1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49
50 /* Name of this kernel module. */
51 #define DRV_NAME "ib_srpt"
52 #define DRV_VERSION "2.0.0"
53 #define DRV_RELDATE "2011-02-14"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64
65 /*
66 * Global Variables
67 */
68
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
72
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 "Maximum size of SRP request messages in bytes.");
77
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 "Shared receive queue (SRQ) size.");
82
srpt_get_u64_x(char * buffer,struct kernel_param * kp)83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 " instead of using the node_guid of the first HCA.");
92
93 static struct ib_client srpt_client;
94 static void srpt_release_channel(struct srpt_rdma_ch *ch);
95 static int srpt_queue_status(struct se_cmd *cmd);
96
97 /**
98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
99 */
100 static inline
opposite_dma_dir(enum dma_data_direction dir)101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
102 {
103 switch (dir) {
104 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
105 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
106 default: return dir;
107 }
108 }
109
110 /**
111 * srpt_sdev_name() - Return the name associated with the HCA.
112 *
113 * Examples are ib0, ib1, ...
114 */
srpt_sdev_name(struct srpt_device * sdev)115 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
116 {
117 return sdev->device->name;
118 }
119
srpt_get_ch_state(struct srpt_rdma_ch * ch)120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
121 {
122 unsigned long flags;
123 enum rdma_ch_state state;
124
125 spin_lock_irqsave(&ch->spinlock, flags);
126 state = ch->state;
127 spin_unlock_irqrestore(&ch->spinlock, flags);
128 return state;
129 }
130
131 static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new_state)132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
133 {
134 unsigned long flags;
135 enum rdma_ch_state prev;
136
137 spin_lock_irqsave(&ch->spinlock, flags);
138 prev = ch->state;
139 ch->state = new_state;
140 spin_unlock_irqrestore(&ch->spinlock, flags);
141 return prev;
142 }
143
144 /**
145 * srpt_test_and_set_ch_state() - Test and set the channel state.
146 *
147 * Returns true if and only if the channel state has been set to the new state.
148 */
149 static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state old,enum rdma_ch_state new)150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
151 enum rdma_ch_state new)
152 {
153 unsigned long flags;
154 enum rdma_ch_state prev;
155
156 spin_lock_irqsave(&ch->spinlock, flags);
157 prev = ch->state;
158 if (prev == old)
159 ch->state = new;
160 spin_unlock_irqrestore(&ch->spinlock, flags);
161 return prev == old;
162 }
163
164 /**
165 * srpt_event_handler() - Asynchronous IB event callback function.
166 *
167 * Callback function called by the InfiniBand core when an asynchronous IB
168 * event occurs. This callback may occur in interrupt context. See also
169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
170 * Architecture Specification.
171 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)172 static void srpt_event_handler(struct ib_event_handler *handler,
173 struct ib_event *event)
174 {
175 struct srpt_device *sdev;
176 struct srpt_port *sport;
177
178 sdev = ib_get_client_data(event->device, &srpt_client);
179 if (!sdev || sdev->device != event->device)
180 return;
181
182 pr_debug("ASYNC event= %d on device= %s\n", event->event,
183 srpt_sdev_name(sdev));
184
185 switch (event->event) {
186 case IB_EVENT_PORT_ERR:
187 if (event->element.port_num <= sdev->device->phys_port_cnt) {
188 sport = &sdev->port[event->element.port_num - 1];
189 sport->lid = 0;
190 sport->sm_lid = 0;
191 }
192 break;
193 case IB_EVENT_PORT_ACTIVE:
194 case IB_EVENT_LID_CHANGE:
195 case IB_EVENT_PKEY_CHANGE:
196 case IB_EVENT_SM_CHANGE:
197 case IB_EVENT_CLIENT_REREGISTER:
198 case IB_EVENT_GID_CHANGE:
199 /* Refresh port data asynchronously. */
200 if (event->element.port_num <= sdev->device->phys_port_cnt) {
201 sport = &sdev->port[event->element.port_num - 1];
202 if (!sport->lid && !sport->sm_lid)
203 schedule_work(&sport->work);
204 }
205 break;
206 default:
207 pr_err("received unrecognized IB event %d\n",
208 event->event);
209 break;
210 }
211 }
212
213 /**
214 * srpt_srq_event() - SRQ event callback function.
