystem. 143 </para> 144 <para> 145 Newer drivers that no longer require a <structname>drm_bus</structname> 146 structure can alternatively use the low-level device initialization and 147 registration functions such as <function>drm_dev_alloc()</function> and 148 <function>drm_dev_register()</function> directly. 149 </para> 150 <para> 151 The <structname>drm_driver</structname> structure contains static 152 information that describes the driver and features it supports, and 153 pointers to methods that the DRM core will call to implement the DRM API. 154 We will first go through the <structname>drm_driver</structname> static 155 information fields, and will then describe individual operations in 156 details as they get used in later sections. 157 </para> 158 <sect2> 159 <title>Driver Information</title> 160 <sect3> 161 <title>Driver Features</title> 162 <para> 163 Drivers inform the DRM core about their requirements and supported 164 features by setting appropriate flags in the 165 <structfield>driver_features</structfield> field. Since those flags 166 influence the DRM core behaviour since registration time, most of them 167 must be set to registering the <structname>drm_driver</structname> 168 instance. 169 </para> 170 <synopsis>u32 driver_features;</synopsis> 171 <variablelist> 172 <title>Driver Feature Flags</title> 173 <varlistentry> 174 <term>DRIVER_USE_AGP</term> 175 <listitem><para> 176 Driver uses AGP interface, the DRM core will manage AGP resources. 177 </para></listitem> 178 </varlistentry> 179 <varlistentry> 180 <term>DRIVER_REQUIRE_AGP</term> 181 <listitem><para> 182 Driver needs AGP interface to function. AGP initialization failure 183 will become a fatal error. 184 </para></listitem> 185 </varlistentry> 186 <varlistentry> 187 <term>DRIVER_PCI_DMA</term> 188 <listitem><para> 189 Driver is capable of PCI DMA, mapping of PCI DMA buffers to 190 userspace will be enabled. Deprecated. 191 </para></listitem> 192 </varlistentry> 193 <varlistentry> 194 <term>DRIVER_SG</term> 195 <listitem><para> 196 Driver can perform scatter/gather DMA, allocation and mapping of 197 scatter/gather buffers will be enabled. Deprecated. 198 </para></listitem> 199 </varlistentry> 200 <varlistentry> 201 <term>DRIVER_HAVE_DMA</term> 202 <listitem><para> 203 Driver supports DMA, the userspace DMA API will be supported. 204 Deprecated. 205 </para></listitem> 206 </varlistentry> 207 <varlistentry> 208 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term> 209 <listitem><para> 210 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler 211 managed by the DRM Core. The core will support simple IRQ handler 212 installation when the flag is set. The installation process is 213 described in <xref linkend="drm-irq-registration"/>.</para> 214 <para>DRIVER_IRQ_SHARED indicates whether the device & handler 215 support shared IRQs (note that this is required of PCI drivers). 216 </para></listitem> 217 </varlistentry> 218 <varlistentry> 219 <term>DRIVER_GEM</term> 220 <listitem><para> 221 Driver use the GEM memory manager. 222 </para></listitem> 223 </varlistentry> 224 <varlistentry> 225 <term>DRIVER_MODESET</term> 226 <listitem><para> 227 Driver supports mode setting interfaces (KMS). 228 </para></listitem> 229 </varlistentry> 230 <varlistentry> 231 <term>DRIVER_PRIME</term> 232 <listitem><para> 233 Driver implements DRM PRIME buffer sharing. 234 </para></listitem> 235 </varlistentry> 236 <varlistentry> 237 <term>DRIVER_RENDER</term> 238 <listitem><para> 239 Driver supports dedicated render nodes. 240 </para></listitem> 241 </varlistentry> 242 <varlistentry> 243 <term>DRIVER_ATOMIC</term> 244 <listitem><para> 245 Driver supports atomic properties. In this case the driver 246 must implement appropriate obj->atomic_get_property() vfuncs 247 for any modeset objects with driver specific properties. 248 </para></listitem> 249 </varlistentry> 250 </variablelist> 251 </sect3> 252 <sect3> 253 <title>Major, Minor and Patchlevel</title> 254 <synopsis>int major; 255int minor; 256int patchlevel;</synopsis> 257 <para> 258 The DRM core identifies driver versions by a major, minor and patch 259 level triplet. The information is printed to the kernel log at 260 initialization time and passed to userspace through the 261 DRM_IOCTL_VERSION ioctl. 262 </para> 263 <para> 264 The major and minor numbers are also used to verify the requested driver 265 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes 266 between minor versions, applications can call DRM_IOCTL_SET_VERSION to 267 select a specific version of the API. If the requested major isn't equal 268 to the driver major, or the requested minor is larger than the driver 269 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise 270 the driver's set_version() method will be called with the requested 271 version. 272 </para> 273 </sect3> 274 <sect3> 275 <title>Name, Description and Date</title> 276 <synopsis>char *name; 277char *desc; 278char *date;</synopsis> 279 <para> 280 The driver name is printed to the kernel log at initialization time, 281 used for IRQ registration and passed to userspace through 282 DRM_IOCTL_VERSION. 283 </para> 284 <para> 285 The driver description is a purely informative string passed to 286 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by 287 the kernel. 288 </para> 289 <para> 290 The driver date, formatted as YYYYMMDD, is meant to identify the date of 291 the latest modification to the driver. However, as most drivers fail to 292 update it, its value is mostly useless. The DRM core prints it to the 293 kernel log at initialization time and passes it to userspace through the 294 DRM_IOCTL_VERSION ioctl. 295 </para> 296 </sect3> 297 </sect2> 298 <sect2> 299 <title>Device Registration</title> 300 <para> 301 A number of functions are provided to help with device registration. 302 The functions deal with PCI and platform devices, respectively. 303 </para> 304!Edrivers/gpu/drm/drm_pci.c 305!Edrivers/gpu/drm/drm_platform.c 306 <para> 307 New drivers that no longer rely on the services provided by the 308 <structname>drm_bus</structname> structure can call the low-level 309 device registration functions directly. The 310 <function>drm_dev_alloc()</function> function can be used to allocate 311 and initialize a new <structname>drm_device</structname> structure. 312 Drivers will typically want to perform some additional setup on this 313 structure, such as allocating driver-specific data and storing a 314 pointer to it in the DRM device's <structfield>dev_private</structfield> 315 field. Drivers should also set the device's unique name using the 316 <function>drm_dev_set_unique()</function> function. After it has been 317 set up a device can be registered with the DRM subsystem by calling 318 <function>drm_dev_register()</function>. This will cause the device to 319 be exposed to userspace and will call the driver's 320 <structfield>.load()</structfield> implementation. When a device is 321 removed, the DRM device can safely be unregistered and freed by calling 322 <function>drm_dev_unregister()</function> followed by a call to 323 <function>drm_dev_unref()</function>. 324 </para> 325!Edrivers/gpu/drm/drm_drv.c 326 </sect2> 327 <sect2> 328 <title>Driver Load</title> 329 <para> 330 The <methodname>load</methodname> method is the driver and device 331 initialization entry point. The method is responsible for allocating and 332 initializing driver private data, performing resource allocation and 333 mapping (e.g. acquiring 334 clocks, mapping registers or allocating command buffers), initializing 335 the memory manager (<xref linkend="drm-memory-management"/>), installing 336 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up 337 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode 338 setting (<xref linkend="drm-mode-setting"/>) and initial output 339 configuration (<xref linkend="drm-kms-init"/>). 340 </para> 341 <note><para> 342 If compatibility is a concern (e.g. with drivers converted over from 343 User Mode Setting to Kernel Mode Setting), care must be taken to prevent 344 device initialization and control that is incompatible with currently 345 active userspace drivers. For instance, if user level mode setting 346 drivers are in use, it would be problematic to perform output discovery 347 & configuration at load time. Likewise, if user-level drivers 348 unaware of memory management are in use, memory management and command 349 buffer setup may need to be omitted. These requirements are 350 driver-specific, and care needs to be taken to keep both old and new 351 applications and libraries working. 352 </para></note> 353 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis> 354 <para> 355 The method takes two arguments, a pointer to the newly created 356 <structname>drm_device</structname> and flags. The flags are used to 357 pass the <structfield>driver_data</structfield> field of the device id 358 corresponding to the device passed to <function>drm_*_init()</function>. 359 Only PCI devices currently use this, USB and platform DRM drivers have 360 their <methodname>load</methodname> method called with flags to 0. 361 </para> 362 <sect3> 363 <title>Driver Private Data</title> 364 <para> 365 The driver private hangs off the main 366 <structname>drm_device</structname> structure and can be used for 367 tracking various device-specific bits of information, like register 368 offsets, command buffer status, register state for suspend/resume, etc. 369 At load time, a driver may simply allocate one and set 370 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 371 appropriately; it should be freed and 372 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 373 set to NULL when the driver is unloaded. 374 </para> 375 </sect3> 376 <sect3 id="drm-irq-registration"> 377 <title>IRQ Registration</title> 378 <para> 379 The DRM core tries to facilitate IRQ handler registration and 380 unregistration by providing <function>drm_irq_install</function> and 381 <function>drm_irq_uninstall</function> functions. Those functions only 382 support a single interrupt per device, devices that use more than one 383 IRQs need to be handled manually. 384 </para> 385 <sect4> 386 <title>Managed IRQ Registration</title> 387 <para> 388 <function>drm_irq_install</function> starts by calling the 389 <methodname>irq_preinstall</methodname> driver operation. The operation 390 is optional and must make sure that the interrupt will not get fired by 391 clearing all pending interrupt flags or disabling the interrupt. 392 </para> 393 <para> 394 The passed-in IRQ will then be requested by a call to 395 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver 396 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be 397 requested. 398 </para> 399 <para> 400 The IRQ handler function must be provided as the mandatory irq_handler 401 driver operation. It will get passed directly to 402 <function>request_irq</function> and thus has the same prototype as all 403 IRQ handlers. It will get called with a pointer to the DRM device as the 404 second argument. 405 </para> 406 <para> 407 Finally the function calls the optional 408 <methodname>irq_postinstall</methodname> driver operation. The operation 409 usually enables interrupts (excluding the vblank interrupt, which is 410 enabled separately), but drivers may choose to enable/disable interrupts 411 at a different time. 412 </para> 413 <para> 414 <function>drm_irq_uninstall</function> is similarly used to uninstall an 415 IRQ handler. It starts by waking up all processes waiting on a vblank 416 interrupt to make sure they don't hang, and then calls the optional 417 <methodname>irq_uninstall</methodname> driver operation. The operation 418 must disable all hardware interrupts. Finally the function frees the IRQ 419 by calling <function>free_irq</function>. 420 </para> 421 </sect4> 422 <sect4> 423 <title>Manual IRQ Registration</title> 424 <para> 425 Drivers that require multiple interrupt handlers can't use the managed 426 IRQ registration functions. In that case IRQs must be registered and 427 unregistered manually (usually with the <function>request_irq</function> 428 and <function>free_irq</function> functions, or their devm_* equivalent). 429 </para> 430 <para> 431 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ 432 driver feature flag, and must not provide the 433 <methodname>irq_handler</methodname> driver operation. They must set the 434 <structname>drm_device</structname> <structfield>irq_enabled</structfield> 435 field to 1 upon registration of the IRQs, and clear it to 0 after 436 unregistering the IRQs. 437 </para> 438 </sect4> 439 </sect3> 440 <sect3> 441 <title>Memory Manager Initialization</title> 442 <para> 443 Every DRM driver requires a memory manager which must be initialized at 444 load time. DRM currently contains two memory managers, the Translation 445 Table Manager (TTM) and the Graphics Execution Manager (GEM). 446 This document describes the use of the GEM memory manager only. See 447 <xref linkend="drm-memory-management"/> for details. 448 </para> 449 </sect3> 450 <sect3> 451 <title>Miscellaneous Device Configuration</title> 452 <para> 453 Another task that may be necessary for PCI devices during configuration 454 is mapping the video BIOS. On many devices, the VBIOS describes device 455 configuration, LCD panel timings (if any), and contains flags indicating 456 device state. Mapping the BIOS can be done using the pci_map_rom() call, 457 a convenience function that takes care of mapping the actual ROM, 458 whether it has been shadowed into memory (typically at address 0xc0000) 459 or exists on the PCI device in the ROM BAR. Note that after the ROM has 460 been mapped and any necessary information has been extracted, it should 461 be unmapped; on many devices, the ROM address decoder is shared with 462 other BARs, so leaving it mapped could cause undesired behaviour like 463 hangs or memory corruption. 464 <!--!Fdrivers/pci/rom.c pci_map_rom--> 465 </para> 466 </sect3> 467 </sect2> 468 </sect1> 469 470 <!-- Internals: memory management --> 471 472 <sect1 id="drm-memory-management"> 473 <title>Memory management</title> 474 <para> 475 Modern Linux systems require large amount of graphics memory to store 476 frame buffers, textures, vertices and other graphics-related data. Given 477 the very dynamic nature of many of that data, managing graphics memory 478 efficiently is thus crucial for the graphics stack and plays a central 479 role in the DRM infrastructure. 480 </para> 481 <para> 482 The DRM core includes two memory managers, namely Translation Table Maps 483 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory 484 manager to be developed and tried to be a one-size-fits-them all 485 solution. It provides a single userspace API to accommodate the need of 486 all hardware, supporting both Unified Memory Architecture (UMA) devices 487 and devices with dedicated video RAM (i.e. most discrete video cards). 488 This resulted in a large, complex piece of code that turned out to be 489 hard to use for driver development. 490 </para> 491 <para> 492 GEM started as an Intel-sponsored project in reaction to TTM's 493 complexity. Its design philosophy is completely different: instead of 494 providing a solution to every graphics memory-related problems, GEM 495 identified common code between drivers and created a support library to 496 share it. GEM has simpler initialization and execution requirements than 497 TTM, but has no video RAM management capabilities and is thus limited to 498 UMA devices. 499 </para> 500 <sect2> 501 <title>The Translation Table Manager (TTM)</title> 502 <para> 503 TTM design background and information belongs here. 504 </para> 505 <sect3> 506 <title>TTM initialization</title> 507 <warning><para>This section is outdated.</para></warning> 508 <para> 509 Drivers wishing to support TTM must fill out a drm_bo_driver 510 structure. The structure contains several fields with function 511 pointers for initializing the TTM, allocating and freeing memory, 512 waiting for command completion and fence synchronization, and memory 513 migration. See the radeon_ttm.c file for an example of usage. 514 </para> 515 <para> 516 The ttm_global_reference structure is made up of several fields: 517 </para> 518 <programlisting> 519 struct ttm_global_reference { 520 enum ttm_global_types global_type; 521 size_t size; 522 void *object; 523 int (*init) (struct ttm_global_reference *); 524 void (*release) (struct ttm_global_reference *); 525 }; 526 </programlisting> 527 <para> 528 There should be one global reference structure for your memory 529 manager as a whole, and there will be others for each object 530 created by the memory manager at runtime. Your global TTM should 531 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global 532 object should be sizeof(struct ttm_mem_global), and the init and 533 release hooks should point at your driver-specific init and 534 release routines, which probably eventually call 535 ttm_mem_global_init and ttm_mem_global_release, respectively. 536 </para> 537 <para> 538 Once your global TTM accounting structure is set up and initialized 539 by calling ttm_global_item_ref() on it, 540 you need to create a buffer object TTM to 541 provide a pool for buffer object allocation by clients and the 542 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, 543 and its size should be sizeof(struct ttm_bo_global). Again, 544 driver-specific init and release functions may be provided, 545 likely eventually calling ttm_bo_global_init() and 546 ttm_bo_global_release(), respectively. Also, like the previous 547 object, ttm_global_item_ref() is used to create an initial reference 548 count for the TTM, which will call your initialization function. 549 </para> 550 </sect3> 551 </sect2> 552 <sect2 id="drm-gem"> 553 <title>The Graphics Execution Manager (GEM)</title> 554 <para> 555 The GEM design approach has resulted in a memory manager that doesn't 556 provide full coverage of all (or even all common) use cases in its 557 userspace or kernel API. GEM exposes a set of standard memory-related 558 operations to userspace and a set of helper functions to drivers, and let 559 drivers implement hardware-specific operations with their own private API. 560 </para> 561 <para> 562 The GEM userspace API is described in the 563 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics 564 Execution Manager</citetitle></ulink> article on LWN. While slightly 565 outdated, the document provides a good overview of the GEM API principles. 566 Buffer allocation and read and write operations, described as part of the 567 common GEM API, are currently implemented using driver-specific ioctls. 568 </para> 569 <para> 570 GEM is data-agnostic. It manages abstract buffer objects without knowing 571 what individual buffers contain. APIs that require knowledge of buffer 572 contents or purpose, such as buffer allocation or synchronization 573 primitives, are thus outside of the scope of GEM and must be implemented 574 using driver-specific ioctls. 575 </para> 576 <para> 577 On a fundamental level, GEM involves several operations: 578 <itemizedlist> 579 <listitem>Memory allocation and freeing</listitem> 580 <listitem>Command execution</listitem> 581 <listitem>Aperture management at command execution time</listitem> 582 </itemizedlist> 583 Buffer object allocation is relatively straightforward and largely 584 provided by Linux's shmem layer, which provides memory to back each 585 object. 586 </para> 587 <para> 588 Device-specific operations, such as command execution, pinning, buffer 589 read & write, mapping, and domain ownership transfers are left to 590 driver-specific ioctls. 591 </para> 592 <sect3> 593 <title>GEM Initialization</title> 594 <para> 595 Drivers that use GEM must set the DRIVER_GEM bit in the struct 596 <structname>drm_driver</structname> 597 <structfield>driver_features</structfield> field. The DRM core will 598 then automatically initialize the GEM core before calling the 599 <methodname>load</methodname> operation. Behind the scene, this will 600 create a DRM Memory Manager object which provides an address space 601 pool for object allocation. 