215 */
srpt_srq_event(struct ib_event * event,void * ctx)216 static void srpt_srq_event(struct ib_event *event, void *ctx)
217 {
218 pr_info("SRQ event %d\n", event->event);
219 }
220
221 /**
222 * srpt_qp_event() - QP event callback function.
223 */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
225 {
226 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
227 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
228
229 switch (event->event) {
230 case IB_EVENT_COMM_EST:
231 ib_cm_notify(ch->cm_id, event->event);
232 break;
233 case IB_EVENT_QP_LAST_WQE_REACHED:
234 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
235 CH_RELEASING))
236 srpt_release_channel(ch);
237 else
238 pr_debug("%s: state %d - ignored LAST_WQE.\n",
239 ch->sess_name, srpt_get_ch_state(ch));
240 break;
241 default:
242 pr_err("received unrecognized IB QP event %d\n", event->event);
243 break;
244 }
245 }
246
247 /**
248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
249 *
250 * @slot: one-based slot number.
251 * @value: four-bit value.
252 *
253 * Copies the lowest four bits of value in element slot of the array of four
254 * bit elements called c_list (controller list). The index slot is one-based.
255 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
257 {
258 u16 id;
259 u8 tmp;
260
261 id = (slot - 1) / 2;
262 if (slot & 0x1) {
263 tmp = c_list[id] & 0xf;
264 c_list[id] = (value << 4) | tmp;
265 } else {
266 tmp = c_list[id] & 0xf0;
267 c_list[id] = (value & 0xf) | tmp;
268 }
269 }
270
271 /**
272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
273 *
274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
275 * Specification.
276 */
srpt_get_class_port_info(struct ib_dm_mad * mad)277 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
278 {
279 struct ib_class_port_info *cif;
280
281 cif = (struct ib_class_port_info *)mad->data;
282 memset(cif, 0, sizeof *cif);
283 cif->base_version = 1;
284 cif->class_version = 1;
285 cif->resp_time_value = 20;
286
287 mad->mad_hdr.status = 0;
288 }
289
290 /**
291 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
292 *
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
295 */
srpt_get_iou(struct ib_dm_mad * mad)296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 struct ib_dm_iou_info *ioui;
299 u8 slot;
300 int i;
301
302 ioui = (struct ib_dm_iou_info *)mad->data;
303 ioui->change_id = cpu_to_be16(1);
304 ioui->max_controllers = 16;
305
306 /* set present for slot 1 and empty for the rest */
307 srpt_set_ioc(ioui->controller_list, 1, 1);
308 for (i = 1, slot = 2; i < 16; i++, slot++)
309 srpt_set_ioc(ioui->controller_list, slot, 0);
310
311 mad->mad_hdr.status = 0;
312 }
313
314 /**
315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
316 *
317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
318 * Architecture Specification. See also section B.7, table B.7 in the SRP
319 * r16a document.
320 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
322 struct ib_dm_mad *mad)
323 {
324 struct srpt_device *sdev = sport->sdev;
325 struct ib_dm_ioc_profile *iocp;
326
327 iocp = (struct ib_dm_ioc_profile *)mad->data;
328
329 if (!slot || slot > 16) {
330 mad->mad_hdr.status
331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 return;
333 }
334
335 if (slot > 2) {
336 mad->mad_hdr.status
337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 return;
339 }
340
341 memset(iocp, 0, sizeof *iocp);
342 strcpy(iocp->id_string, SRPT_ID_STRING);
343 iocp->guid = cpu_to_be64(srpt_service_guid);
344 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
345 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
346 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
347 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->subsys_device_id = 0x0;
349 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
350 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
351 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
352 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
353 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
354 iocp->rdma_read_depth = 4;
355 iocp->send_size = cpu_to_be32(srp_max_req_size);
356 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
357 1U << 24));
358 iocp->num_svc_entries = 1;
359 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
360 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
361
362 mad->mad_hdr.status = 0;
363 }
364
365 /**
366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
367 *
368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
369 * Specification. See also section B.7, table B.8 in the SRP r16a document.
370 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)371 static void srpt_get_svc_entries(u64 ioc_guid,
372 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
373 {
374 struct ib_dm_svc_entries *svc_entries;
375
376 WARN_ON(!ioc_guid);
377
378 if (!slot || slot > 16) {
379 mad->mad_hdr.status
380 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
381 return;
382 }
383
384 if (slot > 2 || lo > hi || hi > 1) {
385 mad->mad_hdr.status
386 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
387 return;
388 }
389
390 svc_entries = (struct ib_dm_svc_entries *)mad->data;
391 memset(svc_entries, 0, sizeof *svc_entries);
392 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
393 snprintf(svc_entries->service_entries[0].name,
394 sizeof(svc_entries->service_entries[0].name),
395 "%s%016llx",
396 SRP_SERVICE_NAME_PREFIX,
397 ioc_guid);
398
399 mad->mad_hdr.status = 0;
400 }
401
402 /**
403 * srpt_mgmt_method_get() - Process a received management datagram.
404 * @sp: source port through which the MAD has been received.
405 * @rq_mad: received MAD.
406 * @rsp_mad: response MAD.
407 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
409 struct ib_dm_mad *rsp_mad)
410 {
411 u16 attr_id;
412 u32 slot;
413 u8 hi, lo;
414
415 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
416 switch (attr_id) {
417 case DM_ATTR_CLASS_PORT_INFO:
418 srpt_get_class_port_info(rsp_mad);
419 break;
420 case DM_ATTR_IOU_INFO:
421 srpt_get_iou(rsp_mad);
422 break;
423 case DM_ATTR_IOC_PROFILE:
424 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
425 srpt_get_ioc(sp, slot, rsp_mad);
426 break;
427 case DM_ATTR_SVC_ENTRIES:
428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 hi = (u8) ((slot >> 8) & 0xff);
430 lo = (u8) (slot & 0xff);
431 slot = (u16) ((slot >> 16) & 0xffff);
432 srpt_get_svc_entries(srpt_service_guid,
433 slot, hi, lo, rsp_mad);
434 break;
435 default:
436 rsp_mad->mad_hdr.status =
437 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
438 break;
439 }
440 }
441
442 /**
443 * srpt_mad_send_handler() - Post MAD-send callback function.
444 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
446 struct ib_mad_send_wc *mad_wc)
447 {
448 ib_destroy_ah(mad_wc->send_buf->ah);
449 ib_free_send_mad(mad_wc->send_buf);
450 }
451
452 /**
453 * srpt_mad_recv_handler() - MAD reception callback function.
454 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_recv_wc * mad_wc)455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
456 struct ib_mad_recv_wc *mad_wc)
457 {
458 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
459 struct ib_ah *ah;
460 struct ib_mad_send_buf *rsp;
461 struct ib_dm_mad *dm_mad;
462
463 if (!mad_wc || !mad_wc->recv_buf.mad)
464 return;
465
466 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
467 mad_wc->recv_buf.grh, mad_agent->port_num);
468 if (IS_ERR(ah))
469 goto err;
470
471 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
472
473 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
474 mad_wc->wc->pkey_index, 0,
475 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
476 GFP_KERNEL,
477 IB_MGMT_BASE_VERSION);
478 if (IS_ERR(rsp))
479 goto err_rsp;
480
481 rsp->ah = ah;
482
483 dm_mad = rsp->mad;
484 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
485 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
486 dm_mad->mad_hdr.status = 0;
487
488 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
489 case IB_MGMT_METHOD_GET:
490 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
491 break;
492 case IB_MGMT_METHOD_SET:
493 dm_mad->mad_hdr.status =
494 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
495 break;
496 default:
497 dm_mad->mad_hdr.status =
498 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
499 break;
500 }
501
502 if (!ib_post_send_mad(rsp, NULL)) {
503 ib_free_recv_mad(mad_wc);
504 /* will destroy_ah & free_send_mad in send completion */
505 return;
506 }
507
508 ib_free_send_mad(rsp);
509
510 err_rsp:
511 ib_destroy_ah(ah);
512 err:
513 ib_free_recv_mad(mad_wc);
514 }
515
516 /**
517 * srpt_refresh_port() - Configure a HCA port.
518 *
519 * Enable InfiniBand management datagram processing, update the cached sm_lid,
520 * lid and gid values, and register a callback function for processing MADs
521 * on the specified port.