602 </para> 603 <para> 604 In a KMS configuration, drivers need to allocate and initialize a 605 command ring buffer following core GEM initialization if required by 606 the hardware. UMA devices usually have what is called a "stolen" 607 memory region, which provides space for the initial framebuffer and 608 large, contiguous memory regions required by the device. This space is 609 typically not managed by GEM, and must be initialized separately into 610 its own DRM MM object. 611 </para> 612 </sect3> 613 <sect3> 614 <title>GEM Objects Creation</title> 615 <para> 616 GEM splits creation of GEM objects and allocation of the memory that 617 backs them in two distinct operations. 618 </para> 619 <para> 620 GEM objects are represented by an instance of struct 621 <structname>drm_gem_object</structname>. Drivers usually need to extend 622 GEM objects with private information and thus create a driver-specific 623 GEM object structure type that embeds an instance of struct 624 <structname>drm_gem_object</structname>. 625 </para> 626 <para> 627 To create a GEM object, a driver allocates memory for an instance of its 628 specific GEM object type and initializes the embedded struct 629 <structname>drm_gem_object</structname> with a call to 630 <function>drm_gem_object_init</function>. The function takes a pointer to 631 the DRM device, a pointer to the GEM object and the buffer object size 632 in bytes. 633 </para> 634 <para> 635 GEM uses shmem to allocate anonymous pageable memory. 636 <function>drm_gem_object_init</function> will create an shmfs file of 637 the requested size and store it into the struct 638 <structname>drm_gem_object</structname> <structfield>filp</structfield> 639 field. The memory is used as either main storage for the object when the 640 graphics hardware uses system memory directly or as a backing store 641 otherwise. 642 </para> 643 <para> 644 Drivers are responsible for the actual physical pages allocation by 645 calling <function>shmem_read_mapping_page_gfp</function> for each page. 646 Note that they can decide to allocate pages when initializing the GEM 647 object, or to delay allocation until the memory is needed (for instance 648 when a page fault occurs as a result of a userspace memory access or 649 when the driver needs to start a DMA transfer involving the memory). 650 </para> 651 <para> 652 Anonymous pageable memory allocation is not always desired, for instance 653 when the hardware requires physically contiguous system memory as is 654 often the case in embedded devices. Drivers can create GEM objects with 655 no shmfs backing (called private GEM objects) by initializing them with 656 a call to <function>drm_gem_private_object_init</function> instead of 657 <function>drm_gem_object_init</function>. Storage for private GEM 658 objects must be managed by drivers. 659 </para> 660 <para> 661 Drivers that do not need to extend GEM objects with private information 662 can call the <function>drm_gem_object_alloc</function> function to 663 allocate and initialize a struct <structname>drm_gem_object</structname> 664 instance. The GEM core will call the optional driver 665 <methodname>gem_init_object</methodname> operation after initializing 666 the GEM object with <function>drm_gem_object_init</function>. 667 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis> 668 </para> 669 <para> 670 No alloc-and-init function exists for private GEM objects. 671 </para> 672 </sect3> 673 <sect3> 674 <title>GEM Objects Lifetime</title> 675 <para> 676 All GEM objects are reference-counted by the GEM core. References can be 677 acquired and release by <function>calling drm_gem_object_reference</function> 678 and <function>drm_gem_object_unreference</function> respectively. The 679 caller must hold the <structname>drm_device</structname> 680 <structfield>struct_mutex</structfield> lock. As a convenience, GEM 681 provides the <function>drm_gem_object_reference_unlocked</function> and 682 <function>drm_gem_object_unreference_unlocked</function> functions that 683 can be called without holding the lock. 684 </para> 685 <para> 686 When the last reference to a GEM object is released the GEM core calls 687 the <structname>drm_driver</structname> 688 <methodname>gem_free_object</methodname> operation. That operation is 689 mandatory for GEM-enabled drivers and must free the GEM object and all 690 associated resources. 691 </para> 692 <para> 693 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis> 694 Drivers are responsible for freeing all GEM object resources, including 695 the resources created by the GEM core. If an mmap offset has been 696 created for the object (in which case 697 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield> 698 is not NULL) it must be freed by a call to 699 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store 700 must be released by calling <function>drm_gem_object_release</function> 701 (that function can safely be called if no shmfs backing store has been 702 created). 703 </para> 704 </sect3> 705 <sect3> 706 <title>GEM Objects Naming</title> 707 <para> 708 Communication between userspace and the kernel refers to GEM objects 709 using local handles, global names or, more recently, file descriptors. 710 All of those are 32-bit integer values; the usual Linux kernel limits 711 apply to the file descriptors. 712 </para> 713 <para> 714 GEM handles are local to a DRM file. Applications get a handle to a GEM 715 object through a driver-specific ioctl, and can use that handle to refer 716 to the GEM object in other standard or driver-specific ioctls. Closing a 717 DRM file handle frees all its GEM handles and dereferences the 718 associated GEM objects. 719 </para> 720 <para> 721 To create a handle for a GEM object drivers call 722 <function>drm_gem_handle_create</function>. The function takes a pointer 723 to the DRM file and the GEM object and returns a locally unique handle. 724 When the handle is no longer needed drivers delete it with a call to 725 <function>drm_gem_handle_delete</function>. Finally the GEM object 726 associated with a handle can be retrieved by a call to 727 <function>drm_gem_object_lookup</function>. 728 </para> 729 <para> 730 Handles don't take ownership of GEM objects, they only take a reference 731 to the object that will be dropped when the handle is destroyed. To 732 avoid leaking GEM objects, drivers must make sure they drop the 733 reference(s) they own (such as the initial reference taken at object 734 creation time) as appropriate, without any special consideration for the 735 handle. For example, in the particular case of combined GEM object and 736 handle creation in the implementation of the 737 <methodname>dumb_create</methodname> operation, drivers must drop the 738 initial reference to the GEM object before returning the handle. 739 </para> 740 <para> 741 GEM names are similar in purpose to handles but are not local to DRM 742 files. They can be passed between processes to reference a GEM object 743 globally. Names can't be used directly to refer to objects in the DRM 744 API, applications must convert handles to names and names to handles 745 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls 746 respectively. The conversion is handled by the DRM core without any 747 driver-specific support. 748 </para> 749 <para> 750 GEM also supports buffer sharing with dma-buf file descriptors through 751 PRIME. GEM-based drivers must use the provided helpers functions to 752 implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />. 753 Since sharing file descriptors is inherently more secure than the 754 easily guessable and global GEM names it is the preferred buffer 755 sharing mechanism. Sharing buffers through GEM names is only supported 756 for legacy userspace. Furthermore PRIME also allows cross-device 757 buffer sharing since it is based on dma-bufs. 758 </para> 759 </sect3> 760 <sect3 id="drm-gem-objects-mapping"> 761 <title>GEM Objects Mapping</title> 762 <para> 763 Because mapping operations are fairly heavyweight GEM favours 764 read/write-like access to buffers, implemented through driver-specific 765 ioctls, over mapping buffers to userspace. However, when random access 766 to the buffer is needed (to perform software rendering for instance), 767 direct access to the object can be more efficient. 768 </para> 769 <para> 770 The mmap system call can't be used directly to map GEM objects, as they 771 don't have their own file handle. Two alternative methods currently 772 co-exist to map GEM objects to userspace. The first method uses a 773 driver-specific ioctl to perform the mapping operation, calling 774 <function>do_mmap</function> under the hood. This is often considered 775 dubious, seems to be discouraged for new GEM-enabled drivers, and will 776 thus not be described here. 777 </para> 778 <para> 779 The second method uses the mmap system call on the DRM file handle. 780 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd, 781 off_t offset);</synopsis> 782 DRM identifies the GEM object to be mapped by a fake offset passed 783 through the mmap offset argument. Prior to being mapped, a GEM object 784 must thus be associated with a fake offset. To do so, drivers must call 785 <function>drm_gem_create_mmap_offset</function> on the object. The 786 function allocates a fake offset range from a pool and stores the 787 offset divided by PAGE_SIZE in 788 <literal>obj->map_list.hash.key</literal>. Care must be taken not to 789 call <function>drm_gem_create_mmap_offset</function> if a fake offset 790 has already been allocated for the object. This can be tested by 791 <literal>obj->map_list.map</literal> being non-NULL. 792 </para> 793 <para> 794 Once allocated, the fake offset value 795 (<literal>obj->map_list.hash.key << PAGE_SHIFT</literal>) 796 must be passed to the application in a driver-specific way and can then 797 be used as the mmap offset argument. 798 </para> 799 <para> 800 The GEM core provides a helper method <function>drm_gem_mmap</function> 801 to handle object mapping. The method can be set directly as the mmap 802 file operation handler. It will look up the GEM object based on the 803 offset value and set the VMA operations to the 804 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 805 field. Note that <function>drm_gem_mmap</function> doesn't map memory to 806 userspace, but relies on the driver-provided fault handler to map pages 807 individually. 808 </para> 809 <para> 810 To use <function>drm_gem_mmap</function>, drivers must fill the struct 811 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 812 field with a pointer to VM operations. 813 </para> 814 <para> 815 <synopsis>struct vm_operations_struct *gem_vm_ops 816 817 struct vm_operations_struct { 818 void (*open)(struct vm_area_struct * area); 819 void (*close)(struct vm_area_struct * area); 820 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 821 };</synopsis> 822 </para> 823 <para> 824 The <methodname>open</methodname> and <methodname>close</methodname> 825 operations must update the GEM object reference count. Drivers can use 826 the <function>drm_gem_vm_open</function> and 827 <function>drm_gem_vm_close</function> helper functions directly as open 828 and close handlers. 829 </para> 830 <para> 831 The fault operation handler is responsible for mapping individual pages 832 to userspace when a page fault occurs. Depending on the memory 833 allocation scheme, drivers can allocate pages at fault time, or can 834 decide to allocate memory for the GEM object at the time the object is 835 created. 836 </para> 837 <para> 838 Drivers that want to map the GEM object upfront instead of handling page 839 faults can implement their own mmap file operation handler. 840 </para> 841 </sect3> 842 <sect3> 843 <title>Memory Coherency</title> 844 <para> 845 When mapped to the device or used in a command buffer, backing pages 846 for an object are flushed to memory and marked write combined so as to 847 be coherent with the GPU. Likewise, if the CPU accesses an object 848 after the GPU has finished rendering to the object, then the object 849 must be made coherent with the CPU's view of memory, usually involving 850 GPU cache flushing of various kinds. This core CPU<->GPU 851 coherency management is provided by a device-specific ioctl, which 852 evaluates an object's current domain and performs any necessary 853 flushing or synchronization to put the object into the desired 854 coherency domain (note that the object may be busy, i.e. an active 855 render target; in that case, setting the domain blocks the client and 856 waits for rendering to complete before performing any necessary 857 flushing operations). 858 </para> 859 </sect3> 860 <sect3> 861 <title>Command Execution</title> 862 <para> 863 Perhaps the most important GEM function for GPU devices is providing a 864 command execution interface to clients. Client programs construct 865 command buffers containing references to previously allocated memory 866 objects, and then submit them to GEM. At that point, GEM takes care to 867 bind all the objects into the GTT, execute the buffer, and provide 868 necessary synchronization between clients accessing the same buffers. 869 This often involves evicting some objects from the GTT and re-binding 870 others (a fairly expensive operation), and providing relocation 871 support which hides fixed GTT offsets from clients. Clients must take 872 care not to submit command buffers that reference more objects than 873 can fit in the GTT; otherwise, GEM will reject them and no rendering 874 will occur. Similarly, if several objects in the buffer require fence 875 registers to be allocated for correct rendering (e.g. 2D blits on 876 pre-965 chips), care must be taken not to require more fence registers 877 than are available to the client. Such resource management should be 878 abstracted from the client in libdrm. 879 </para> 880 </sect3> 881 <sect3> 882 <title>GEM Function Reference</title> 883!Edrivers/gpu/drm/drm_gem.c 884 </sect3> 885 </sect2> 886 <sect2> 887 <title>VMA Offset Manager</title> 888!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager 889!Edrivers/gpu/drm/drm_vma_manager.c 890!Iinclude/drm/drm_vma_manager.h 891 </sect2> 892 <sect2 id="drm-prime-support"> 893 <title>PRIME Buffer Sharing</title> 894 <para> 895 PRIME is the cross device buffer sharing framework in drm, originally 896 created for the OPTIMUS range of multi-gpu platforms. To userspace 897 PRIME buffers are dma-buf based file descriptors. 898 </para> 899 <sect3> 900 <title>Overview and Driver Interface</title> 901 <para> 902 Similar to GEM global names, PRIME file descriptors are 903 also used to share buffer objects across processes. They offer 904 additional security: as file descriptors must be explicitly sent over 905 UNIX domain sockets to be shared between applications, they can't be 906 guessed like the globally unique GEM names. 907 </para> 908 <para> 909 Drivers that support the PRIME 910 API must set the DRIVER_PRIME bit in the struct 911 <structname>drm_driver</structname> 912 <structfield>driver_features</structfield> field, and implement the 913 <methodname>prime_handle_to_fd</methodname> and 914 <methodname>prime_fd_to_handle</methodname> operations. 915 </para> 916 <para> 917 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev, 918 struct drm_file *file_priv, uint32_t handle, 919 uint32_t flags, int *prime_fd); 920int (*prime_fd_to_handle)(struct drm_device *dev, 921 struct drm_file *file_priv, int prime_fd, 922 uint32_t *handle);</synopsis> 923 Those two operations convert a handle to a PRIME file descriptor and 924 vice versa. Drivers must use the kernel dma-buf buffer sharing framework 925 to manage the PRIME file descriptors. Similar to the mode setting 926 API PRIME is agnostic to the underlying buffer object manager, as 927 long as handles are 32bit unsigned integers. 928 </para> 929 <para> 930 While non-GEM drivers must implement the operations themselves, GEM 931 drivers must use the <function>drm_gem_prime_handle_to_fd</function> 932 and <function>drm_gem_prime_fd_to_handle</function> helper functions. 933 Those helpers rely on the driver 934 <methodname>gem_prime_export</methodname> and 935 <methodname>gem_prime_import</methodname> operations to create a dma-buf 936 instance from a GEM object (dma-buf exporter role) and to create a GEM 937 object from a dma-buf instance (dma-buf importer role). 938 </para> 939 <para> 940 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev, 941 struct drm_gem_object *obj, 942 int flags); 943struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev, 944 struct dma_buf *dma_buf);</synopsis> 945 These two operations are mandatory for GEM drivers that support 946 PRIME. 947 </para> 948 </sect3> 949 <sect3> 950 <title>PRIME Helper Functions</title> 951!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers 952 </sect3> 953 </sect2> 954 <sect2> 955 <title>PRIME Function References</title> 956!Edrivers/gpu/drm/drm_prime.c 957 </sect2> 958 <sect2> 959 <title>DRM MM Range Allocator</title> 960 <sect3> 961 <title>Overview</title> 962!Pdrivers/gpu/drm/drm_mm.c Overview 963 </sect3> 964 <sect3> 965 <title>LRU Scan/Eviction Support</title> 966!Pdrivers/gpu/drm/drm_mm.c lru scan roaster 967 </sect3> 968 </sect2> 969 <sect2> 970 <title>DRM MM Range Allocator Function References</title> 971!Edrivers/gpu/drm/drm_mm.c 972!Iinclude/drm/drm_mm.h 973 </sect2> 974 <sect2> 975 <title>CMA Helper Functions Reference</title> 976!Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers 977!Edrivers/gpu/drm/drm_gem_cma_helper.c 978!Iinclude/drm/drm_gem_cma_helper.h 979 </sect2> 980 </sect1> 981 982 <!-- Internals: mode setting --> 983 984 <sect1 id="drm-mode-setting"> 985 <title>Mode Setting</title> 986 <para> 987 Drivers must initialize the mode setting core by calling 988 <function>drm_mode_config_init</function> on the DRM device. The function 989 initializes the <structname>drm_device</structname> 990 <structfield>mode_config</structfield> field and never fails. Once done, 991 mode configuration must be setup by initializing the following fields. 992 </para> 993 <itemizedlist> 994 <listitem> 995 <synopsis>int min_width, min_height; 996int max_width, max_height;</synopsis> 997 <para> 998 Minimum and maximum width and height of the frame buffers in pixel 999 units. 1000 </para> 1001 </listitem> 1002 <listitem> 1003 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis> 1004 <para>Mode setting functions.</para> 1005 </listitem> 1006 </itemizedlist> 1007 <sect2> 1008 <title>Display Modes Function Reference</title> 1009!Iinclude/drm/drm_modes.h 1010!Edrivers/gpu/drm/drm_modes.c 1011 </sect2> 1012 <sect2> 1013 <title>Atomic Mode Setting Function Reference</title> 1014!Edrivers/gpu/drm/drm_atomic.c 1015 </sect2> 1016 <sect2> 1017 <title>Frame Buffer Creation</title> 1018 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev, 1019 struct drm_file *file_priv, 1020 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis> 1021 <para> 1022 Frame buffers are abstract memory objects that provide a source of 1023 pixels to scanout to a CRTC. Applications explicitly request the 1024 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and 1025 receive an opaque handle that can be passed to the KMS CRTC control, 1026 plane configuration and page flip functions. 1027 </para> 1028 <para> 1029 Frame buffers rely on the underneath memory manager for low-level memory 1030 operations. When creating a frame buffer applications pass a memory 1031 handle (or a list of memory handles for multi-planar formats) through 1032 the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using 1033 GEM as their userspace buffer management interface this would be a GEM 1034 handle. Drivers are however free to use their own backing storage object 1035 handles, e.g. vmwgfx directly exposes special TTM handles to userspace 1036 and so expects TTM handles in the create ioctl and not GEM handles. 1037 </para> 1038 <para> 1039 Drivers must first validate the requested frame buffer parameters passed 1040 through the mode_cmd argument. In particular this is where invalid 1041 sizes, pixel formats or pitches can be caught. 1042 </para> 1043 <para> 1044 If the parameters are deemed valid, drivers then create, initialize and 1045 return an instance of struct <structname>drm_framebuffer</structname>. 1046 If desired the instance can be embedded in a larger driver-specific 1047 structure. Drivers must fill its <structfield>width</structfield>, 1048 <structfield>height</structfield>, <structfield>pitches</structfield>, 1049 <structfield>offsets</structfield>, <structfield>depth</structfield>, 1050 <structfield>bits_per_pixel</structfield> and 1051 <structfield>pixel_format</structfield> fields from the values passed 1052 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They 1053 should call the <function>drm_helper_mode_fill_fb_struct</function> 1054 helper function to do so. 1055 </para> 1056 1057 <para> 1058 The initialization of the new framebuffer instance is finalized with a 1059 call to <function>drm_framebuffer_init</function> which takes a pointer 1060 to DRM frame buffer operations (struct 1061 <structname>drm_framebuffer_funcs</structname>). Note that this function 1062 publishes the framebuffer and so from this point on it can be accessed 1063 concurrently from other threads. Hence it must be the last step in the 1064 driver's framebuffer initialization sequence. Frame buffer operations 1065 are 1066 <itemizedlist> 1067 <listitem> 1068 <synopsis>int (*create_handle)(struct drm_framebuffer *fb, 1069 struct drm_file *file_priv, unsigned int *handle);</synopsis> 1070 <para> 1071 Create a handle to the frame buffer underlying memory object. If 1072 the frame buffer uses a multi-plane format, the handle will 1073 reference the memory object associated with the first plane. 1074 </para> 1075 <para> 1076 Drivers call <function>drm_gem_handle_create</function> to create 1077 the handle. 1078 </para> 1079 </listitem> 1080 <listitem> 1081 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis> 1082 <para> 1083 Destroy the frame buffer object and frees all associated 1084 resources. Drivers must call 1085 <function>drm_framebuffer_cleanup</function> to free resources 1086 allocated by the DRM core for the frame buffer object, and must 1087 make sure to unreference all memory objects associated with the 1088 frame buffer. Handles created by the 1089 <methodname>create_handle</methodname> operation are released by 1090 the DRM core. 1091 </para> 1092 </listitem> 1093 <listitem> 1094 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer, 1095 struct drm_file *file_priv, unsigned flags, unsigned color, 1096 struct drm_clip_rect *clips, unsigned num_clips);</synopsis> 1097 <para> 1098 This optional operation notifies the driver that a region of the 1099 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB 1100 ioctl call. 1101 </para> 1102 </listitem> 1103 </itemizedlist> 1104 </para> 1105 <para> 1106 The lifetime of a drm framebuffer is controlled with a reference count, 1107 drivers can grab additional references with 1108 <function>drm_framebuffer_reference</function>and drop them 1109 again with <function>drm_framebuffer_unreference</function>. For 1110 driver-private framebuffers for which the last reference is never 1111 dropped (e.g. for the fbdev framebuffer when the struct 1112 <structname>drm_framebuffer</structname> is embedded into the fbdev 1113 helper struct) drivers can manually clean up a framebuffer at module 1114 unload time with 1115 <function>drm_framebuffer_unregister_private</function>. 1116 </para> 1117 </sect2> 1118 <sect2> 1119 <title>Dumb Buffer Objects</title> 1120 <para> 1121 The KMS API doesn't standardize backing storage object creation and 1122 leaves it to driver-specific ioctls. Furthermore actually creating a 1123 buffer object even for GEM-based drivers is done through a 1124 driver-specific ioctl - GEM only has a common userspace interface for 1125 sharing and destroying objects. While not an issue for full-fledged 1126 graphics stacks that include device-specific userspace components (in 1127 libdrm for instance), this limit makes DRM-based early boot graphics 1128 unnecessarily complex. 1129 </para> 1130 <para> 1131 Dumb objects partly alleviate the problem by providing a standard 1132 API to create dumb buffers suitable for scanout, which can then be used 1133 to create KMS frame buffers. 1134 </para> 1135 <para> 1136 To support dumb objects drivers must implement the 1137 <methodname>dumb_create</methodname>, 1138 <methodname>dumb_destroy</methodname> and 1139 <methodname>dumb_map_offset</methodname> operations. 1140 </para> 1141 <itemizedlist> 1142 <listitem> 1143 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev, 1144 struct drm_mode_create_dumb *args);</synopsis> 1145 <para> 1146 The <methodname>dumb_create</methodname> operation creates a driver 1147 object (GEM or TTM handle) suitable for scanout based on the 1148 width, height and depth from the struct 1149 <structname>drm_mode_create_dumb</structname> argument. It fills the 1150 argument's <structfield>handle</structfield>, 1151 <structfield>pitch</structfield> and <structfield>size</structfield> 1152 fields with a handle for the newly created object and its line 1153 pitch and size in bytes. 1154 </para> 1155 </listitem> 1156 <listitem> 1157 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev, 1158 uint32_t handle);</synopsis> 1159 <para> 1160 The <methodname>dumb_destroy</methodname> operation destroys a dumb 1161 object created by <methodname>dumb_create</methodname>. 1162 </para> 1163 </listitem> 1164 <listitem> 1165 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev, 1166 uint32_t handle, uint64_t *offset);</synopsis> 1167 <para> 1168 The <methodname>dumb_map_offset</methodname> operation associates an 1169 mmap fake offset with the object given by the handle and returns 1170 it. Drivers must use the 1171 <function>drm_gem_create_mmap_offset</function> function to 1172 associate the fake offset as described in 1173 <xref linkend="drm-gem-objects-mapping"/>. 1174 </para> 1175 </listitem> 1176 </itemizedlist> 1177 <para> 1178 Note that dumb objects may not be used for gpu acceleration, as has been 1179 attempted on some ARM embedded platforms. Such drivers really must have 1180 a hardware-specific ioctl to allocate suitable buffer objects. 1181 </para> 1182 </sect2> 1183 <sect2> 1184 <title>Output Polling</title> 1185 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis> 1186 <para> 1187 This operation notifies the driver that the status of one or more 1188 connectors has changed. Drivers that use the fb helper can just call the 1189 <function>drm_fb_helper_hotplug_event</function> function to handle this 1190 operation. 1191 </para> 1192 </sect2> 1193 <sect2> 1194 <title>Locking</title> 1195 <para> 1196 Beside some lookup structures with their own locking (which is hidden 1197 behind the interface functions) most of the modeset state is protected 1198 by the <code>dev-<mode_config.lock</code> mutex and additionally 1199 per-crtc locks to allow cursor updates, pageflips and similar operations 1200 to occur concurrently with background tasks like output detection. 1201 Operations which cross domains like a full modeset always grab all 1202 locks. Drivers there need to protect resources shared between crtcs with 1203 additional locking. They also need to be careful to always grab the 1204 relevant crtc locks if a modset functions touches crtc state, e.g. for 1205 load detection (which does only grab the <code>mode_config.lock</code> 1206 to allow concurrent screen updates on live crtcs). 1207 </para> 1208 </sect2> 1209 </sect1> 1210 1211 <!-- Internals: kms initialization and cleanup --> 1212 1213 <sect1 id="drm-kms-init"> 1214 <title>KMS Initialization and Cleanup</title> 1215 <para> 1216 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders 1217 and connectors. KMS drivers must thus create and initialize all those 1218 objects at load time after initializing mode setting. 1219 </para> 1220 <sect2> 1221 <title>CRTCs (struct <structname>drm_crtc</structname>)</title> 1222 <para> 1223 A CRTC is an abstraction representing a part of the chip that contains a 1224 pointer to a scanout buffer. Therefore, the number of CRTCs available 1225 determines how many independent scanout buffers can be active at any 1226 given time. The CRTC structure contains several fields to support this: 1227 a pointer to some video memory (abstracted as a frame buffer object), a 1228 display mode, and an (x, y) offset into the video memory to support 1229 panning or configurations where one piece of video memory spans multiple 1230 CRTCs. 1231 </para> 1232 <sect3> 1233 <title>CRTC Initialization</title> 1234 <para> 1235 A KMS device must create and register at least one struct 1236 <structname>drm_crtc</structname> instance. The instance is allocated 1237 and zeroed by the driver, possibly as part of a larger structure, and 1238 registered with a call to <function>drm_crtc_init</function> with a 1239 pointer to CRTC functions. 1240 </para> 1241 </sect3> 1242 <sect3 id="drm-kms-crtcops"> 1243 <title>CRTC Operations</title> 1244 <sect4> 1245 <title>Set Configuration</title> 1246 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis> 1247 <para> 1248 Apply a new CRTC configuration to the device. The configuration 1249 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in 1250 the frame buffer, a display mode and an array of connectors to drive 1251 with the CRTC if possible. 1252 </para> 1253 <para> 1254 If the frame buffer specified in the configuration is NULL, the driver 1255 must detach all encoders connected to the CRTC and all connectors 1256 attached to those encoders and disable them. 1257 </para> 1258 <para> 1259 This operation is called with the mode config lock held. 1260 </para> 1261 <note><para> 1262 Note that the drm core has no notion of restoring the mode setting 1263 state after resume, since all resume handling is in the full 1264 responsibility of the driver. The common mode setting helper library 1265 though provides a helper which can be used for this: 1266 <function>drm_helper_resume_force_mode</function>. 1267 </para></note> 1268 </sect4> 1269 <sect4> 1270 <title>Page Flipping</title> 1271 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb, 1272 struct drm_pending_vblank_event *event);</synopsis> 1273 <para> 1274 Schedule a page flip to the given frame buffer for the CRTC. This 1275 operation is called with the mode config mutex held. 1276 </para> 1277 <para> 1278 Page flipping is a synchronization mechanism that replaces the frame 1279 buffer being scanned out by the CRTC with a new frame buffer during 1280 vertical blanking, avoiding tearing. When an application requests a page 1281 flip the DRM core verifies that the new frame buffer is large enough to 1282 be scanned out by the CRTC in the currently configured mode and then 1283 calls the CRTC <methodname>page_flip</methodname> operation with a 1284 pointer to the new frame buffer. 1285 </para> 1286 <para> 1287 The <methodname>page_flip</methodname> operation schedules a page flip. 1288 Once any pending rendering targeting the new frame buffer has 1289 completed, the CRTC will be reprogrammed to display that frame buffer 1290 after the next vertical refresh. The operation must return immediately 1291 without waiting for rendering or page flip to complete and must block 1292 any new rendering to the frame buffer until the page flip completes. 1293 </para> 1294 <para> 1295 If a page flip can be successfully scheduled the driver must set the 1296 <code>drm_crtc->fb</code> field to the new framebuffer pointed to 1297 by <code>fb</code>. This is important so that the reference counting 1298 on framebuffers stays balanced. 1299 </para> 1300 <para> 1301 If a page flip is already pending, the 1302 <methodname>page_flip</methodname> operation must return 1303 -<errorname>EBUSY</errorname>. 1304 </para> 1305 <para> 1306 To synchronize page flip to vertical blanking the driver will likely 1307 need to enable vertical blanking interrupts. It should call 1308 <function>drm_vblank_get</function> for that purpose, and call 1309 <function>drm_vblank_put</function> after the page flip completes. 1310 </para> 1311 <para> 1312 If the application has requested to be notified when page flip completes 1313 the <methodname>page_flip</methodname> operation will be called with a 1314 non-NULL <parameter>event</parameter> argument pointing to a 1315 <structname>drm_pending_vblank_event</structname> instance. Upon page 1316 flip completion the driver must call <methodname>drm_send_vblank_event</methodname> 1317 to fill in the event and send to wake up any waiting processes. 1318 This can be performed with 1319 <programlisting><![CDATA[ 1320 spin_lock_irqsave(&dev->event_lock, flags); 1321 ... 1322 drm_send_vblank_event(dev, pipe, event); 1323 spin_unlock_irqrestore(&dev->event_lock, flags); 1324 ]]></programlisting> 1325 </para> 1326 <note><para> 1327 FIXME: Could drivers that don't need to wait for rendering to complete 1328 just add the event to <literal>dev->vblank_event_list</literal> and 1329 let the DRM core handle everything, as for "normal" vertical blanking 1330 events? 1331 </para></note> 1332 <para> 1333 While waiting for the page flip to complete, the 1334 <literal>event->base.link</literal> list head can be used freely by 1335 the driver to store the pending event in a driver-specific list. 1336 </para> 1337 <para> 1338 If the file handle is closed before the event is signaled, drivers must 1339 take care to destroy the event in their 1340 <methodname>preclose</methodname> operation (and, if needed, call 1341 <function>drm_vblank_put</function>). 1342 </para> 1343 </sect4> 1344 <sect4> 1345 <title>Miscellaneous</title> 1346 <itemizedlist> 1347 <listitem> 1348 <synopsis>void (*set_property)(struct drm_crtc *crtc, 1349 struct drm_property *property, uint64_t value);</synopsis> 1350 <para> 1351 Set the value of the given CRTC property to 1352 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1353 for more information about properties. 1354 </para> 1355 </listitem> 1356 <listitem> 1357 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 1358 uint32_t start, uint32_t size);</synopsis> 1359 <para> 1360 Apply a gamma table to the device. The operation is optional. 1361 </para> 1362 </listitem> 1363 <listitem> 1364 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis> 1365 <para> 1366 Destroy the CRTC when not needed anymore. See 1367 <xref linkend="drm-kms-init"/>. 1368 </para> 1369 </listitem> 1370 </itemizedlist> 1371 </sect4> 1372 </sect3> 1373 </sect2> 1374 <sect2> 1375 <title>Planes (struct <structname>drm_plane</structname>)</title> 1376 <para> 1377 A plane represents an image source that can be blended with or overlayed 1378 on top of a CRTC during the scanout process. Planes are associated with 1379 a frame buffer to crop a portion of the image memory (source) and 1380 optionally scale it to a destination size. The result is then blended 1381 with or overlayed on top of a CRTC. 1382 </para> 1383 <para> 1384 The DRM core recognizes three types of planes: 1385 <itemizedlist> 1386 <listitem> 1387 DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary 1388 planes are the planes operated upon by CRTC modesetting and flipping 1389 operations described in <xref linkend="drm-kms-crtcops"/>. 1390 </listitem> 1391 <listitem> 1392 DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor 1393 planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and 1394 DRM_IOCTL_MODE_CURSOR2 ioctls. 1395 </listitem> 1396 <listitem> 1397 DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes. 1398 Some drivers refer to these types of planes as "sprites" internally. 1399 </listitem> 1400 </itemizedlist> 1401 For compatibility with legacy userspace, only overlay planes are made 1402 available to userspace by default. Userspace clients may set the 1403 DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that 1404 they wish to receive a universal plane list containing all plane types. 1405 </para> 1406 <sect3> 1407 <title>Plane Initialization</title> 1408 <para> 1409 To create a plane, a KMS drivers allocates and 1410 zeroes an instances of struct <structname>drm_plane</structname> 1411 (possibly as part of a larger structure) and registers it with a call 1412 to <function>drm_universal_plane_init</function>. The function takes a bitmask 1413 of the CRTCs that can be associated with the plane, a pointer to the 1414 plane functions, a list of format supported formats, and the type of 1415 plane (primary, cursor, or overlay) being initialized. 1416 </para> 1417 <para> 1418 Cursor and overlay planes are optional. All drivers should provide 1419 one primary plane per CRTC (although this requirement may change in 1420 the future); drivers that do not wish to provide special handling for 1421 primary planes may make use of the helper functions described in 1422 <xref linkend="drm-kms-planehelpers"/> to create and register a 1423 primary plane with standard capabilities. 1424 </para> 1425 </sect3> 1426 <sect3> 1427 <title>Plane Operations</title> 1428 <itemizedlist> 1429 <listitem> 1430 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc, 1431 struct drm_framebuffer *fb, int crtc_x, int crtc_y, 1432 unsigned int crtc_w, unsigned int crtc_h, 1433 uint32_t src_x, uint32_t src_y, 1434 uint32_t src_w, uint32_t src_h);</synopsis> 1435 <para> 1436 Enable and configure the plane to use the given CRTC and frame buffer. 1437 </para> 1438 <para> 1439 The source rectangle in frame buffer memory coordinates is given by 1440 the <parameter>src_x</parameter>, <parameter>src_y</parameter>, 1441 <parameter>src_w</parameter> and <parameter>src_h</parameter> 1442 parameters (as 16.16 fixed point values). Devices that don't support 1443 subpixel plane coordinates can ignore the fractional part. 1444 </para> 1445 <para> 1446 The destination rectangle in CRTC coordinates is given by the 1447 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>, 1448 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter> 1449 parameters (as integer values). Devices scale the source rectangle to 1450 the destination rectangle. If scaling is not supported, and the source 1451 rectangle size doesn't match the destination rectangle size, the 1452 driver must return a -<errorname>EINVAL</errorname> error. 1453 </para> 1454 </listitem> 1455 <listitem> 1456 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis> 1457 <para> 1458 Disable the plane. The DRM core calls this method in response to a 1459 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0. 1460 Disabled planes must not be processed by the CRTC. 1461 </para> 1462 </listitem> 1463 <listitem> 1464 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis> 1465 <para> 1466 Destroy the plane when not needed anymore. See 1467 <xref linkend="drm-kms-init"/>. 1468 </para> 1469 </listitem> 1470 </itemizedlist> 1471 </sect3> 1472 </sect2> 1473 <sect2> 1474 <title>Encoders (struct <structname>drm_encoder</structname>)</title> 1475 <para> 1476 An encoder takes pixel data from a CRTC and converts it to a format 1477 suitable for any attached connectors. On some devices, it may be 1478 possible to have a CRTC send data to more than one encoder. In that 1479 case, both encoders would receive data from the same scanout buffer, 1480 resulting in a "cloned" display configuration across the connectors 1481 attached to each encoder. 1482 </para> 1483 <sect3> 1484 <title>Encoder Initialization</title> 1485 <para> 1486 As for CRTCs, a KMS driver must create, initialize and register at 1487 least one struct <structname>drm_encoder</structname> instance. The 1488 instance is allocated and zeroed by the driver, possibly as part of a 1489 larger structure. 1490 </para> 1491 <para> 1492 Drivers must initialize the struct <structname>drm_encoder</structname> 1493 <structfield>possible_crtcs</structfield> and 1494 <structfield>possible_clones</structfield> fields before registering the 1495 encoder. Both fields are bitmasks of respectively the CRTCs that the 1496 encoder can be connected to, and sibling encoders candidate for cloning. 