522 *
523 * Note: It is safe to call this function more than once for the same port.
524 */
srpt_refresh_port(struct srpt_port * sport)525 static int srpt_refresh_port(struct srpt_port *sport)
526 {
527 struct ib_mad_reg_req reg_req;
528 struct ib_port_modify port_modify;
529 struct ib_port_attr port_attr;
530 int ret;
531
532 memset(&port_modify, 0, sizeof port_modify);
533 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
534 port_modify.clr_port_cap_mask = 0;
535
536 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
537 if (ret)
538 goto err_mod_port;
539
540 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
541 if (ret)
542 goto err_query_port;
543
544 sport->sm_lid = port_attr.sm_lid;
545 sport->lid = port_attr.lid;
546
547 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
548 NULL);
549 if (ret)
550 goto err_query_port;
551
552 if (!sport->mad_agent) {
553 memset(®_req, 0, sizeof reg_req);
554 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
558
559 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560 sport->port,
561 IB_QPT_GSI,
562 ®_req, 0,
563 srpt_mad_send_handler,
564 srpt_mad_recv_handler,
565 sport, 0);
566 if (IS_ERR(sport->mad_agent)) {
567 ret = PTR_ERR(sport->mad_agent);
568 sport->mad_agent = NULL;
569 goto err_query_port;
570 }
571 }
572
573 return 0;
574
575 err_query_port:
576
577 port_modify.set_port_cap_mask = 0;
578 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
580
581 err_mod_port:
582
583 return ret;
584 }
585
586 /**
587 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
588 *
589 * Note: It is safe to call this function more than once for the same device.
590 */
srpt_unregister_mad_agent(struct srpt_device * sdev)591 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
592 {
593 struct ib_port_modify port_modify = {
594 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
595 };
596 struct srpt_port *sport;
597 int i;
598
599 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600 sport = &sdev->port[i - 1];
601 WARN_ON(sport->port != i);
602 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603 pr_err("disabling MAD processing failed.\n");
604 if (sport->mad_agent) {
605 ib_unregister_mad_agent(sport->mad_agent);
606 sport->mad_agent = NULL;
607 }
608 }
609 }
610
611 /**
612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
613 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,int dma_size,enum dma_data_direction dir)614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615 int ioctx_size, int dma_size,
616 enum dma_data_direction dir)
617 {
618 struct srpt_ioctx *ioctx;
619
620 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621 if (!ioctx)
622 goto err;
623
624 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625 if (!ioctx->buf)
626 goto err_free_ioctx;
627
628 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630 goto err_free_buf;
631
632 return ioctx;
633
634 err_free_buf:
635 kfree(ioctx->buf);
636 err_free_ioctx:
637 kfree(ioctx);
638 err:
639 return NULL;
640 }
641
642 /**
643 * srpt_free_ioctx() - Free an SRPT I/O context structure.
644 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,int dma_size,enum dma_data_direction dir)645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646 int dma_size, enum dma_data_direction dir)
647 {
648 if (!ioctx)
649 return;
650
651 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652 kfree(ioctx->buf);
653 kfree(ioctx);
654 }
655
656 /**
657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658 * @sdev: Device to allocate the I/O context ring for.
659 * @ring_size: Number of elements in the I/O context ring.
660 * @ioctx_size: I/O context size.
661 * @dma_size: DMA buffer size.
662 * @dir: DMA data direction.
663 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,int dma_size,enum dma_data_direction dir)664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665 int ring_size, int ioctx_size,
666 int dma_size, enum dma_data_direction dir)
667 {
668 struct srpt_ioctx **ring;
669 int i;
670
671 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672 && ioctx_size != sizeof(struct srpt_send_ioctx));
673
674 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675 if (!ring)
676 goto out;
677 for (i = 0; i < ring_size; ++i) {
678 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679 if (!ring[i])
680 goto err;
681 ring[i]->index = i;
682 }
683 goto out;
684
685 err:
686 while (--i >= 0)
687 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688 kfree(ring);
689 ring = NULL;
690 out:
691 return ring;
692 }
693
694 /**
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,int dma_size,enum dma_data_direction dir)697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 struct srpt_device *sdev, int ring_size,
699 int dma_size, enum dma_data_direction dir)
700 {
701 int i;
702
703 for (i = 0; i < ring_size; ++i)
704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 kfree(ioctx_ring);
706 }
707
708 /**
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
710 */
srpt_get_cmd_state(struct srpt_send_ioctx * ioctx)711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712 {
713 enum srpt_command_state state;
714 unsigned long flags;
715
716 BUG_ON(!ioctx);
717
718 spin_lock_irqsave(&ioctx->spinlock, flags);
719 state = ioctx->state;
720 spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 return state;
722 }
723
724 /**
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
726 *
727 * Does not modify the state of aborted commands. Returns the previous command
728 * state.