1497 </para> 1498 <para> 1499 After being initialized, the encoder must be registered with a call to 1500 <function>drm_encoder_init</function>. The function takes a pointer to 1501 the encoder functions and an encoder type. Supported types are 1502 <itemizedlist> 1503 <listitem> 1504 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A 1505 </listitem> 1506 <listitem> 1507 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort 1508 </listitem> 1509 <listitem> 1510 DRM_MODE_ENCODER_LVDS for display panels 1511 </listitem> 1512 <listitem> 1513 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component, 1514 SCART) 1515 </listitem> 1516 <listitem> 1517 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays 1518 </listitem> 1519 </itemizedlist> 1520 </para> 1521 <para> 1522 Encoders must be attached to a CRTC to be used. DRM drivers leave 1523 encoders unattached at initialization time. Applications (or the fbdev 1524 compatibility layer when implemented) are responsible for attaching the 1525 encoders they want to use to a CRTC. 1526 </para> 1527 </sect3> 1528 <sect3> 1529 <title>Encoder Operations</title> 1530 <itemizedlist> 1531 <listitem> 1532 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis> 1533 <para> 1534 Called to destroy the encoder when not needed anymore. See 1535 <xref linkend="drm-kms-init"/>. 1536 </para> 1537 </listitem> 1538 <listitem> 1539 <synopsis>void (*set_property)(struct drm_plane *plane, 1540 struct drm_property *property, uint64_t value);</synopsis> 1541 <para> 1542 Set the value of the given plane property to 1543 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1544 for more information about properties. 1545 </para> 1546 </listitem> 1547 </itemizedlist> 1548 </sect3> 1549 </sect2> 1550 <sect2> 1551 <title>Connectors (struct <structname>drm_connector</structname>)</title> 1552 <para> 1553 A connector is the final destination for pixel data on a device, and 1554 usually connects directly to an external display device like a monitor 1555 or laptop panel. A connector can only be attached to one encoder at a 1556 time. The connector is also the structure where information about the 1557 attached display is kept, so it contains fields for display data, EDID 1558 data, DPMS & connection status, and information about modes 1559 supported on the attached displays. 1560 </para> 1561 <sect3> 1562 <title>Connector Initialization</title> 1563 <para> 1564 Finally a KMS driver must create, initialize, register and attach at 1565 least one struct <structname>drm_connector</structname> instance. The 1566 instance is created as other KMS objects and initialized by setting the 1567 following fields. 1568 </para> 1569 <variablelist> 1570 <varlistentry> 1571 <term><structfield>interlace_allowed</structfield></term> 1572 <listitem><para> 1573 Whether the connector can handle interlaced modes. 1574 </para></listitem> 1575 </varlistentry> 1576 <varlistentry> 1577 <term><structfield>doublescan_allowed</structfield></term> 1578 <listitem><para> 1579 Whether the connector can handle doublescan. 1580 </para></listitem> 1581 </varlistentry> 1582 <varlistentry> 1583 <term><structfield>display_info 1584 </structfield></term> 1585 <listitem><para> 1586 Display information is filled from EDID information when a display 1587 is detected. For non hot-pluggable displays such as flat panels in 1588 embedded systems, the driver should initialize the 1589 <structfield>display_info</structfield>.<structfield>width_mm</structfield> 1590 and 1591 <structfield>display_info</structfield>.<structfield>height_mm</structfield> 1592 fields with the physical size of the display. 1593 </para></listitem> 1594 </varlistentry> 1595 <varlistentry> 1596 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term> 1597 <listitem><para> 1598 Connector polling mode, a combination of 1599 <variablelist> 1600 <varlistentry> 1601 <term>DRM_CONNECTOR_POLL_HPD</term> 1602 <listitem><para> 1603 The connector generates hotplug events and doesn't need to be 1604 periodically polled. The CONNECT and DISCONNECT flags must not 1605 be set together with the HPD flag. 1606 </para></listitem> 1607 </varlistentry> 1608 <varlistentry> 1609 <term>DRM_CONNECTOR_POLL_CONNECT</term> 1610 <listitem><para> 1611 Periodically poll the connector for connection. 1612 </para></listitem> 1613 </varlistentry> 1614 <varlistentry> 1615 <term>DRM_CONNECTOR_POLL_DISCONNECT</term> 1616 <listitem><para> 1617 Periodically poll the connector for disconnection. 1618 </para></listitem> 1619 </varlistentry> 1620 </variablelist> 1621 Set to 0 for connectors that don't support connection status 1622 discovery. 1623 </para></listitem> 1624 </varlistentry> 1625 </variablelist> 1626 <para> 1627 The connector is then registered with a call to 1628 <function>drm_connector_init</function> with a pointer to the connector 1629 functions and a connector type, and exposed through sysfs with a call to 1630 <function>drm_connector_register</function>. 1631 </para> 1632 <para> 1633 Supported connector types are 1634 <itemizedlist> 1635 <listitem>DRM_MODE_CONNECTOR_VGA</listitem> 1636 <listitem>DRM_MODE_CONNECTOR_DVII</listitem> 1637 <listitem>DRM_MODE_CONNECTOR_DVID</listitem> 1638 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem> 1639 <listitem>DRM_MODE_CONNECTOR_Composite</listitem> 1640 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem> 1641 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem> 1642 <listitem>DRM_MODE_CONNECTOR_Component</listitem> 1643 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem> 1644 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem> 1645 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem> 1646 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem> 1647 <listitem>DRM_MODE_CONNECTOR_TV</listitem> 1648 <listitem>DRM_MODE_CONNECTOR_eDP</listitem> 1649 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem> 1650 </itemizedlist> 1651 </para> 1652 <para> 1653 Connectors must be attached to an encoder to be used. For devices that 1654 map connectors to encoders 1:1, the connector should be attached at 1655 initialization time with a call to 1656 <function>drm_mode_connector_attach_encoder</function>. The driver must 1657 also set the <structname>drm_connector</structname> 1658 <structfield>encoder</structfield> field to point to the attached 1659 encoder. 1660 </para> 1661 <para> 1662 Finally, drivers must initialize the connectors state change detection 1663 with a call to <function>drm_kms_helper_poll_init</function>. If at 1664 least one connector is pollable but can't generate hotplug interrupts 1665 (indicated by the DRM_CONNECTOR_POLL_CONNECT and 1666 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will 1667 automatically be queued to periodically poll for changes. Connectors 1668 that can generate hotplug interrupts must be marked with the 1669 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must 1670 call <function>drm_helper_hpd_irq_event</function>. The function will 1671 queue a delayed work to check the state of all connectors, but no 1672 periodic polling will be done. 1673 </para> 1674 </sect3> 1675 <sect3> 1676 <title>Connector Operations</title> 1677 <note><para> 1678 Unless otherwise state, all operations are mandatory. 1679 </para></note> 1680 <sect4> 1681 <title>DPMS</title> 1682 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis> 1683 <para> 1684 The DPMS operation sets the power state of a connector. The mode 1685 argument is one of 1686 <itemizedlist> 1687 <listitem><para>DRM_MODE_DPMS_ON</para></listitem> 1688 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem> 1689 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem> 1690 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem> 1691 </itemizedlist> 1692 </para> 1693 <para> 1694 In all but DPMS_ON mode the encoder to which the connector is attached 1695 should put the display in low-power mode by driving its signals 1696 appropriately. If more than one connector is attached to the encoder 1697 care should be taken not to change the power state of other displays as 1698 a side effect. Low-power mode should be propagated to the encoders and 1699 CRTCs when all related connectors are put in low-power mode. 1700 </para> 1701 </sect4> 1702 <sect4> 1703 <title>Modes</title> 1704 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, 1705 uint32_t max_height);</synopsis> 1706 <para> 1707 Fill the mode list with all supported modes for the connector. If the 1708 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1709 arguments are non-zero, the implementation must ignore all modes wider 1710 than <parameter>max_width</parameter> or higher than 1711 <parameter>max_height</parameter>. 1712 </para> 1713 <para> 1714 The connector must also fill in this operation its 1715 <structfield>display_info</structfield> 1716 <structfield>width_mm</structfield> and 1717 <structfield>height_mm</structfield> fields with the connected display 1718 physical size in millimeters. The fields should be set to 0 if the value 1719 isn't known or is not applicable (for instance for projector devices). 1720 </para> 1721 </sect4> 1722 <sect4> 1723 <title>Connection Status</title> 1724 <para> 1725 The connection status is updated through polling or hotplug events when 1726 supported (see <xref linkend="drm-kms-connector-polled"/>). The status 1727 value is reported to userspace through ioctls and must not be used 1728 inside the driver, as it only gets initialized by a call to 1729 <function>drm_mode_getconnector</function> from userspace. 1730 </para> 1731 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector, 1732 bool force);</synopsis> 1733 <para> 1734 Check to see if anything is attached to the connector. The 1735 <parameter>force</parameter> parameter is set to false whilst polling or 1736 to true when checking the connector due to user request. 1737 <parameter>force</parameter> can be used by the driver to avoid 1738 expensive, destructive operations during automated probing. 1739 </para> 1740 <para> 1741 Return connector_status_connected if something is connected to the 1742 connector, connector_status_disconnected if nothing is connected and 1743 connector_status_unknown if the connection state isn't known. 1744 </para> 1745 <para> 1746 Drivers should only return connector_status_connected if the connection 1747 status has really been probed as connected. Connectors that can't detect 1748 the connection status, or failed connection status probes, should return 1749 connector_status_unknown. 1750 </para> 1751 </sect4> 1752 <sect4> 1753 <title>Miscellaneous</title> 1754 <itemizedlist> 1755 <listitem> 1756 <synopsis>void (*set_property)(struct drm_connector *connector, 1757 struct drm_property *property, uint64_t value);</synopsis> 1758 <para> 1759 Set the value of the given connector property to 1760 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1761 for more information about properties. 1762 </para> 1763 </listitem> 1764 <listitem> 1765 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis> 1766 <para> 1767 Destroy the connector when not needed anymore. See 1768 <xref linkend="drm-kms-init"/>. 1769 </para> 1770 </listitem> 1771 </itemizedlist> 1772 </sect4> 1773 </sect3> 1774 </sect2> 1775 <sect2> 1776 <title>Cleanup</title> 1777 <para> 1778 The DRM core manages its objects' lifetime. When an object is not needed 1779 anymore the core calls its destroy function, which must clean up and 1780 free every resource allocated for the object. Every 1781 <function>drm_*_init</function> call must be matched with a 1782 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs 1783 (<function>drm_crtc_cleanup</function>), planes 1784 (<function>drm_plane_cleanup</function>), encoders 1785 (<function>drm_encoder_cleanup</function>) and connectors 1786 (<function>drm_connector_cleanup</function>). Furthermore, connectors 1787 that have been added to sysfs must be removed by a call to 1788 <function>drm_connector_unregister</function> before calling 1789 <function>drm_connector_cleanup</function>. 1790 </para> 1791 <para> 1792 Connectors state change detection must be cleanup up with a call to 1793 <function>drm_kms_helper_poll_fini</function>. 1794 </para> 1795 </sect2> 1796 <sect2> 1797 <title>Output discovery and initialization example</title> 1798 <programlisting><![CDATA[ 1799void intel_crt_init(struct drm_device *dev) 1800{ 1801 struct drm_connector *connector; 1802 struct intel_output *intel_output; 1803 1804 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL); 1805 if (!intel_output) 1806 return; 1807 1808 connector = &intel_output->base; 1809 drm_connector_init(dev, &intel_output->base, 1810 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1811 1812 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs, 1813 DRM_MODE_ENCODER_DAC); 1814 1815 drm_mode_connector_attach_encoder(&intel_output->base, 1816 &intel_output->enc); 1817 1818 /* Set up the DDC bus. */ 1819 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A"); 1820 if (!intel_output->ddc_bus) { 1821 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration " 1822 "failed.\n"); 1823 return; 1824 } 1825 1826 intel_output->type = INTEL_OUTPUT_ANALOG; 1827 connector->interlace_allowed = 0; 1828 connector->doublescan_allowed = 0; 1829 1830 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs); 1831 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs); 1832 1833 drm_connector_register(connector); 1834}]]></programlisting> 1835 <para> 1836 In the example above (taken from the i915 driver), a CRTC, connector and 1837 encoder combination is created. A device-specific i2c bus is also 1838 created for fetching EDID data and performing monitor detection. Once 1839 the process is complete, the new connector is registered with sysfs to 1840 make its properties available to applications. 1841 </para> 1842 </sect2> 1843 <sect2> 1844 <title>KMS API Functions</title> 1845!Edrivers/gpu/drm/drm_crtc.c 1846 </sect2> 1847 <sect2> 1848 <title>KMS Data Structures</title> 1849!Iinclude/drm/drm_crtc.h 1850 </sect2> 1851 <sect2> 1852 <title>KMS Locking</title> 1853!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking 1854!Iinclude/drm/drm_modeset_lock.h 1855!Edrivers/gpu/drm/drm_modeset_lock.c 1856 </sect2> 1857 </sect1> 1858 1859 <!-- Internals: kms helper functions --> 1860 1861 <sect1> 1862 <title>Mode Setting Helper Functions</title> 1863 <para> 1864 The plane, CRTC, encoder and connector functions provided by the drivers 1865 implement the DRM API. They're called by the DRM core and ioctl handlers 1866 to handle device state changes and configuration request. As implementing 1867 those functions often requires logic not specific to drivers, mid-layer 1868 helper functions are available to avoid duplicating boilerplate code. 1869 </para> 1870 <para> 1871 The DRM core contains one mid-layer implementation. The mid-layer provides 1872 implementations of several plane, CRTC, encoder and connector functions 1873 (called from the top of the mid-layer) that pre-process requests and call 1874 lower-level functions provided by the driver (at the bottom of the 1875 mid-layer). For instance, the 1876 <function>drm_crtc_helper_set_config</function> function can be used to 1877 fill the struct <structname>drm_crtc_funcs</structname> 1878 <structfield>set_config</structfield> field. When called, it will split 1879 the <methodname>set_config</methodname> operation in smaller, simpler 1880 operations and call the driver to handle them. 1881 </para> 1882 <para> 1883 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>, 1884 <function>drm_encoder_helper_add</function> and 1885 <function>drm_connector_helper_add</function> functions to install their 1886 mid-layer bottom operations handlers, and fill the 1887 <structname>drm_crtc_funcs</structname>, 1888 <structname>drm_encoder_funcs</structname> and 1889 <structname>drm_connector_funcs</structname> structures with pointers to 1890 the mid-layer top API functions. Installing the mid-layer bottom operation 1891 handlers is best done right after registering the corresponding KMS object. 1892 </para> 1893 <para> 1894 The mid-layer is not split between CRTC, encoder and connector operations. 1895 To use it, a driver must provide bottom functions for all of the three KMS 1896 entities. 1897 </para> 1898 <sect2> 1899 <title>Helper Functions</title> 1900 <itemizedlist> 1901 <listitem> 1902 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis> 1903 <para> 1904 The <function>drm_crtc_helper_set_config</function> helper function 1905 is a CRTC <methodname>set_config</methodname> implementation. It 1906 first tries to locate the best encoder for each connector by calling 1907 the connector <methodname>best_encoder</methodname> helper 1908 operation. 1909 </para> 1910 <para> 1911 After locating the appropriate encoders, the helper function will 1912 call the <methodname>mode_fixup</methodname> encoder and CRTC helper 1913 operations to adjust the requested mode, or reject it completely in 1914 which case an error will be returned to the application. If the new 1915 configuration after mode adjustment is identical to the current 1916 configuration the helper function will return without performing any 1917 other operation. 1918 </para> 1919 <para> 1920 If the adjusted mode is identical to the current mode but changes to 1921 the frame buffer need to be applied, the 1922 <function>drm_crtc_helper_set_config</function> function will call 1923 the CRTC <methodname>mode_set_base</methodname> helper operation. If 1924 the adjusted mode differs from the current mode, or if the 1925 <methodname>mode_set_base</methodname> helper operation is not 1926 provided, the helper function performs a full mode set sequence by 1927 calling the <methodname>prepare</methodname>, 1928 <methodname>mode_set</methodname> and 1929 <methodname>commit</methodname> CRTC and encoder helper operations, 1930 in that order. 1931 </para> 1932 </listitem> 1933 <listitem> 1934 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis> 1935 <para> 1936 The <function>drm_helper_connector_dpms</function> helper function 1937 is a connector <methodname>dpms</methodname> implementation that 1938 tracks power state of connectors. To use the function, drivers must 1939 provide <methodname>dpms</methodname> helper operations for CRTCs 1940 and encoders to apply the DPMS state to the device. 1941 </para> 1942 <para> 1943 The mid-layer doesn't track the power state of CRTCs and encoders. 1944 The <methodname>dpms</methodname> helper operations can thus be 1945 called with a mode identical to the currently active mode. 1946 </para> 1947 </listitem> 1948 <listitem> 1949 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector, 1950 uint32_t maxX, uint32_t maxY);</synopsis> 1951 <para> 1952 The <function>drm_helper_probe_single_connector_modes</function> helper 1953 function is a connector <methodname>fill_modes</methodname> 1954 implementation that updates the connection status for the connector 1955 and then retrieves a list of modes by calling the connector 1956 <methodname>get_modes</methodname> helper operation. 1957 </para> 1958 <para> 1959 If the helper operation returns no mode, and if the connector status 1960 is connector_status_connected, standard VESA DMT modes up to 1961 1024x768 are automatically added to the modes list by a call to 1962 <function>drm_add_modes_noedid</function>. 1963 </para> 1964 <para> 1965 The function then filters out modes larger than 1966 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1967 if specified. It finally calls the optional connector 1968 <methodname>mode_valid</methodname> helper operation for each mode in 1969 the probed list to check whether the mode is valid for the connector. 1970 </para> 1971 </listitem> 1972 </itemizedlist> 1973 </sect2> 1974 <sect2> 1975 <title>CRTC Helper Operations</title> 1976 <itemizedlist> 1977 <listitem id="drm-helper-crtc-mode-fixup"> 1978 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc, 1979 const struct drm_display_mode *mode, 1980 struct drm_display_mode *adjusted_mode);</synopsis> 1981 <para> 1982 Let CRTCs adjust the requested mode or reject it completely. This 1983 operation returns true if the mode is accepted (possibly after being 1984 adjusted) or false if it is rejected. 1985 </para> 1986 <para> 1987 The <methodname>mode_fixup</methodname> operation should reject the 1988 mode if it can't reasonably use it. The definition of "reasonable" 1989 is currently fuzzy in this context. One possible behaviour would be 1990 to set the adjusted mode to the panel timings when a fixed-mode 1991 panel is used with hardware capable of scaling. Another behaviour 1992 would be to accept any input mode and adjust it to the closest mode 1993 supported by the hardware (FIXME: This needs to be clarified). 