729 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 enum srpt_command_state new)
732 {
733 enum srpt_command_state previous;
734 unsigned long flags;
735
736 BUG_ON(!ioctx);
737
738 spin_lock_irqsave(&ioctx->spinlock, flags);
739 previous = ioctx->state;
740 if (previous != SRPT_STATE_DONE)
741 ioctx->state = new;
742 spin_unlock_irqrestore(&ioctx->spinlock, flags);
743
744 return previous;
745 }
746
747 /**
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749 *
750 * Returns true if and only if the previous command state was equal to 'old'.
751 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 enum srpt_command_state old,
754 enum srpt_command_state new)
755 {
756 enum srpt_command_state previous;
757 unsigned long flags;
758
759 WARN_ON(!ioctx);
760 WARN_ON(old == SRPT_STATE_DONE);
761 WARN_ON(new == SRPT_STATE_NEW);
762
763 spin_lock_irqsave(&ioctx->spinlock, flags);
764 previous = ioctx->state;
765 if (previous == old)
766 ioctx->state = new;
767 spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 return previous == old;
769 }
770
771 /**
772 * srpt_post_recv() - Post an IB receive request.
773 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_recv_ioctx * ioctx)774 static int srpt_post_recv(struct srpt_device *sdev,
775 struct srpt_recv_ioctx *ioctx)
776 {
777 struct ib_sge list;
778 struct ib_recv_wr wr, *bad_wr;
779
780 BUG_ON(!sdev);
781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782
783 list.addr = ioctx->ioctx.dma;
784 list.length = srp_max_req_size;
785 list.lkey = sdev->pd->local_dma_lkey;
786
787 wr.next = NULL;
788 wr.sg_list = &list;
789 wr.num_sge = 1;
790
791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792 }
793
794 /**
795 * srpt_post_send() - Post an IB send request.
796 *
797 * Returns zero upon success and a non-zero value upon failure.
798 */
srpt_post_send(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,int len)799 static int srpt_post_send(struct srpt_rdma_ch *ch,
800 struct srpt_send_ioctx *ioctx, int len)
801 {
802 struct ib_sge list;
803 struct ib_send_wr wr, *bad_wr;
804 struct srpt_device *sdev = ch->sport->sdev;
805 int ret;
806
807 atomic_inc(&ch->req_lim);
808
809 ret = -ENOMEM;
810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 pr_warn("IB send queue full (needed 1)\n");
812 goto out;
813 }
814
815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 DMA_TO_DEVICE);
817
818 list.addr = ioctx->ioctx.dma;
819 list.length = len;
820 list.lkey = sdev->pd->local_dma_lkey;
821
822 wr.next = NULL;
823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 wr.sg_list = &list;
825 wr.num_sge = 1;
826 wr.opcode = IB_WR_SEND;
827 wr.send_flags = IB_SEND_SIGNALED;
828
829 ret = ib_post_send(ch->qp, &wr, &bad_wr);
830
831 out:
832 if (ret < 0) {
833 atomic_inc(&ch->sq_wr_avail);
834 atomic_dec(&ch->req_lim);
835 }
836 return ret;
837 }
838
839 /**
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
844 * written.
845 * @data_len: Pointer to the variable to which the total data length of all
846 * descriptors in the SRP_CMD request will be written.
847 *
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849 *
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
852 */
srpt_get_desc_tbl(struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,u64 * data_len)853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 struct srp_cmd *srp_cmd,
855 enum dma_data_direction *dir, u64 *data_len)
856 {
857 struct srp_indirect_buf *idb;
858 struct srp_direct_buf *db;
859 unsigned add_cdb_offset;
860 int ret;
861
862 /*
863 * The pointer computations below will only be compiled correctly
864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 * whether srp_cmd::add_data has been declared as a byte pointer.