1994 </para> 1995 </listitem> 1996 <listitem> 1997 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y, 1998 struct drm_framebuffer *old_fb)</synopsis> 1999 <para> 2000 Move the CRTC on the current frame buffer (stored in 2001 <literal>crtc->fb</literal>) to position (x,y). Any of the frame 2002 buffer, x position or y position may have been modified. 2003 </para> 2004 <para> 2005 This helper operation is optional. If not provided, the 2006 <function>drm_crtc_helper_set_config</function> function will fall 2007 back to the <methodname>mode_set</methodname> helper operation. 2008 </para> 2009 <note><para> 2010 FIXME: Why are x and y passed as arguments, as they can be accessed 2011 through <literal>crtc->x</literal> and 2012 <literal>crtc->y</literal>? 2013 </para></note> 2014 </listitem> 2015 <listitem> 2016 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis> 2017 <para> 2018 Prepare the CRTC for mode setting. This operation is called after 2019 validating the requested mode. Drivers use it to perform 2020 device-specific operations required before setting the new mode. 2021 </para> 2022 </listitem> 2023 <listitem> 2024 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode, 2025 struct drm_display_mode *adjusted_mode, int x, int y, 2026 struct drm_framebuffer *old_fb);</synopsis> 2027 <para> 2028 Set a new mode, position and frame buffer. Depending on the device 2029 requirements, the mode can be stored internally by the driver and 2030 applied in the <methodname>commit</methodname> operation, or 2031 programmed to the hardware immediately. 2032 </para> 2033 <para> 2034 The <methodname>mode_set</methodname> operation returns 0 on success 2035 or a negative error code if an error occurs. 2036 </para> 2037 </listitem> 2038 <listitem> 2039 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis> 2040 <para> 2041 Commit a mode. This operation is called after setting the new mode. 2042 Upon return the device must use the new mode and be fully 2043 operational. 2044 </para> 2045 </listitem> 2046 </itemizedlist> 2047 </sect2> 2048 <sect2> 2049 <title>Encoder Helper Operations</title> 2050 <itemizedlist> 2051 <listitem> 2052 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder, 2053 const struct drm_display_mode *mode, 2054 struct drm_display_mode *adjusted_mode);</synopsis> 2055 <para> 2056 Let encoders adjust the requested mode or reject it completely. This 2057 operation returns true if the mode is accepted (possibly after being 2058 adjusted) or false if it is rejected. See the 2059 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper 2060 operation</link> for an explanation of the allowed adjustments. 2061 </para> 2062 </listitem> 2063 <listitem> 2064 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis> 2065 <para> 2066 Prepare the encoder for mode setting. This operation is called after 2067 validating the requested mode. Drivers use it to perform 2068 device-specific operations required before setting the new mode. 2069 </para> 2070 </listitem> 2071 <listitem> 2072 <synopsis>void (*mode_set)(struct drm_encoder *encoder, 2073 struct drm_display_mode *mode, 2074 struct drm_display_mode *adjusted_mode);</synopsis> 2075 <para> 2076 Set a new mode. Depending on the device requirements, the mode can 2077 be stored internally by the driver and applied in the 2078 <methodname>commit</methodname> operation, or programmed to the 2079 hardware immediately. 2080 </para> 2081 </listitem> 2082 <listitem> 2083 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis> 2084 <para> 2085 Commit a mode. This operation is called after setting the new mode. 2086 Upon return the device must use the new mode and be fully 2087 operational. 2088 </para> 2089 </listitem> 2090 </itemizedlist> 2091 </sect2> 2092 <sect2> 2093 <title>Connector Helper Operations</title> 2094 <itemizedlist> 2095 <listitem> 2096 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis> 2097 <para> 2098 Return a pointer to the best encoder for the connecter. Device that 2099 map connectors to encoders 1:1 simply return the pointer to the 2100 associated encoder. This operation is mandatory. 2101 </para> 2102 </listitem> 2103 <listitem> 2104 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis> 2105 <para> 2106 Fill the connector's <structfield>probed_modes</structfield> list 2107 by parsing EDID data with <function>drm_add_edid_modes</function>, 2108 adding standard VESA DMT modes with <function>drm_add_modes_noedid</function>, 2109 or calling <function>drm_mode_probed_add</function> directly for every 2110 supported mode and return the number of modes it has detected. This 2111 operation is mandatory. 2112 </para> 2113 <para> 2114 Note that the caller function will automatically add standard VESA 2115 DMT modes up to 1024x768 if the <methodname>get_modes</methodname> 2116 helper operation returns no mode and if the connector status is 2117 connector_status_connected. There is no need to call 2118 <function>drm_add_edid_modes</function> manually in that case. 2119 </para> 2120 <para> 2121 When adding modes manually the driver creates each mode with a call to 2122 <function>drm_mode_create</function> and must fill the following fields. 2123 <itemizedlist> 2124 <listitem> 2125 <synopsis>__u32 type;</synopsis> 2126 <para> 2127 Mode type bitmask, a combination of 2128 <variablelist> 2129 <varlistentry> 2130 <term>DRM_MODE_TYPE_BUILTIN</term> 2131 <listitem><para>not used?</para></listitem> 2132 </varlistentry> 2133 <varlistentry> 2134 <term>DRM_MODE_TYPE_CLOCK_C</term> 2135 <listitem><para>not used?</para></listitem> 2136 </varlistentry> 2137 <varlistentry> 2138 <term>DRM_MODE_TYPE_CRTC_C</term> 2139 <listitem><para>not used?</para></listitem> 2140 </varlistentry> 2141 <varlistentry> 2142 <term> 2143 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector 2144 </term> 2145 <listitem> 2146 <para>not used?</para> 2147 </listitem> 2148 </varlistentry> 2149 <varlistentry> 2150 <term>DRM_MODE_TYPE_DEFAULT</term> 2151 <listitem><para>not used?</para></listitem> 2152 </varlistentry> 2153 <varlistentry> 2154 <term>DRM_MODE_TYPE_USERDEF</term> 2155 <listitem><para>not used?</para></listitem> 2156 </varlistentry> 2157 <varlistentry> 2158 <term>DRM_MODE_TYPE_DRIVER</term> 2159 <listitem> 2160 <para> 2161 The mode has been created by the driver (as opposed to 2162 to user-created modes). 2163 </para> 2164 </listitem> 2165 </varlistentry> 2166 </variablelist> 2167 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they 2168 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred 2169 mode. 2170 </para> 2171 </listitem> 2172 <listitem> 2173 <synopsis>__u32 clock;</synopsis> 2174 <para>Pixel clock frequency in kHz unit</para> 2175 </listitem> 2176 <listitem> 2177 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal; 2178 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis> 2179 <para>Horizontal and vertical timing information</para> 2180 <screen><![CDATA[ 2181 Active Front Sync Back 2182 Region Porch Porch 2183 <-----------------------><----------------><-------------><--------------> 2184 2185 //////////////////////| 2186 ////////////////////// | 2187 ////////////////////// |.................. ................ 2188 _______________ 2189 2190 <----- [hv]display -----> 2191 <------------- [hv]sync_start ------------> 2192 <--------------------- [hv]sync_end ---------------------> 2193 <-------------------------------- [hv]total -----------------------------> 2194]]></screen> 2195 </listitem> 2196 <listitem> 2197 <synopsis>__u16 hskew; 2198 __u16 vscan;</synopsis> 2199 <para>Unknown</para> 2200 </listitem> 2201 <listitem> 2202 <synopsis>__u32 flags;</synopsis> 2203 <para> 2204 Mode flags, a combination of 2205 <variablelist> 2206 <varlistentry> 2207 <term>DRM_MODE_FLAG_PHSYNC</term> 2208 <listitem><para> 2209 Horizontal sync is active high 2210 </para></listitem> 2211 </varlistentry> 2212 <varlistentry> 2213 <term>DRM_MODE_FLAG_NHSYNC</term> 2214 <listitem><para> 2215 Horizontal sync is active low 2216 </para></listitem> 2217 </varlistentry> 2218 <varlistentry> 2219 <term>DRM_MODE_FLAG_PVSYNC</term> 2220 <listitem><para> 2221 Vertical sync is active high 2222 </para></listitem> 2223 </varlistentry> 2224 <varlistentry> 2225 <term>DRM_MODE_FLAG_NVSYNC</term> 2226 <listitem><para> 2227 Vertical sync is active low 2228 </para></listitem> 2229 </varlistentry> 2230 <varlistentry> 2231 <term>DRM_MODE_FLAG_INTERLACE</term> 2232 <listitem><para> 2233 Mode is interlaced 2234 </para></listitem> 2235 </varlistentry> 2236 <varlistentry> 2237 <term>DRM_MODE_FLAG_DBLSCAN</term> 2238 <listitem><para> 2239 Mode uses doublescan 2240 </para></listitem> 2241 </varlistentry> 2242 <varlistentry> 2243 <term>DRM_MODE_FLAG_CSYNC</term> 2244 <listitem><para> 2245 Mode uses composite sync 2246 </para></listitem> 2247 </varlistentry> 2248 <varlistentry> 2249 <term>DRM_MODE_FLAG_PCSYNC</term> 2250 <listitem><para> 2251 Composite sync is active high 2252 </para></listitem> 2253 </varlistentry> 2254 <varlistentry> 2255 <term>DRM_MODE_FLAG_NCSYNC</term> 2256 <listitem><para> 2257 Composite sync is active low 2258 </para></listitem> 2259 </varlistentry> 2260 <varlistentry> 2261 <term>DRM_MODE_FLAG_HSKEW</term> 2262 <listitem><para> 2263 hskew provided (not used?) 2264 </para></listitem> 2265 </varlistentry> 2266 <varlistentry> 2267 <term>DRM_MODE_FLAG_BCAST</term> 2268 <listitem><para> 2269 not used? 2270 </para></listitem> 2271 </varlistentry> 2272 <varlistentry> 2273 <term>DRM_MODE_FLAG_PIXMUX</term> 2274 <listitem><para> 2275 not used? 2276 </para></listitem> 2277 </varlistentry> 2278 <varlistentry> 2279 <term>DRM_MODE_FLAG_DBLCLK</term> 2280 <listitem><para> 2281 not used? 2282 </para></listitem> 2283 </varlistentry> 2284 <varlistentry> 2285 <term>DRM_MODE_FLAG_CLKDIV2</term> 2286 <listitem><para> 2287 ? 2288 </para></listitem> 2289 </varlistentry> 2290 </variablelist> 2291 </para> 2292 <para> 2293 Note that modes marked with the INTERLACE or DBLSCAN flags will be 2294 filtered out by 2295 <function>drm_helper_probe_single_connector_modes</function> if 2296 the connector's <structfield>interlace_allowed</structfield> or 2297 <structfield>doublescan_allowed</structfield> field is set to 0. 2298 </para> 2299 </listitem> 2300 <listitem> 2301 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis> 2302 <para> 2303 Mode name. The driver must call 2304 <function>drm_mode_set_name</function> to fill the mode name from 2305 <structfield>hdisplay</structfield>, 2306 <structfield>vdisplay</structfield> and interlace flag after 2307 filling the corresponding fields. 2308 </para> 2309 </listitem> 2310 </itemizedlist> 2311 </para> 2312 <para> 2313 The <structfield>vrefresh</structfield> value is computed by 2314 <function>drm_helper_probe_single_connector_modes</function>. 2315 </para> 2316 <para> 2317 When parsing EDID data, <function>drm_add_edid_modes</function> fills the 2318 connector <structfield>display_info</structfield> 2319 <structfield>width_mm</structfield> and 2320 <structfield>height_mm</structfield> fields. When creating modes 2321 manually the <methodname>get_modes</methodname> helper operation must 2322 set the <structfield>display_info</structfield> 2323 <structfield>width_mm</structfield> and 2324 <structfield>height_mm</structfield> fields if they haven't been set 2325 already (for instance at initialization time when a fixed-size panel is 2326 attached to the connector). The mode <structfield>width_mm</structfield> 2327 and <structfield>height_mm</structfield> fields are only used internally 2328 during EDID parsing and should not be set when creating modes manually. 2329 </para> 2330 </listitem> 2331 <listitem> 2332 <synopsis>int (*mode_valid)(struct drm_connector *connector, 2333 struct drm_display_mode *mode);</synopsis> 2334 <para> 2335 Verify whether a mode is valid for the connector. Return MODE_OK for 2336 supported modes and one of the enum drm_mode_status values (MODE_*) 2337 for unsupported modes. This operation is optional. 2338 </para> 2339 <para> 2340 As the mode rejection reason is currently not used beside for 2341 immediately removing the unsupported mode, an implementation can 2342 return MODE_BAD regardless of the exact reason why the mode is not 2343 valid. 2344 </para> 2345 <note><para> 2346 Note that the <methodname>mode_valid</methodname> helper operation is 2347 only called for modes detected by the device, and 2348 <emphasis>not</emphasis> for modes set by the user through the CRTC 2349 <methodname>set_config</methodname> operation. 2350 </para></note> 2351 </listitem> 2352 </itemizedlist> 2353 </sect2> 2354 <sect2> 2355 <title>Atomic Modeset Helper Functions Reference</title> 2356 <sect3> 2357 <title>Overview</title> 2358!Pdrivers/gpu/drm/drm_atomic_helper.c overview 2359 </sect3> 2360 <sect3> 2361 <title>Implementing Asynchronous Atomic Commit</title> 2362!Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit 2363 </sect3> 2364 <sect3> 2365 <title>Atomic State Reset and Initialization</title> 2366!Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization 2367 </sect3> 2368!Iinclude/drm/drm_atomic_helper.h 2369!Edrivers/gpu/drm/drm_atomic_helper.c 2370 </sect2> 2371 <sect2> 2372 <title>Modeset Helper Functions Reference</title> 2373!Iinclude/drm/drm_crtc_helper.h 2374!Edrivers/gpu/drm/drm_crtc_helper.c 2375!Pdrivers/gpu/drm/drm_crtc_helper.c overview 2376 </sect2> 2377 <sect2> 2378 <title>Output Probing Helper Functions Reference</title> 2379!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview 2380!Edrivers/gpu/drm/drm_probe_helper.c 2381 </sect2> 2382 <sect2> 2383 <title>fbdev Helper Functions Reference</title> 2384!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers 2385!Edrivers/gpu/drm/drm_fb_helper.c 2386!Iinclude/drm/drm_fb_helper.h 2387 </sect2> 2388 <sect2> 2389 <title>Display Port Helper Functions Reference</title> 2390!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers 2391!Iinclude/drm/drm_dp_helper.h 2392!Edrivers/gpu/drm/drm_dp_helper.c 2393 </sect2> 2394 <sect2> 2395 <title>Display Port MST Helper Functions Reference</title> 2396!Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper 2397!Iinclude/drm/drm_dp_mst_helper.h 2398!Edrivers/gpu/drm/drm_dp_mst_topology.c 2399 </sect2> 2400 <sect2> 2401 <title>MIPI DSI Helper Functions Reference</title> 2402!Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers 2403!Iinclude/drm/drm_mipi_dsi.h 2404!Edrivers/gpu/drm/drm_mipi_dsi.c 2405 </sect2> 2406 <sect2> 2407 <title>EDID Helper Functions Reference</title> 2408!Edrivers/gpu/drm/drm_edid.c 2409 </sect2> 2410 <sect2> 2411 <title>Rectangle Utilities Reference</title> 2412!Pinclude/drm/drm_rect.h rect utils 2413!Iinclude/drm/drm_rect.h 2414!Edrivers/gpu/drm/drm_rect.c 2415 </sect2> 2416 <sect2> 2417 <title>Flip-work Helper Reference</title> 2418!Pinclude/drm/drm_flip_work.h flip utils 2419!Iinclude/drm/drm_flip_work.h 2420!Edrivers/gpu/drm/drm_flip_work.c 2421 </sect2> 2422 <sect2> 2423 <title>HDMI Infoframes Helper Reference</title> 2424 <para> 2425 Strictly speaking this is not a DRM helper library but generally useable 2426 by any driver interfacing with HDMI outputs like v4l or alsa drivers. 2427 But it nicely fits into the overall topic of mode setting helper 2428 libraries and hence is also included here. 2429 </para> 2430!Iinclude/linux/hdmi.h 2431!Edrivers/video/hdmi.c 2432 </sect2> 2433 <sect2> 2434 <title id="drm-kms-planehelpers">Plane Helper Reference</title> 2435!Edrivers/gpu/drm/drm_plane_helper.c 2436!Pdrivers/gpu/drm/drm_plane_helper.c overview 2437 </sect2> 2438 <sect2> 2439 <title>Tile group</title> 2440!Pdrivers/gpu/drm/drm_crtc.c Tile group 2441 </sect2> 2442 </sect1> 2443 2444 <!-- Internals: kms properties --> 2445 2446 <sect1 id="drm-kms-properties"> 2447 <title>KMS Properties</title> 2448 <para> 2449 Drivers may need to expose additional parameters to applications than 2450 those described in the previous sections. KMS supports attaching 2451 properties to CRTCs, connectors and planes and offers a userspace API to 2452 list, get and set the property values. 2453 </para> 2454 <para> 2455 Properties are identified by a name that uniquely defines the property 2456 purpose, and store an associated value. For all property types except blob 2457 properties the value is a 64-bit unsigned integer. 2458 </para> 2459 <para> 2460 KMS differentiates between properties and property instances. Drivers 2461 first create properties and then create and associate individual instances 2462 of those properties to objects. A property can be instantiated multiple 2463 times and associated with different objects. Values are stored in property 2464 instances, and all other property information are stored in the property 2465 and shared between all instances of the property. 2466 </para> 2467 <para> 2468 Every property is created with a type that influences how the KMS core 2469 handles the property. Supported property types are 2470 <variablelist> 2471 <varlistentry> 2472 <term>DRM_MODE_PROP_RANGE</term> 2473 <listitem><para>Range properties report their minimum and maximum 2474 admissible values. The KMS core verifies that values set by 2475 application fit in that range.</para></listitem> 2476 </varlistentry> 2477 <varlistentry> 2478 <term>DRM_MODE_PROP_ENUM</term> 2479 <listitem><para>Enumerated properties take a numerical value that 2480 ranges from 0 to the number of enumerated values defined by the 2481 property minus one, and associate a free-formed string name to each 2482 value. Applications can retrieve the list of defined value-name pairs 2483 and use the numerical value to get and set property instance values. 2484 </para></listitem> 2485 </varlistentry> 2486 <varlistentry> 2487 <term>DRM_MODE_PROP_BITMASK</term> 2488 <listitem><para>Bitmask properties are enumeration properties that 2489 additionally restrict all enumerated values to the 0..63 range. 2490 Bitmask property instance values combine one or more of the 2491 enumerated bits defined by the property.</para></listitem> 2492 </varlistentry> 2493 <varlistentry> 2494 <term>DRM_MODE_PROP_BLOB</term> 2495 <listitem><para>Blob properties store a binary blob without any format 2496 restriction. The binary blobs are created as KMS standalone objects, 2497 and blob property instance values store the ID of their associated 2498 blob object.</para> 2499 <para>Blob properties are only used for the connector EDID property 2500 and cannot be created by drivers.</para></listitem> 2501 </varlistentry> 2502 </variablelist> 2503 </para> 2504 <para> 2505 To create a property drivers call one of the following functions depending 2506 on the property type. All property creation functions take property flags 2507 and name, as well as type-specific arguments. 2508 <itemizedlist> 2509 <listitem> 2510 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags, 2511 const char *name, 2512 uint64_t min, uint64_t max);</synopsis> 2513 <para>Create a range property with the given minimum and maximum 2514 values.</para> 2515 </listitem> 2516 <listitem> 2517 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags, 2518 const char *name, 2519 const struct drm_prop_enum_list *props, 2520 int num_values);</synopsis> 2521 <para>Create an enumerated property. The <parameter>props</parameter> 2522 argument points to an array of <parameter>num_values</parameter> 2523 value-name pairs.</para> 2524 </listitem> 2525 <listitem> 2526 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev, 2527 int flags, const char *name, 2528 const struct drm_prop_enum_list *props, 2529 int num_values);</synopsis> 2530 <para>Create a bitmask property. The <parameter>props</parameter> 2531 argument points to an array of <parameter>num_values</parameter> 2532 value-name pairs.</para> 2533 </listitem> 2534 </itemizedlist> 2535 </para> 2536 <para> 2537 Properties can additionally be created as immutable, in which case they 2538 will be read-only for applications but can be modified by the driver. To 2539 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE 2540 flag at property creation time. 2541 </para> 2542 <para> 2543 When no array of value-name pairs is readily available at property 2544 creation time for enumerated or range properties, drivers can create 2545 the property using the <function>drm_property_create</function> function 2546 and manually add enumeration value-name pairs by calling the 2547 <function>drm_property_add_enum</function> function. Care must be taken to 2548 properly specify the property type through the <parameter>flags</parameter> 2549 argument. 2550 </para> 2551 <para> 2552 After creating properties drivers can attach property instances to CRTC, 2553 connector and plane objects by calling the 2554 <function>drm_object_attach_property</function>. The function takes a 2555 pointer to the target object, a pointer to the previously created property 2556 and an initial instance value. 2557 </para> 2558 <sect2> 2559 <title>Existing KMS Properties</title> 2560 <para> 2561 The following table gives description of drm properties exposed by various 2562 modules/drivers. 2563 </para> 2564 <table border="1" cellpadding="0" cellspacing="0"> 2565 <tbody> 2566 <tr style="font-weight: bold;"> 2567 <td valign="top" >Owner Module/Drivers</td> 2568 <td valign="top" >Group</td> 2569 <td valign="top" >Property Name</td> 2570 <td valign="top" >Type</td> 2571 <td valign="top" >Property Values</td> 2572 <td valign="top" >Object attached</td> 2573 <td valign="top" >Description/Restrictions</td> 2574 </tr> 2575 <tr> 2576 <td rowspan="36" valign="top" >DRM</td> 2577 <td rowspan="5" valign="top" >Connector</td> 2578 <td valign="top" >“EDID”</td> 2579 <td valign="top" >BLOB | IMMUTABLE</td> 2580 <td valign="top" >0</td> 2581 <td valign="top" >Connector</td> 2582 <td valign="top" >Contains id of edid blob ptr object.</td> 2583 </tr> 2584 <tr> 2585 <td valign="top" >“DPMS”</td> 2586 <td valign="top" >ENUM</td> 2587 <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td> 2588 <td valign="top" >Connector</td> 2589 <td valign="top" >Contains DPMS operation mode value.</td> 2590 </tr> 2591 <tr> 2592 <td valign="top" >“PATH”</td> 2593 <td valign="top" >BLOB | IMMUTABLE</td> 2594 <td valign="top" >0</td> 2595 <td valign="top" >Connector</td> 2596 <td valign="top" >Contains topology path to a connector.</td> 2597 </tr> 2598 <tr> 2599 <td valign="top" >“TILE”</td> 2600 <td valign="top" >BLOB | IMMUTABLE</td> 2601 <td valign="top" >0</td> 2602 <td valign="top" >Connector</td> 2603 <td valign="top" >Contains tiling information for a connector.</td> 2604 </tr> 2605 <tr> 2606 <td valign="top" >“CRTC_ID”</td> 2607 <td valign="top" >OBJECT</td> 2608 <td valign="top" >DRM_MODE_OBJECT_CRTC</td> 2609 <td valign="top" >Connector</td> 2610 <td valign="top" >CRTC that connector is attached to (atomic)</td> 2611 </tr> 2612 <tr> 2613 <td rowspan="11" valign="top" >Plane</td> 2614 <td valign="top" >“type”</td> 2615 <td valign="top" >ENUM | IMMUTABLE</td> 2616 <td valign="top" >{ "Overlay", "Primary", "Cursor" }</td> 2617 <td valign="top" >Plane</td> 2618 <td valign="top" >Plane type</td> 2619 </tr> 2620 <tr> 2621 <td valign="top" >“SRC_X”</td> 2622 <td valign="top" >RANGE</td> 2623 <td valign="top" >Min=0, Max=UINT_MAX</td> 2624 <td valign="top" >Plane</td> 2625 <td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td> 2626 </tr> 2627 <tr> 2628 <td valign="top" >“SRC_Y”</td> 2629 <td valign="top" >RANGE</td> 2630 <td valign="top" >Min=0, Max=UINT_MAX</td> 2631 <td valign="top" >Plane</td> 2632 <td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td> 2633 </tr> 2634 <tr> 2635 <td valign="top" >“SRC_W”</td> 2636 <td valign="top" >RANGE</td> 2637 <td valign="top" >Min=0, Max=UINT_MAX</td> 2638 <td valign="top" >Plane</td> 2639 <td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td> 2640 </tr> 2641 <tr> 2642 <td valign="top" >“SRC_H”</td> 2643 <td valign="top" >RANGE</td> 2644 <td valign="top" >Min=0, Max=UINT_MAX</td> 2645 <td valign="top" >Plane</td> 2646 <td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td> 2647 </tr> 2648 <tr> 2649 <td valign="top" >“CRTC_X”</td> 2650 <td valign="top" >SIGNED_RANGE</td> 2651 <td valign="top" >Min=INT_MIN, Max=INT_MAX</td> 2652 <td valign="top" >Plane</td> 2653 <td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td> 2654 </tr> 2655 <tr> 2656 <td valign="top" >“CRTC_Y”</td> 2657 <td valign="top" >SIGNED_RANGE</td> 2658 <td valign="top" >Min=INT_MIN, Max=INT_MAX</td> 2659 <td valign="top" >Plane</td> 2660 <td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td> 2661 </tr> 2662 <tr> 2663 <td valign="top" >“CRTC_W”</td> 2664 <td valign="top" >RANGE</td> 2665 <td valign="top" >Min=0, Max=UINT_MAX</td> 2666 <td valign="top" >Plane</td> 2667 <td valign="top" >Scanout CRTC (destination) width (atomic)</td> 2668 </tr> 2669 <tr> 2670 <td valign="top" >“CRTC_H”</td> 2671 <td valign="top" >RANGE</td> 2672 <td valign="top" >Min=0, Max=UINT_MAX</td> 2673 <td valign="top" >Plane</td> 2674 <td valign="top" >Scanout CRTC (destination) height (atomic)</td> 2675 </tr> 2676 <tr> 2677 <td valign="top" >“FB_ID”</td> 2678 <td valign="top" >OBJECT</td> 2679 <td valign="top" >DRM_MODE_OBJECT_FB</td> 2680 <td valign="top" >Plane</td> 2681 <td valign="top" >Scanout framebuffer (atomic)</td> 2682 </tr> 2683 <tr> 2684 <td valign="top" >“CRTC_ID”</td> 2685 <td valign="top" >OBJECT</td> 2686 <td valign="top" >DRM_MODE_OBJECT_CRTC</td> 2687 <td valign="top" >Plane</td> 2688 <td valign="top" >CRTC that plane is attached to (atomic)</td> 2689 </tr> 2690 <tr> 2691 <td rowspan="2" valign="top" >DVI-I</td> 2692 <td valign="top" >“subconnector”</td> 2693 <td valign="top" >ENUM</td> 2694 <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td> 2695 <td valign="top" >Connector</td> 2696 <td valign="top" >TBD</td> 2697 </tr> 2698 <tr> 2699 <td valign="top" >“select subconnector”</td> 2700 <td valign="top" >ENUM</td> 2701 <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td> 2702 <td valign="top" >Connector</td> 2703 <td valign="top" >TBD</td> 2704 </tr> 2705 <tr> 2706 <td rowspan="13" valign="top" >TV</td> 2707 <td valign="top" >“subconnector”</td> 2708 <td valign="top" >ENUM</td> 2709 <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td> 2710 <td valign="top" >Connector</td> 2711 <td valign="top" >TBD</td> 2712 </tr> 2713 <tr> 2714 <td valign="top" >“select subconnector”</td> 2715 <td valign="top" >ENUM</td> 2716 <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td> 2717 <td valign="top" >Connector</td> 2718 <td valign="top" >TBD</td> 2719 </tr> 2720 <tr> 2721 <td valign="top" >“mode”</td> 2722 <td valign="top" >ENUM</td> 2723 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td> 2724 <td valign="top" >Connector</td> 2725 <td valign="top" >TBD</td> 2726 </tr> 2727 <tr> 2728 <td valign="top" >“left margin”</td> 2729 <td valign="top" >RANGE</td> 2730 <td valign="top" >Min=0, Max=100</td> 2731 <td valign="top" >Connector</td> 2732 <td valign="top" >TBD</td> 2733 </tr> 2734 <tr> 2735 <td valign="top" >“right margin”</td> 2736 <td valign="top" >RANGE</td> 2737 <td valign="top" >Min=0, Max=100</td> 2738 <td valign="top" >Connector</td> 2739 <td valign="top" >TBD</td> 2740 </tr> 2741 <tr> 2742 <td valign="top" >“top margin”</td> 2743 <td valign="top" >RANGE</td> 2744 <td valign="top" >Min=0, Max=100</td> 2745 <td valign="top" >Connector</td> 2746 <td valign="top" >TBD</td> 2747 </tr> 2748 <tr> 2749 <td valign="top" >“bottom margin”</td> 2750 <td valign="top" >RANGE</td> 2751 <td valign="top" >Min=0, Max=100</td> 2752 <td valign="top" >Connector</td> 2753 <td valign="top" >TBD</td> 2754 </tr> 2755 <tr> 2756 <td valign="top" >“brightness”</td> 2757 <td valign="top" >RANGE</td> 2758 <td valign="top" >Min=0, Max=100</td> 2759 <td valign="top" >Connector</td> 2760 <td valign="top" >TBD</td> 2761 </tr> 2762 <tr> 2763 <td valign="top" >“contrast”</td> 2764 <td valign="top" >RANGE</td> 2765 <td valign="top" >Min=0, Max=100</td> 2766 <td valign="top" >Connector</td> 2767 <td valign="top" >TBD</td> 2768 </tr> 2769 <tr> 2770 <td valign="top" >“flicker reduction”</td> 2771 <td valign="top" >RANGE</td> 2772 <td valign="top" >Min=0, Max=100</td> 2773 <td valign="top" >Connector</td> 2774 <td valign="top" >TBD</td> 2775 </tr> 2776 <tr> 2777 <td valign="top" >“overscan”</td> 2778 <td valign="top" >RANGE</td> 2779 <td valign="top" >Min=0, Max=100</td> 2780 <td valign="top" >Connector</td> 2781 <td valign="top" >TBD</td> 2782 </tr> 2783 <tr> 2784 <td valign="top" >“saturation”</td> 2785 <td valign="top" >RANGE</td> 2786 <td valign="top" >Min=0, Max=100</td> 2787 <td valign="top" >Connector</td> 2788 <td valign="top" >TBD</td> 2789 </tr> 2790 <tr> 2791 <td valign="top" >“hue”</td> 2792 <td valign="top" >RANGE</td> 2793 <td valign="top" >Min=0, Max=100</td> 2794 <td valign="top" >Connector</td> 2795 <td valign="top" >TBD</td> 2796 </tr> 2797 <tr> 2798 <td rowspan="2" valign="top" >Virtual GPU</td> 2799 <td valign="top" >“suggested X”</td> 2800 <td valign="top" >RANGE</td> 2801 <td valign="top" >Min=0, Max=0xffffffff</td> 2802 <td valign="top" >Connector</td> 2803 <td valign="top" >property to suggest an X offset for a connector</td> 2804 </tr> 2805 <tr> 2806 <td valign="top" >“suggested Y”</td> 2807 <td valign="top" >RANGE</td> 2808 <td valign="top" >Min=0, Max=0xffffffff</td> 2809 <td valign="top" >Connector</td> 2810 <td valign="top" >property to suggest an Y offset for a connector</td> 2811 </tr> 2812 <tr> 2813 <td rowspan="3" valign="top" >Optional</td> 2814 <td valign="top" >“scaling mode”</td> 2815 <td valign="top" >ENUM</td> 2816 <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td> 2817 <td valign="top" >Connector</td> 2818 <td valign="top" >TBD</td> 2819 </tr> 2820 <tr> 2821 <td valign="top" >"aspect ratio"</td> 2822 <td valign="top" >ENUM</td> 2823 <td valign="top" >{ "None", "4:3", "16:9" }</td> 2824 <td valign="top" >Connector</td> 2825 <td valign="top" >DRM property to set aspect ratio from user space app. 2826 This enum is made generic to allow addition of custom aspect 2827 ratios.</td> 2828 </tr> 2829 <tr> 2830 <td valign="top" >“dirty”</td> 2831 <td valign="top" >ENUM | IMMUTABLE</td> 2832 <td valign="top" >{ "Off", "On", "Annotate" }</td> 2833 <td valign="top" >Connector</td> 2834 <td valign="top" >TBD</td> 2835 </tr> 2836 <tr> 2837 <td rowspan="21" valign="top" >i915</td> 2838 <td rowspan="2" valign="top" >Generic</td> 2839 <td valign="top" >"Broadcast RGB"</td> 2840 <td valign="top" >ENUM</td> 2841 <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td> 2842 <td valign="top" >Connector</td> 2843 <td valign="top" >TBD</td> 2844 </tr> 2845 <tr> 2846 <td valign="top" >“audio”</td> 2847 <td valign="top" >ENUM</td> 2848 <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td> 2849 <td valign="top" >Connector</td> 2850 <td valign="top" >TBD</td> 2851 </tr> 2852 <tr> 2853 <td rowspan="1" valign="top" >Plane</td> 2854 <td valign="top" >“rotation”</td> 2855 <td valign="top" >BITMASK</td> 2856 <td valign="top" >{ 0, "rotate-0" }, { 2, "rotate-180" }</td> 2857 <td valign="top" >Plane</td> 2858 <td valign="top" >TBD</td> 2859 </tr> 2860 <tr> 2861 <td rowspan="17" valign="top" >SDVO-TV</td> 2862 <td valign="top" >“mode”</td> 2863 <td valign="top" >ENUM</td> 2864 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td> 2865 <td valign="top" >Connector</td> 2866 <td valign="top" >TBD</td> 2867 </tr> 2868 <tr> 2869 <td valign="top" >"left_margin"</td> 2870 <td valign="top" >RANGE</td> 2871 <td valign="top" >Min=0, Max= SDVO dependent</td> 2872 <td valign="top" >Connector</td> 2873 <td valign="top" >TBD</td> 2874 </tr> 2875 <tr> 2876 <td valign="top" >"right_margin"</td> 2877 <td valign="top" >RANGE</td> 2878 <td valign="top" >Min=0, Max= SDVO dependent</td> 2879 <td valign="top" >Connector</td> 2880 <td valign="top" >TBD</td> 2881 </tr> 2882 <tr> 2883 <td valign="top" >"top_margin"</td> 2884 <td valign="top" >RANGE</td> 2885 <td valign="top" >Min=0, Max= SDVO dependent</td> 2886 <td valign="top" >Connector</td> 2887 <td valign="top" >TBD</td> 2888 </tr> 2889 <tr> 2890 <td valign="top" >"bottom_margin"</td> 2891 <td valign="top" >RANGE</td> 2892 <td valign="top" >Min=0, Max= SDVO dependent</td> 2893 <td valign="top" >Connector</td> 2894 <td valign="top" >TBD</td> 2895 </tr> 2896 <tr> 2897 <td valign="top" >“hpos”</td> 2898 <td valign="top" >RANGE</td> 2899 <td valign="top" >Min=0, Max= SDVO dependent</td> 2900 <td valign="top" >Connector</td> 2901 <td valign="top" >TBD</td> 2902 </tr> 2903 <tr> 2904 <td valign="top" >“vpos”</td> 2905 <td valign="top" >RANGE</td> 2906 <td valign="top" >Min=0, Max= SDVO dependent</td> 2907 <td valign="top" >Connector</td> 2908 <td valign="top" >TBD</td> 2909 </tr> 2910 <tr> 2911 <td valign="top" >“contrast”</td> 2912 <td valign="top" >RANGE</td> 2913 <td valign="top" >Min=0, Max= SDVO dependent</td> 2914 <td valign="top" >Connector</td> 2915 <td valign="top" >TBD</td> 2916 </tr> 2917 <tr> 2918 <td valign="top" >“saturation”</td> 2919 <td valign="top" >RANGE</td> 2920 <td valign="top" >Min=0, Max= SDVO dependent</td> 2921 <td valign="top" >Connector</td> 2922 <td valign="top" >TBD</td> 2923 </tr> 2924 <tr> 2925 <td valign="top" >“hue”</td> 2926 <td valign="top" >RANGE</td> 2927 <td valign="top" >Min=0, Max= SDVO dependent</td> 2928 <td valign="top" >Connector</td> 2929 <td valign="top" >TBD</td> 2930 </tr> 2931 <tr> 2932 <td valign="top" >“sharpness”</td> 2933 <td valign="top" >RANGE</td> 2934 <td valign="top" >Min=0, Max= SDVO dependent</td> 2935 <td valign="top" >Connector</td> 2936 <td valign="top" >TBD</td> 2937 </tr> 2938 <tr> 2939 <td valign="top" >“flicker_filter”</td> 2940 <td valign="top" >RANGE</td> 2941 <td valign="top" >Min=0, Max= SDVO dependent</td> 2942 <td valign="top" >Connector</td> 2943 <td valign="top" >TBD</td> 2944 </tr> 2945 <tr> 2946 <td valign="top" >“flicker_filter_adaptive”</td> 2947 <td valign="top" >RANGE</td> 2948 <td valign="top" >Min=0, Max= SDVO dependent</td> 2949 <td valign="top" >Connector</td> 2950 <td valign="top" >TBD</td> 2951 </tr> 2952 <tr> 2953 <td valign="top" >“flicker_filter_2d”</td> 2954 <td valign="top" >RANGE</td> 2955 <td valign="top" >Min=0, Max= SDVO dependent</td> 2956 <td valign="top" >Connector</td> 2957 <td valign="top" >TBD</td> 2958 </tr> 2959 <tr> 2960 <td valign="top" >“tv_chroma_filter”</td> 2961 <td valign="top" >RANGE</td> 2962 <td valign="top" >Min=0, Max= SDVO dependent</td> 2963 <td valign="top" >Connector</td> 2964 <td valign="top" >TBD</td> 2965 </tr> 2966 <tr> 2967 <td valign="top" >“tv_luma_filter”</td> 2968 <td valign="top" >RANGE</td> 2969 <td valign="top" >Min=0, Max= SDVO dependent</td> 2970 <td valign="top" >Connector</td> 2971 <td valign="top" >TBD</td> 2972 </tr> 2973 <tr> 2974 <td valign="top" >“dot_crawl”</td> 2975 <td valign="top" >RANGE</td> 2976 <td valign="top" >Min=0, Max=1</td> 2977 <td valign="top" >Connector</td> 2978 <td valign="top" >TBD</td> 2979 </tr> 2980 <tr> 2981 <td valign="top" >SDVO-TV/LVDS</td> 2982 <td valign="top" >“brightness”</td> 2983 <td valign="top" >RANGE</td> 2984 <td valign="top" >Min=0, Max= SDVO dependent</td> 2985 <td valign="top" >Connector</td> 2986 <td valign="top" >TBD</td> 2987 </tr> 2988 <tr> 2989 <td rowspan="2" valign="top" >CDV gma-500</td> 2990 <td rowspan="2" valign="top" >Generic</td> 2991 <td valign="top" >"Broadcast RGB"</td> 2992 <td valign="top" >ENUM</td> 2993 <td valign="top" >{ “Full”, “Limited 16:235” }</td> 2994 <td valign="top" >Connector</td> 2995 <td valign="top" >TBD</td> 2996 </tr> 2997 <tr> 2998 <td valign="top" >"Broadcast RGB"</td> 2999 <td valign="top" >ENUM</td> 3000 <td valign="top" >{ “off”, “auto”, “on” }</td> 3001 <td valign="top" >Connector</td> 3002 <td valign="top" >TBD</td> 3003 </tr> 3004 <tr> 3005 <td rowspan="19" valign="top" >Poulsbo</td> 3006 <td rowspan="1" valign="top" >Generic</td> 3007 <td valign="top" >“backlight”</td> 3008 <td valign="top" >RANGE</td> 3009 <td valign="top" >Min=0, Max=100</td> 3010 <td valign="top" >Connector</td> 3011 <td valign="top" >TBD</td> 3012 </tr> 3013 <tr> 3014 <td rowspan="17" valign="top" >SDVO-TV</td> 3015 <td valign="top" >“mode”</td> 3016 <td valign="top" >ENUM</td> 3017 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td> 3018 <td valign="top" >Connector</td> 3019 <td valign="top" >TBD</td> 3020 </tr> 3021 <tr> 3022 <td valign="top" >"left_margin"</td> 3023 <td valign="top" >RANGE</td> 3024 <td valign="top" >Min=0, Max= SDVO dependent</td> 3025 <td valign="top" >Connector</td> 3026 <td valign="top" >TBD</td> 3027 </tr> 3028 <tr> 3029 <td valign="top" >"right_margin"</td> 3030 <td valign="top" >RANGE</td> 3031 <td valign="top" >Min=0, Max= SDVO dependent</td> 3032 <td valign="top" >Connector</td> 3033 <td valign="top" >TBD</td> 3034 </tr> 3035 <tr> 3036 <td valign="top" >"top_margin"</td> 3037 <td valign="top" >RANGE</td> 3038 <td valign="top" >Min=0, Max= SDVO dependent</td> 3039 <td valign="top" >Connector</td> 3040 <td valign="top" >TBD</td> 3041 </tr> 3042 <tr> 3043 <td valign="top" >"bottom_margin"</td> 3044 <td valign="top" >RANGE</td> 3045 <td valign="top" >Min=0, Max= SDVO dependent</td> 3046 <td valign="top" >Connector</td> 3047 <td valign="top" >TBD</td> 3048 </tr> 3049 <tr> 3050 <td valign="top" >“hpos”</td> 3051 <td valign="top" >RANGE</td> 3052 <td valign="top" >Min=0, Max= SDVO dependent</td> 3053 <td valign="top" >Connector</td> 3054 <td valign="top" >TBD</td> 3055 </tr> 3056 <tr> 3057 <td valign="top" >“vpos”</td> 3058 <td valign="top" >RANGE</td> 3059 <td valign="top" >Min=0, Max= SDVO dependent</td> 3060 <td valign="top" >Connector</td> 3061 <td valign="top" >TBD</td> 3062 </tr> 3063 <tr> 3064 <td valign="top" >“contrast”</td> 3065 <td valign="top" >RANGE</td> 3066 <td valign="top" >Min=0, Max= SDVO dependent</td> 3067 <td valign="top" >Connector</td> 3068 <td valign="top" >TBD</td> 3069 </tr> 3070 <tr> 3071 <td valign="top" >“saturation”</td> 3072 <td valign="top" >RANGE</td> 3073 <td valign="top" >Min=0, Max= SDVO dependent</td> 3074 <td valign="top" >Connector</td> 3075 <td valign="top" >TBD</td> 3076 </tr> 3077 <tr> 3078 <td valign="top" >“hue”</td> 3079 <td valign="top" >RANGE</td> 3080 <td valign="top" >Min=0, Max= SDVO dependent</td> 3081 <td valign="top" >Connector</td> 3082 <td valign="top" >TBD</td> 3083 </tr> 3084 <tr> 3085 <td valign="top" >“sharpness”</td> 3086 <td valign="top" >RANGE</td> 3087 <td valign="top" >Min=0, Max= SDVO dependent</td> 3088 <td valign="top" >Connector</td> 3089 <td valign="top" >TBD</td> 3090 </tr> 3091 <tr> 3092 <td valign="top" >“flicker_filter”</td> 3093 <td valign="top" >RANGE</td> 3094 <td valign="top" >Min=0, Max= SDVO dependent</td> 3095 <td valign="top" >Connector</td> 3096 <td valign="top" >TBD</td> 3097 </tr> 3098 <tr> 3099 <td valign="top" >“flicker_filter_adaptive”</td> 3100 <td valign="top" >RANGE</td> 3101 <td valign="top" >Min=0, Max= SDVO dependent</td> 3102 <td valign="top" >Connector</td> 3103 <td valign="top" >TBD</td> 3104 </tr> 3105 <tr> 3106 <td valign="top" >“flicker_filter_2d”</td> 3107 <td valign="top" >RANGE</td> 3108 <td valign="top" >Min=0, Max= SDVO dependent</td> 3109 <td valign="top" >Connector</td> 3110 <td valign="top" >TBD</td> 3111 </tr> 3112 <tr> 3113 <td valign="top" >“tv_chroma_filter”</td> 3114 <td valign="top" >RANGE</td> 3115 <td valign="top" >Min=0, Max= SDVO dependent</td> 3116 <td valign="top" >Connector</td> 3117 <td valign="top" >TBD</td> 3118 </tr> 3119 <tr> 3120 <td valign="top" >“tv_luma_filter”</td> 3121 <td valign="top" >RANGE</td> 3122 <td valign="top" >Min=0, Max= SDVO dependent</td> 3123 <td valign="top" >Connector</td> 3124 <td valign="top" >TBD</td> 3125 </tr> 3126 <tr> 3127 <td valign="top" >“dot_crawl”</td> 3128 <td valign="top" >RANGE</td> 3129 <td valign="top" >Min=0, Max=1</td> 3130 <td valign="top" >Connector</td> 3131 <td valign="top" >TBD</td> 3132 </tr> 3133 <tr> 3134 <td valign="top" >SDVO-TV/LVDS</td> 3135 <td valign="top" >“brightness”</td> 3136 <td valign="top" >RANGE</td> 3137 <td valign="top" >Min=0, Max= SDVO dependent</td> 3138 <td valign="top" >Connector</td> 3139 <td valign="top" >TBD</td> 3140 </tr> 3141 <tr> 3142 <td rowspan="11" valign="top" >armada</td> 3143 <td rowspan="2" valign="top" >CRTC</td> 3144 <td valign="top" >"CSC_YUV"</td> 3145 <td valign="top" >ENUM</td> 3146 <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td> 3147 <td valign="top" >CRTC</td> 3148 <td valign="top" >TBD</td> 3149 </tr> 3150 <tr> 3151 <td valign="top" >"CSC_RGB"</td> 3152 <td valign="top" >ENUM</td> 3153 <td valign="top" >{ "Auto", "Computer system", "Studio" }</td> 3154 <td valign="top" >CRTC</td> 3155 <td valign="top" >TBD</td> 3156 </tr> 3157 <tr> 3158 <td rowspan="9" valign="top" >Overlay</td> 3159 <td valign="top" >"colorkey"</td> 3160 <td valign="top" >RANGE</td> 3161 <td valign="top" >Min=0, Max=0xffffff</td> 3162 <td valign="top" >Plane</td> 3163 <td valign="top" >TBD</td> 3164 </tr> 3165 <tr> 3166 <td valign="top" >"colorkey_min"</td> 3167 <td valign="top" >RANGE</td> 3168 <td valign="top" >Min=0, Max=0xffffff</td> 3169 <td valign="top" >Plane</td> 3170 <td valign="top" >TBD</td> 3171 </tr> 3172 <tr> 3173 <td valign="top" >"colorkey_max"</td> 3174 <td valign="top" >RANGE</td> 3175 <td valign="top" >Min=0, Max=0xffffff</td> 3176 <td valign="top" >Plane</td> 3177 <td valign="top" >TBD</td> 3178 </tr> 3179 <tr> 3180 <td valign="top" >"colorkey_val"</td> 3181 <td valign="top" >RANGE</td> 3182 <td valign="top" >Min=0, Max=0xffffff</td> 3183 <td valign="top" >Plane</td> 3184 <td valign="top" >TBD</td> 3185 </tr> 3186 <tr> 3187 <td valign="top" >"colorkey_alpha"</td> 3188 <td valign="top" >RANGE</td> 3189 <td valign="top" >Min=0, Max=0xffffff</td> 3190 <td valign="top" >Plane</td> 3191 <td valign="top" >TBD</td> 3192 </tr> 3193 <tr> 3194 <td valign="top" >"colorkey_mode"</td> 3195 <td valign="top" >ENUM</td> 3196 <td valign="top" >{ "disabled", "Y component", "U component" 3197 , "V component", "RGB", “R component", "G component", "B component" }</td> 3198 <td valign="top" >Plane</td> 3199 <td valign="top" >TBD</td> 3200 </tr> 3201 <tr> 3202 <td valign="top" >"brightness"</td> 3203 <td valign="top" >RANGE</td> 3204 <td valign="top" >Min=0, Max=256 + 255</td> 3205 <td valign="top" >Plane</td> 3206 <td valign="top" >TBD</td> 3207 </tr> 3208 <tr> 3209 <td valign="top" >"contrast"</td> 3210 <td valign="top" >RANGE</td> 3211 <td valign="top" >Min=0, Max=0x7fff</td> 3212 <td valign="top" >Plane</td> 3213 <td valign="top" >TBD</td> 3214 </tr> 3215 <tr> 3216 <td valign="top" >"saturation"</td> 3217 <td valign="top" >RANGE</td> 3218 <td valign="top" >Min=0, Max=0x7fff</td> 3219 <td valign="top" >Plane</td> 3220 <td valign="top" >TBD</td> 3221 </tr> 3222 <tr> 3223 <td rowspan="2" valign="top" >exynos</td> 3224 <td valign="top" >CRTC</td> 3225 <td valign="top" >“mode”</td> 3226 <td valign="top" >ENUM</td> 3227 <td valign="top" >{ "normal", "blank" }</td> 3228 <td valign="top" >CRTC</td> 3229 <td valign="top" >TBD</td> 3230 </tr> 3231 <tr> 3232 <td valign="top" >Overlay</td> 3233 <td valign="top" >“zpos”</td> 3234 <td valign="top" >RANGE</td> 3235 <td valign="top" >Min=0, Max=MAX_PLANE-1</td> 3236 <td valign="top" >Plane</td> 3237 <td valign="top" >TBD</td> 3238 </tr> 3239 <tr> 3240 <td rowspan="2" valign="top" >i2c/ch7006_drv</td> 3241 <td valign="top" >Generic</td> 3242 <td valign="top" >“scale”</td> 3243 <td valign="top" >RANGE</td> 3244 <td valign="top" >Min=0, Max=2</td> 3245 <td valign="top" >Connector</td> 3246 <td valign="top" >TBD</td> 3247 </tr> 3248 <tr> 3249 <td rowspan="1" valign="top" >TV</td> 3250 <td valign="top" >“mode”</td> 3251 <td valign="top" >ENUM</td> 3252 <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc" 3253 , "PAL-60", "NTSC-M", "NTSC-J" }</td> 3254 <td valign="top" >Connector</td> 3255 <td valign="top" >TBD</td> 3256 </tr> 3257 <tr> 3258 <td rowspan="15" valign="top" >nouveau</td> 3259 <td rowspan="6" valign="top" >NV10 Overlay</td> 3260 <td valign="top" >"colorkey"</td> 3261 <td valign="top" >RANGE</td> 3262 <td valign="top" >Min=0, Max=0x01ffffff</td> 3263 <td valign="top" >Plane</td> 3264 <td valign="top" >TBD</td> 3265 </tr> 3266 <tr> 3267 <td valign="top" >“contrast”</td> 3268 <td valign="top" >RANGE</td> 3269 <td valign="top" >Min=0, Max=8192-1</td> 3270 <td valign="top" >Plane</td> 3271 <td valign="top" >TBD</td> 3272 </tr> 3273 <tr> 3274 <td valign="top" >“brightness”</td> 3275 <td valign="top" >RANGE</td> 3276 <td valign="top" >Min=0, Max=1024</td> 3277 <td valign="top" >Plane</td> 3278 <td valign="top" >TBD</td> 3279 </tr> 3280 <tr> 3281 <td valign="top" >“hue”</td> 3282 <td valign="top" >RANGE</td> 3283 <td valign="top" >Min=0, Max=359</td> 3284 <td valign="top" >Plane</td> 3285 <td valign="top" >TBD</td> 3286 </tr> 3287 <tr> 3288 <td valign="top" >“saturation”</td> 3289 <td valign="top" >RANGE</td> 3290 <td valign="top" >Min=0, Max=8192-1</td> 3291 <td valign="top" >Plane</td> 3292 <td valign="top" >TBD</td> 3293 </tr> 3294 <tr> 3295 <td valign="top" >“iturbt_709”</td> 3296 <td valign="top" >RANGE</td> 3297 <td valign="top" >Min=0, Max=1</td> 3298 <td valign="top" >Plane</td> 3299 <td valign="top" >TBD</td> 3300 </tr> 3301 <tr> 3302 <td rowspan="2" valign="top" >Nv04 Overlay</td> 3303 <td valign="top" >“colorkey”</td> 3304 <td valign="top" >RANGE</td> 3305 <td valign="top" >Min=0, Max=0x01ffffff</td> 3306 <td valign="top" >Plane</td> 3307 <td valign="top" >TBD</td> 3308 </tr> 3309 <tr> 3310 <td valign="top" >“brightness”</td> 3311 <td valign="top" >RANGE</td> 3312 <td valign="top" >Min=0, Max=1024</td> 3313 <td valign="top" >Plane</td> 3314 <td valign="top" >TBD</td> 3315 </tr> 3316 <tr> 3317 <td rowspan="7" valign="top" >Display</td> 3318 <td valign="top" >“dithering mode”</td> 3319 <td valign="top" >ENUM</td> 3320 <td valign="top" >{ "auto", "off", "on" }</td> 3321 <td valign="top" >Connector</td> 3322 <td valign="top" >TBD</td> 3323 </tr> 3324 <tr> 3325 <td valign="top" >“dithering depth”</td> 3326 <td valign="top" >ENUM</td> 3327 <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td> 3328 <td valign="top" >Connector</td> 3329 <td valign="top" >TBD</td> 3330 </tr> 3331 <tr> 3332 <td valign="top" >“underscan”</td> 3333 <td valign="top" >ENUM</td> 3334 <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td> 3335 <td valign="top" >Connector</td> 3336 <td valign="top" >TBD</td> 3337 </tr> 3338 <tr> 3339 <td valign="top" >“underscan hborder”</td> 3340 <td valign="top" >RANGE</td> 3341 <td valign="top" >Min=0, Max=128</td> 3342 <td valign="top" >Connector</td> 3343 <td valign="top" >TBD</td> 3344 </tr> 3345 <tr> 3346 <td valign="top" >“underscan vborder”</td> 3347 <td valign="top" >RANGE</td> 3348 <td valign="top" >Min=0, Max=128</td> 3349 <td valign="top" >Connector</td> 3350 <td valign="top" >TBD</td> 3351 </tr> 3352 <tr> 3353 <td valign="top" >“vibrant hue”</td> 3354 <td valign="top" >RANGE</td> 3355 <td valign="top" >Min=0, Max=180</td> 3356 <td valign="top" >Connector</td> 3357 <td valign="top" >TBD</td> 3358 </tr> 3359 <tr> 3360 <td valign="top" >“color vibrance”</td> 3361 <td valign="top" >RANGE</td> 3362 <td valign="top" >Min=0, Max=200</td> 3363 <td valign="top" >Connector</td> 3364 <td valign="top" >TBD</td> 3365 </tr> 3366 <tr> 3367 <td rowspan="2" valign="top" >omap</td> 3368 <td rowspan="2" valign="top" >Generic</td> 3369 <td valign="top" >“rotation”</td> 3370 <td valign="top" >BITMASK</td> 3371 <td valign="top" >{ 0, "rotate-0" }, 3372 { 1, "rotate-90" }, 3373 { 2, "rotate-180" }, 3374 { 3, "rotate-270" }, 3375 { 4, "reflect-x" }, 3376 { 5, "reflect-y" }</td> 3377 <td valign="top" >CRTC, Plane</td> 3378 <td valign="top" >TBD</td> 3379 </tr> 3380 <tr> 3381 <td valign="top" >“zorder”</td> 3382 <td valign="top" >RANGE</td> 3383 <td valign="top" >Min=0, Max=3</td> 3384 <td valign="top" >CRTC, Plane</td> 3385 <td valign="top" >TBD</td> 3386 </tr> 3387 <tr> 3388 <td valign="top" >qxl</td> 3389 <td valign="top" >Generic</td> 3390 <td valign="top" >“hotplug_mode_update"</td> 3391 <td valign="top" >RANGE</td> 3392 <td valign="top" >Min=0, Max=1</td> 3393 <td valign="top" >Connector</td> 3394 <td valign="top" >TBD</td> 3395 </tr> 3396 <tr> 3397 <td rowspan="9" valign="top" >radeon</td> 3398 <td valign="top" >DVI-I</td> 3399 <td valign="top" >“coherent”</td> 3400 <td valign="top" >RANGE</td> 3401 <td valign="top" >Min=0, Max=1</td> 3402 <td valign="top" >Connector</td> 3403 <td valign="top" >TBD</td> 3404 </tr> 3405 <tr> 3406 <td valign="top" >DAC enable load detect</td> 3407 <td valign="top" >“load detection”</td> 3408 <td valign="top" >RANGE</td> 3409 <td valign="top" >Min=0, Max=1</td> 3410 <td valign="top" >Connector</td> 3411 <td valign="top" >TBD</td> 3412 </tr> 3413 <tr> 3414 <td valign="top" >TV Standard</td> 3415 <td valign="top" >"tv standard"</td> 3416 <td valign="top" >ENUM</td> 3417 <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j" 3418 , "scart-pal", "pal-cn", "secam" }</td> 3419 <td valign="top" >Connector</td> 3420 <td valign="top" >TBD</td> 3421 </tr> 3422 <tr> 3423 <td valign="top" >legacy TMDS PLL detect</td> 3424 <td valign="top" >"tmds_pll"</td> 3425 <td valign="top" >ENUM</td> 3426 <td valign="top" >{ "driver", "bios" }</td> 3427 <td valign="top" >-</td> 3428 <td valign="top" >TBD</td> 3429 </tr> 3430 <tr> 3431 <td rowspan="3" valign="top" >Underscan</td> 3432 <td valign="top" >"underscan"</td> 3433 <td valign="top" >ENUM</td> 3434 <td valign="top" >{ "off", "on", "auto" }</td> 3435 <td valign="top" >Connector</td> 3436 <td valign="top" >TBD</td> 3437 </tr> 3438 <tr> 3439 <td valign="top" >"underscan hborder"</td> 3440 <td valign="top" >RANGE</td> 3441 <td valign="top" >Min=0, Max=128</td> 3442 <td valign="top" >Connector</td> 3443 <td valign="top" >TBD</td> 3444 </tr> 3445 <tr> 3446 <td valign="top" >"underscan vborder"</td> 3447 <td valign="top" >RANGE</td> 3448 <td valign="top" >Min=0, Max=128</td> 3449 <td valign="top" >Connector</td> 3450 <td valign="top" >TBD</td> 3451 </tr> 3452 <tr> 3453 <td valign="top" >Audio</td> 3454 <td valign="top" >“audio”</td> 3455 <td valign="top" >ENUM</td> 3456 <td valign="top" >{ "off", "on", "auto" }</td> 3457 <td valign="top" >Connector</td> 3458 <td valign="top" >TBD</td> 3459 </tr> 3460 <tr> 3461 <td valign="top" >FMT Dithering</td> 3462 <td valign="top" >“dither”</td> 3463 <td valign="top" >ENUM</td> 3464 <td valign="top" >{ "off", "on" }</td> 3465 <td valign="top" >Connector</td> 3466 <td valign="top" >TBD</td> 3467 </tr> 3468 <tr> 3469 <td rowspan="3" valign="top" >rcar-du</td> 3470 <td rowspan="3" valign="top" >Generic</td> 3471 <td valign="top" >"alpha"</td> 3472 <td valign="top" >RANGE</td> 3473 <td valign="top" >Min=0, Max=255</td> 3474 <td valign="top" >Plane</td> 3475 <td valign="top" >TBD</td> 3476 </tr> 3477 <tr> 3478 <td valign="top" >"colorkey"</td> 3479 <td valign="top" >RANGE</td> 3480 <td valign="top" >Min=0, Max=0x01ffffff</td> 3481 <td valign="top" >Plane</td> 3482 <td valign="top" >TBD</td> 3483 </tr> 3484 <tr> 3485 <td valign="top" >"zpos"</td> 3486 <td valign="top" >RANGE</td> 3487 <td valign="top" >Min=1, Max=7</td> 3488 <td valign="top" >Plane</td> 3489 <td valign="top" >TBD</td> 3490 </tr> 3491 </tbody> 3492 </table> 3493 </sect2> 3494 </sect1> 3495 3496 <!-- Internals: vertical blanking --> 3497 3498 <sect1 id="drm-vertical-blank"> 3499 <title>Vertical Blanking</title> 3500 <para> 3501 Vertical blanking plays a major role in graphics rendering. To achieve 3502 tear-free display, users must synchronize page flips and/or rendering to 3503 vertical blanking. The DRM API offers ioctls to perform page flips 3504 synchronized to vertical blanking and wait for vertical blanking. 3505 </para> 3506 <para> 3507 The DRM core handles most of the vertical blanking management logic, which 3508 involves filtering out spurious interrupts, keeping race-free blanking 3509 counters, coping with counter wrap-around and resets and keeping use 3510 counts. It relies on the driver to generate vertical blanking interrupts 3511 and optionally provide a hardware vertical blanking counter. Drivers must 3512 implement the following operations. 3513 </para> 3514 <itemizedlist> 3515 <listitem> 3516 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc); 3517void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis> 3518 <para> 3519 Enable or disable vertical blanking interrupts for the given CRTC. 3520 </para> 3521 </listitem> 3522 <listitem> 3523 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis> 3524 <para> 3525 Retrieve the value of the vertical blanking counter for the given 3526 CRTC. If the hardware maintains a vertical blanking counter its value 3527 should be returned. Otherwise drivers can use the 3528 <function>drm_vblank_count</function> helper function to handle this 3529 operation. 3530 </para> 3531 </listitem> 3532 </itemizedlist> 3533 <para> 3534 Drivers must initialize the vertical blanking handling core with a call to 3535 <function>drm_vblank_init</function> in their 3536 <methodname>load</methodname> operation. The function will set the struct 3537 <structname>drm_device</structname> 3538 <structfield>vblank_disable_allowed</structfield> field to 0. This will 3539 keep vertical blanking interrupts enabled permanently until the first mode 3540 set operation, where <structfield>vblank_disable_allowed</structfield> is 3541 set to 1. The reason behind this is not clear. Drivers can set the field 3542 to 1 after <function>calling drm_vblank_init</function> to make vertical 3543 blanking interrupts dynamically managed from the beginning. 3544 </para> 3545 <para> 3546 Vertical blanking interrupts can be enabled by the DRM core or by drivers 3547 themselves (for instance to handle page flipping operations). The DRM core 3548 maintains a vertical blanking use count to ensure that the interrupts are 3549 not disabled while a user still needs them. To increment the use count, 3550 drivers call <function>drm_vblank_get</function>. Upon return vertical 3551 blanking interrupts are guaranteed to be enabled. 3552 </para> 3553 <para> 3554 To decrement the use count drivers call 3555 <function>drm_vblank_put</function>. Only when the use count drops to zero 3556 will the DRM core disable the vertical blanking interrupts after a delay 3557 by scheduling a timer. The delay is accessible through the vblankoffdelay 3558 module parameter or the <varname>drm_vblank_offdelay</varname> global 3559 variable and expressed in milliseconds. Its default value is 5000 ms. 3560 Zero means never disable, and a negative value means disable immediately. 3561 Drivers may override the behaviour by setting the 3562 <structname>drm_device</structname> 3563 <structfield>vblank_disable_immediate</structfield> flag, which when set 3564 causes vblank interrupts to be disabled immediately regardless of the 3565 drm_vblank_offdelay value. The flag should only be set if there's a 3566 properly working hardware vblank counter present. 3567 </para> 3568 <para> 3569 When a vertical blanking interrupt occurs drivers only need to call the 3570 <function>drm_handle_vblank</function> function to account for the 3571 interrupt. 3572 </para> 3573 <para> 3574 Resources allocated by <function>drm_vblank_init</function> must be freed 3575 with a call to <function>drm_vblank_cleanup</function> in the driver 3576 <methodname>unload</methodname> operation handler. 3577 </para> 3578 <sect2> 3579 <title>Vertical Blanking and Interrupt Handling Functions Reference</title> 3580!Edrivers/gpu/drm/drm_irq.c 3581!Finclude/drm/drmP.h drm_crtc_vblank_waitqueue 3582 </sect2> 3583 </sect1> 3584 3585 <!-- Internals: open/close, file operations and ioctls --> 3586 3587 <sect1> 3588 <title>Open/Close, File Operations and IOCTLs</title> 3589 <sect2> 3590 <title>Open and Close</title> 3591 <synopsis>int (*firstopen) (struct drm_device *); 3592void (*lastclose) (struct drm_device *); 3593int (*open) (struct drm_device *, struct drm_file *); 3594void (*preclose) (struct drm_device *, struct drm_file *); 3595void (*postclose) (struct drm_device *, struct drm_file *);</synopsis> 3596 <abstract>Open and close handlers. None of those methods are mandatory. 3597 </abstract> 3598 <para> 3599 The <methodname>firstopen</methodname> method is called by the DRM core 3600 for legacy UMS (User Mode Setting) drivers only when an application 3601 opens a device that has no other opened file handle. UMS drivers can 3602 implement it to acquire device resources. KMS drivers can't use the 3603 method and must acquire resources in the <methodname>load</methodname> 3604 method instead. 3605 </para> 3606 <para> 3607 Similarly the <methodname>lastclose</methodname> method is called when 3608 the last application holding a file handle opened on the device closes 3609 it, for both UMS and KMS drivers. Additionally, the method is also 3610 called at module unload time or, for hot-pluggable devices, when the 3611 device is unplugged. The <methodname>firstopen</methodname> and 3612 <methodname>lastclose</methodname> calls can thus be unbalanced. 3613 </para> 3614 <para> 3615 The <methodname>open</methodname> method is called every time the device 3616 is opened by an application. Drivers can allocate per-file private data 3617 in this method and store them in the struct 3618 <structname>drm_file</structname> <structfield>driver_priv</structfield> 3619 field. Note that the <methodname>open</methodname> method is called 3620 before <methodname>firstopen</methodname>. 3621 </para> 3622 <para> 3623 The close operation is split into <methodname>preclose</methodname> and 3624 <methodname>postclose</methodname> methods. Drivers must stop and 3625 cleanup all per-file operations in the <methodname>preclose</methodname> 3626 method. For instance pending vertical blanking and page flip events must 3627 be cancelled. No per-file operation is allowed on the file handle after 3628 returning from the <methodname>preclose</methodname> method. 3629 </para> 3630 <para> 3631 Finally the <methodname>postclose</methodname> method is called as the 3632 last step of the close operation, right before calling the 3633 <methodname>lastclose</methodname> method if no other open file handle 3634 exists for the device. Drivers that have allocated per-file private data 3635 in the <methodname>open</methodname> method should free it here. 3636 </para> 3637 <para> 3638 The <methodname>lastclose</methodname> method should restore CRTC and 3639 plane properties to default value, so that a subsequent open of the 3640 device will not inherit state from the previous user. It can also be 3641 used to execute delayed power switching state changes, e.g. in 3642 conjunction with the vga-switcheroo infrastructure. Beyond that KMS 3643 drivers should not do any further cleanup. Only legacy UMS drivers might 3644 need to clean up device state so that the vga console or an independent 3645 fbdev driver could take over. 3646 </para> 3647 </sect2> 3648 <sect2> 3649 <title>File Operations</title> 3650 <synopsis>const struct file_operations *fops</synopsis> 3651 <abstract>File operations for the DRM device node.</abstract> 3652 <para> 3653 Drivers must define the file operations structure that forms the DRM 3654 userspace API entry point, even though most of those operations are 3655 implemented in the DRM core. The <methodname>open</methodname>, 3656 <methodname>release</methodname> and <methodname>ioctl</methodname> 3657 operations are handled by 3658 <programlisting> 3659 .owner = THIS_MODULE, 3660 .open = drm_open, 3661 .release = drm_release, 3662 .unlocked_ioctl = drm_ioctl, 3663 #ifdef CONFIG_COMPAT 3664 .compat_ioctl = drm_compat_ioctl, 3665 #endif 3666 </programlisting> 3667 </para> 3668 <para> 3669 Drivers that implement private ioctls that requires 32/64bit 3670 compatibility support must provide their own 3671 <methodname>compat_ioctl</methodname> handler that processes private 3672 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls. 3673 </para> 3674 <para> 3675 The <methodname>read</methodname> and <methodname>poll</methodname> 3676 operations provide support for reading DRM events and polling them. They 3677 are implemented by 3678 <programlisting> 3679 .poll = drm_poll, 3680 .read = drm_read, 3681 .llseek = no_llseek, 3682 </programlisting> 3683 </para> 3684 <para> 3685 The memory mapping implementation varies depending on how the driver 3686 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>, 3687 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See 3688 <xref linkend="drm-gem"/>. 3689 <programlisting> 3690 .mmap = drm_gem_mmap, 3691 </programlisting> 3692 </para> 3693 <para> 3694 No other file operation is supported by the DRM API. 3695 </para> 3696 </sect2> 3697 <sect2> 3698 <title>IOCTLs</title> 3699 <synopsis>struct drm_ioctl_desc *ioctls; 3700int num_ioctls;</synopsis> 3701 <abstract>Driver-specific ioctls descriptors table.</abstract> 3702 <para> 3703 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls 3704 descriptors table is indexed by the ioctl number offset from the base 3705 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the 3706 table entries. 3707 </para> 3708 <para> 3709 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting> 3710 <para> 3711 <parameter>ioctl</parameter> is the ioctl name. Drivers must define 3712 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number 3713 offset from DRM_COMMAND_BASE and the ioctl number respectively. The 3714 first macro is private to the device while the second must be exposed 3715 to userspace in a public header. 3716 </para> 3717 <para> 3718 <parameter>func</parameter> is a pointer to the ioctl handler function 3719 compatible with the <type>drm_ioctl_t</type> type. 3720 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data, 3721 struct drm_file *file_priv);</programlisting> 3722 </para> 3723 <para> 3724 <parameter>flags</parameter> is a bitmask combination of the following 3725 values. It restricts how the ioctl is allowed to be called. 3726 <itemizedlist> 3727 <listitem><para> 3728 DRM_AUTH - Only authenticated callers allowed 3729 </para></listitem> 3730 <listitem><para> 3731 DRM_MASTER - The ioctl can only be called on the master file 3732 handle 3733 </para></listitem> 3734 <listitem><para> 3735 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed 3736 </para></listitem> 3737 <listitem><para> 3738 DRM_CONTROL_ALLOW - The ioctl can only be called on a control 3739 device 3740 </para></listitem> 3741 <listitem><para> 3742 DRM_UNLOCKED - The ioctl handler will be called without locking 3743 the DRM global mutex 3744 </para></listitem> 3745 </itemizedlist> 3746 </para> 3747 </para> 3748 </sect2> 3749 </sect1> 3750 <sect1> 3751 <title>Legacy Support Code</title> 3752 <para> 3753 The section very briefly covers some of the old legacy support code which 3754 is only used by old DRM drivers which have done a so-called shadow-attach 3755 to the underlying device instead of registering as a real driver. This 3756 also includes some of the old generic buffer management and command 3757 submission code. Do not use any of this in new and modern drivers. 3758 </para> 3759 3760 <sect2> 3761 <title>Legacy Suspend/Resume</title> 3762 <para> 3763 The DRM core provides some suspend/resume code, but drivers wanting full 3764 suspend/resume support should provide save() and restore() functions. 3765 These are called at suspend, hibernate, or resume time, and should perform 3766 any state save or restore required by your device across suspend or 3767 hibernate states. 3768 </para> 3769 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state); 3770 int (*resume) (struct drm_device *);</synopsis> 3771 <para> 3772 Those are legacy suspend and resume methods which 3773 <emphasis>only</emphasis> work with the legacy shadow-attach driver 3774 registration functions. New driver should use the power management 3775 interface provided by their bus type (usually through 3776 the struct <structname>device_driver</structname> dev_pm_ops) and set 3777 these methods to NULL. 3778 </para> 3779 </sect2> 3780 3781 <sect2> 3782 <title>Legacy DMA Services</title> 3783 <para> 3784 This should cover how DMA mapping etc. is supported by the core. 3785 These functions are deprecated and should not be used. 3786 </para> 3787 </sect2> 3788 </sect1> 3789 </chapter> 3790 3791<!-- TODO 3792 3793- Add a glossary 3794- Document the struct_mutex catch-all lock 3795- Document connector properties 3796 3797- Why is the load method optional? 3798- What are drivers supposed to set the initial display state to, and how? 3799 Connector's DPMS states are not initialized and are thus equal to 3800 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls 3801 drm_helper_disable_unused_functions(), which disables unused encoders and 3802 CRTCs, but doesn't touch the connectors' DPMS state, and 3803 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers 3804 that don't implement (or just don't use) fbcon compatibility need to call 3805 those functions themselves? 3806- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset() 3807 around mode setting. Should this be done in the DRM core? 3808- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset() 3809 call and never set back to 0. It seems to be safe to permanently set it to 1 3810 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as 3811 well. This should be investigated. 3812- crtc and connector .save and .restore operations are only used internally in 3813 drivers, should they be removed from the core? 3814- encoder mid-layer .save and .restore operations are only used internally in 3815 drivers, should they be removed from the core? 3816- encoder mid-layer .detect operation is only used internally in drivers, 3817 should it be removed from the core? 3818--> 3819 3820 <!-- External interfaces --> 3821 3822 <chapter id="drmExternals"> 3823 <title>Userland interfaces</title> 3824 <para> 3825 The DRM core exports several interfaces to applications, 3826 generally intended to be used through corresponding libdrm 3827 wrapper functions. In addition, drivers export device-specific 3828 interfaces for use by userspace drivers & device-aware 3829 applications through ioctls and sysfs files. 3830 </para> 3831 <para> 3832 External interfaces include: memory mapping, context management, 3833 DMA operations, AGP management, vblank control, fence 3834 management, memory management, and output management. 3835 </para> 3836 <para> 3837 Cover generic ioctls and sysfs layout here. We only need high-level 3838 info, since man pages should cover the rest. 3839 </para> 3840 3841 <!-- External: render nodes --> 3842 3843 <sect1> 3844 <title>Render nodes</title> 3845 <para> 3846 DRM core provides multiple character-devices for user-space to use. 3847 Depending on which device is opened, user-space can perform a different 3848 set of operations (mainly ioctls). The primary node is always created 3849 and called card<num>. Additionally, a currently 3850 unused control node, called controlD<num> is also 3851 created. The primary node provides all legacy operations and 3852 historically was the only interface used by userspace. With KMS, the 3853 control node was introduced. However, the planned KMS control interface 3854 has never been written and so the control node stays unused to date. 3855 </para> 3856 <para> 3857 With the increased use of offscreen renderers and GPGPU applications, 3858 clients no longer require running compositors or graphics servers to 3859 make use of a GPU. But the DRM API required unprivileged clients to 3860 authenticate to a DRM-Master prior to getting GPU access. To avoid this 3861 step and to grant clients GPU access without authenticating, render 3862 nodes were introduced. Render nodes solely serve render clients, that 3863 is, no modesetting or privileged ioctls can be issued on render nodes. 3864 Only non-global rendering commands are allowed. If a driver supports 3865 render nodes, it must advertise it via the DRIVER_RENDER 3866 DRM driver capability. If not supported, the primary node must be used 3867 for render clients together with the legacy drmAuth authentication 3868 procedure. 3869 </para> 3870 <para> 3871 If a driver advertises render node support, DRM core will create a 3872 separate render node called renderD<num>. There will 3873 be one render node per device. No ioctls except PRIME-related ioctls 3874 will be allowed on this node. Especially GEM_OPEN will be 3875 explicitly prohibited. Render nodes are designed to avoid the 3876 buffer-leaks, which occur if clients guess the flink names or mmap 3877 offsets on the legacy interface. Additionally to this basic interface, 3878 drivers must mark their driver-dependent render-only ioctls as 3879 DRM_RENDER_ALLOW so render clients can use them. Driver 3880 authors must be careful not to allow any privileged ioctls on render 3881 nodes. 3882 </para> 3883 <para> 3884 With render nodes, user-space can now control access to the render node 3885 via basic file-system access-modes. A running graphics server which 3886 authenticates clients on the privileged primary/legacy node is no longer 3887 required. Instead, a client can open the render node and is immediately 3888 granted GPU access. Communication between clients (or servers) is done 3889 via PRIME. FLINK from render node to legacy node is not supported. New 3890 clients must not use the insecure FLINK interface. 3891 </para> 3892 <para> 3893 Besides dropping all modeset/global ioctls, render nodes also drop the 3894 DRM-Master concept. There is no reason to associate render clients with 3895 a DRM-Master as they are independent of any graphics server. Besides, 3896 they must work without any running master, anyway. 3897 Drivers must be able to run without a master object if they support 3898 render nodes. If, on the other hand, a driver requires shared state 3899 between clients which is visible to user-space and accessible beyond 3900 open-file boundaries, they cannot support render nodes. 3901 </para> 3902 </sect1> 3903 3904 <!-- External: vblank handling --> 3905 3906 <sect1> 3907 <title>VBlank event handling</title> 3908 <para> 3909 The DRM core exposes two vertical blank related ioctls: 3910 <variablelist> 3911 <varlistentry> 3912 <term>DRM_IOCTL_WAIT_VBLANK</term> 3913 <listitem> 3914 <para> 3915 This takes a struct drm_wait_vblank structure as its argument, 3916 and it is used to block or request a signal when a specified 3917 vblank event occurs. 3918 </para> 3919 </listitem> 3920 </varlistentry> 3921 <varlistentry> 3922 <term>DRM_IOCTL_MODESET_CTL</term> 3923 <listitem> 3924 <para> 3925 This was only used for user-mode-settind drivers around 3926 modesetting changes to allow the kernel to update the vblank 3927 interrupt after mode setting, since on many devices the vertical 3928 blank counter is reset to 0 at some point during modeset. Modern 3929 drivers should not call this any more since with kernel mode 3930 setting it is a no-op. 3931 </para> 3932 </listitem> 3933 </varlistentry> 3934 </variablelist> 3935 </para> 3936 </sect1> 3937 3938 </chapter> 3939</part> 3940<part id="drmDrivers"> 3941 <title>DRM Drivers</title> 3942 3943 <partintro> 3944 <para> 3945 This second part of the DRM Developer's Guide documents driver code, 3946 implementation details and also all the driver-specific userspace 3947 interfaces. Especially since all hardware-acceleration interfaces to 3948 userspace are driver specific for efficiency and other reasons these 3949 interfaces can be rather substantial. Hence every driver has its own 3950 chapter. 3951 </para> 3952 </partintro> 3953 3954 <chapter id="drmI915"> 3955 <title>drm/i915 Intel GFX Driver</title> 3956 <para> 3957 The drm/i915 driver supports all (with the exception of some very early 3958 models) integrated GFX chipsets with both Intel display and rendering 3959 blocks. This excludes a set of SoC platforms with an SGX rendering unit, 3960 those have basic support through the gma500 drm driver. 3961 </para> 3962 <sect1> 3963 <title>Core Driver Infrastructure</title> 3964 <para> 3965 This section covers core driver infrastructure used by both the display 3966 and the GEM parts of the driver. 3967 </para> 3968 <sect2> 3969 <title>Runtime Power Management</title> 3970!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm 3971!Idrivers/gpu/drm/i915/intel_runtime_pm.c 3972!Idrivers/gpu/drm/i915/intel_uncore.c 3973 </sect2> 3974 <sect2> 3975 <title>Interrupt Handling</title> 3976!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling 3977!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init 3978!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_fini 3979!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts 3980!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts 3981 </sect2> 3982 <sect2> 3983 <title>Intel GVT-g Guest Support(vGPU)</title> 3984!Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support 3985!Idrivers/gpu/drm/i915/i915_vgpu.c 3986 </sect2> 3987 </sect1> 3988 <sect1> 3989 <title>Display Hardware Handling</title> 3990 <para> 3991 This section covers everything related to the display hardware including 3992 the mode setting infrastructure, plane, sprite and cursor handling and 3993 display, output probing and related topics. 3994 </para> 3995 <sect2> 3996 <title>Mode Setting Infrastructure</title> 3997 <para> 3998 The i915 driver is thus far the only DRM driver which doesn't use the 3999 common DRM helper code to implement mode setting sequences. Thus it 4000 has its own tailor-made infrastructure for executing a display 4001 configuration change. 4002 </para> 4003 </sect2> 4004 <sect2> 4005 <title>Frontbuffer Tracking</title> 4006!Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking 4007!Idrivers/gpu/drm/i915/intel_frontbuffer.c 4008!Fdrivers/gpu/drm/i915/intel_drv.h intel_frontbuffer_flip 4009!Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb 4010 </sect2> 4011 <sect2> 4012 <title>Display FIFO Underrun Reporting</title> 4013!Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling 4014!Idrivers/gpu/drm/i915/intel_fifo_underrun.c 4015 </sect2> 4016 <sect2> 4017 <title>Plane Configuration</title> 4018 <para> 4019 This section covers plane configuration and composition with the 4020 primary plane, sprites, cursors and overlays. This includes the 4021 infrastructure to do atomic vsync'ed updates of all this state and 4022 also tightly coupled topics like watermark setup and computation, 4023 framebuffer compression and panel self refresh. 4024 </para> 4025 </sect2> 4026 <sect2> 4027 <title>Atomic Plane Helpers</title> 4028!Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers 4029!Idrivers/gpu/drm/i915/intel_atomic_plane.c 4030 </sect2> 4031 <sect2> 4032 <title>Output Probing</title> 4033 <para> 4034 This section covers output probing and related infrastructure like the 4035 hotplug interrupt storm detection and mitigation code. Note that the 4036 i915 driver still uses most of the common DRM helper code for output 4037 probing, so those sections fully apply. 4038 </para> 4039 </sect2> 4040 <sect2> 4041 <title>High Definition Audio</title> 4042!Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port 4043!Idrivers/gpu/drm/i915/intel_audio.c 4044 </sect2> 4045 <sect2> 4046 <title>Panel Self Refresh PSR (PSR/SRD)</title> 4047!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD) 4048!Idrivers/gpu/drm/i915/intel_psr.c 4049 </sect2> 4050 <sect2> 4051 <title>Frame Buffer Compression (FBC)</title> 4052!Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC) 4053!Idrivers/gpu/drm/i915/intel_fbc.c 4054 </sect2> 4055 <sect2> 4056 <title>Display Refresh Rate Switching (DRRS)</title> 4057!Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS) 4058!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state 4059!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable 4060!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable 4061!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate 4062!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush 4063!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init 4064 4065 </sect2> 4066 <sect2> 4067 <title>DPIO</title> 4068!Pdrivers/gpu/drm/i915/i915_reg.h DPIO 4069 <table id="dpiox2"> 4070 <title>Dual channel PHY (VLV/CHV)</title> 4071 <tgroup cols="8"> 4072 <colspec colname="c0" /> 4073 <colspec colname="c1" /> 4074 <colspec colname="c2" /> 4075 <colspec colname="c3" /> 4076 <colspec colname="c4" /> 4077 <colspec colname="c5" /> 4078 <colspec colname="c6" /> 4079 <colspec colname="c7" /> 4080 <spanspec spanname="ch0" namest="c0" nameend="c3" /> 4081 <spanspec spanname="ch1" namest="c4" nameend="c7" /> 4082 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" /> 4083 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" /> 4084 <spanspec spanname="ch1pcs01" namest="c4" nameend="c5" /> 4085 <spanspec spanname="ch1pcs23" namest="c6" nameend="c7" /> 4086 <thead> 4087 <row> 4088 <entry spanname="ch0">CH0</entry> 4089 <entry spanname="ch1">CH1</entry> 4090 </row> 4091 </thead> 4092 <tbody valign="top" align="center"> 4093 <row> 4094 <entry spanname="ch0">CMN/PLL/REF</entry> 4095 <entry spanname="ch1">CMN/PLL/REF</entry> 4096 </row> 4097 <row> 4098 <entry spanname="ch0pcs01">PCS01</entry> 4099 <entry spanname="ch0pcs23">PCS23</entry> 4100 <entry spanname="ch1pcs01">PCS01</entry> 4101 <entry spanname="ch1pcs23">PCS23</entry> 4102 </row> 4103 <row> 4104 <entry>TX0</entry> 4105 <entry>TX1</entry> 4106 <entry>TX2</entry> 4107 <entry>TX3</entry> 4108 <entry>TX0</entry> 4109 <entry>TX1</entry> 4110 <entry>TX2</entry> 4111 <entry>TX3</entry> 4112 </row> 4113 <row> 4114 <entry spanname="ch0">DDI0</entry> 4115 <entry spanname="ch1">DDI1</entry> 4116 </row> 4117 </tbody> 4118 </tgroup> 4119 </table> 4120 <table id="dpiox1"> 4121 <title>Single channel PHY (CHV)</title> 4122 <tgroup cols="4"> 4123 <colspec colname="c0" /> 4124 <colspec colname="c1" /> 4125 <colspec colname="c2" /> 4126 <colspec colname="c3" /> 4127 <spanspec spanname="ch0" namest="c0" nameend="c3" /> 4128 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" /> 4129 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" /> 4130 <thead> 4131 <row> 4132 <entry spanname="ch0">CH0</entry> 4133 </row> 4134 </thead> 4135 <tbody valign="top" align="center"> 4136 <row> 4137 <entry spanname="ch0">CMN/PLL/REF</entry> 4138 </row> 4139 <row> 4140 <entry spanname="ch0pcs01">PCS01</entry> 4141 <entry spanname="ch0pcs23">PCS23</entry> 4142 </row> 4143 <row> 4144 <entry>TX0</entry> 4145 <entry>TX1</entry> 4146 <entry>TX2</entry> 4147 <entry>TX3</entry> 4148 </row> 4149 <row> 4150 <entry spanname="ch0">DDI2</entry> 4151 </row> 4152 </tbody> 4153 </tgroup> 4154 </table> 4155 </sect2> 4156 </sect1> 4157 4158 <sect1> 4159 <title>Memory Management and Command Submission</title> 4160 <para> 4161 This sections covers all things related to the GEM implementation in the 4162 i915 driver. 4163 </para> 4164 <sect2> 4165 <title>Batchbuffer Parsing</title> 4166!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser 4167!Idrivers/gpu/drm/i915/i915_cmd_parser.c 4168 </sect2> 4169 <sect2> 4170 <title>Batchbuffer Pools</title> 4171!Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool 4172!Idrivers/gpu/drm/i915/i915_gem_batch_pool.c 4173 </sect2> 4174 <sect2> 4175 <title>Logical Rings, Logical Ring Contexts and Execlists</title> 4176!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists 4177!Idrivers/gpu/drm/i915/intel_lrc.c 4178 </sect2> 4179 <sect2> 4180 <title>Global GTT views</title> 4181!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views 4182!Idrivers/gpu/drm/i915/i915_gem_gtt.c 4183 </sect2> 4184 <sect2> 4185 <title>Buffer Object Eviction</title> 4186 <para> 4187 This section documents the interface functions for evicting buffer 4188 objects to make space available in the virtual gpu address spaces. 4189 Note that this is mostly orthogonal to shrinking buffer objects 4190 caches, which has the goal to make main memory (shared with the gpu 4191 through the unified memory architecture) available. 4192 </para> 4193!Idrivers/gpu/drm/i915/i915_gem_evict.c 4194 </sect2> 4195 <sect2> 4196 <title>Buffer Object Memory Shrinking</title> 4197 <para> 4198 This section documents the interface function for shrinking memory 4199 usage of buffer object caches. Shrinking is used to make main memory 4200 available. Note that this is mostly orthogonal to evicting buffer 4201 objects, which has the goal to make space in gpu virtual address 4202 spaces. 4203 </para> 4204!Idrivers/gpu/drm/i915/i915_gem_shrinker.c 4205 </sect2> 4206 </sect1> 4207 4208 <sect1> 4209 <title> Tracing </title> 4210 <para> 4211 This sections covers all things related to the tracepoints implemented in 4212 the i915 driver. 4213 </para> 4214 <sect2> 4215 <title> i915_ppgtt_create and i915_ppgtt_release </title> 4216!Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints 4217 </sect2> 4218 <sect2> 4219 <title> i915_context_create and i915_context_free </title> 4220!Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints 4221 </sect2> 4222 <sect2> 4223 <title> switch_mm </title> 4224!Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint 4225 </sect2> 4226 </sect1> 4227 4228 </chapter> 4229!Cdrivers/gpu/drm/i915/i915_irq.c 4230</part> 4231</book> 4232