866 */
867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 && !__same_type(srp_cmd->add_data[0], (u8)0));
869
870 BUG_ON(!dir);
871 BUG_ON(!data_len);
872
873 ret = 0;
874 *data_len = 0;
875
876 /*
877 * The lower four bits of the buffer format field contain the DATA-IN
878 * buffer descriptor format, and the highest four bits contain the
879 * DATA-OUT buffer descriptor format.
880 */
881 *dir = DMA_NONE;
882 if (srp_cmd->buf_fmt & 0xf)
883 /* DATA-IN: transfer data from target to initiator (read). */
884 *dir = DMA_FROM_DEVICE;
885 else if (srp_cmd->buf_fmt >> 4)
886 /* DATA-OUT: transfer data from initiator to target (write). */
887 *dir = DMA_TO_DEVICE;
888
889 /*
890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 * CDB LENGTH' field are reserved and the size in bytes of this field
892 * is four times the value specified in bits 3..7. Hence the "& ~3".
893 */
894 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 ioctx->n_rbuf = 1;
898 ioctx->rbufs = &ioctx->single_rbuf;
899
900 db = (struct srp_direct_buf *)(srp_cmd->add_data
901 + add_cdb_offset);
902 memcpy(ioctx->rbufs, db, sizeof *db);
903 *data_len = be32_to_cpu(db->len);
904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 + add_cdb_offset);
908
909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910
911 if (ioctx->n_rbuf >
912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 pr_err("received unsupported SRP_CMD request"
914 " type (%u out + %u in != %u / %zu)\n",
915 srp_cmd->data_out_desc_cnt,
916 srp_cmd->data_in_desc_cnt,
917 be32_to_cpu(idb->table_desc.len),
918 sizeof(*db));
919 ioctx->n_rbuf = 0;
920 ret = -EINVAL;
921 goto out;
922 }
923
924 if (ioctx->n_rbuf == 1)
925 ioctx->rbufs = &ioctx->single_rbuf;
926 else {
927 ioctx->rbufs =
928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 if (!ioctx->rbufs) {
930 ioctx->n_rbuf = 0;
931 ret = -ENOMEM;
932 goto out;
933 }
934 }
935
936 db = idb->desc_list;
937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 *data_len = be32_to_cpu(idb->len);
939 }
940 out:
941 return ret;
942 }
943
944 /**
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
946 *
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951 {
952 struct ib_qp_attr *attr;
953 int ret;
954
955 attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 if (!attr)
957 return -ENOMEM;
958
959 attr->qp_state = IB_QPS_INIT;
960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
961 IB_ACCESS_REMOTE_WRITE;
962 attr->port_num = ch->sport->port;
963 attr->pkey_index = 0;
964
965 ret = ib_modify_qp(qp, attr,
966 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
967 IB_QP_PKEY_INDEX);
968
969 kfree(attr);
970 return ret;
971 }
972
973 /**
974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975 * @ch: channel of the queue pair.
976 * @qp: queue pair to change the state of.
977 *
978 * Returns zero upon success and a negative value upon failure.
979 *
980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981 * If this structure ever becomes larger, it might be necessary to allocate
982 * it dynamically instead of on the stack.
983 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
985 {
986 struct ib_qp_attr qp_attr;
987 int attr_mask;
988 int ret;
989
990 qp_attr.qp_state = IB_QPS_RTR;
991 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
992 if (ret)
993 goto out;
994
995 qp_attr.max_dest_rd_atomic = 4;
996
997 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
998
999 out:
1000 return ret;
1001 }
1002
1003 /**
1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1007 *
1008 * Returns zero upon success and a negative value upon failure.
1009 *
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1013 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1015 {
1016 struct ib_qp_attr qp_attr;
1017 int attr_mask;
1018 int ret;
1019
1020 qp_attr.qp_state = IB_QPS_RTS;
1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022 if (ret)
1023 goto out;
1024
1025 qp_attr.max_rd_atomic = 4;
1026
1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1028
1029 out:
1030 return ret;
1031 }
1032
1033 /**
1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1035 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1036 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1037 {
1038 struct ib_qp_attr qp_attr;
1039
1040 qp_attr.qp_state = IB_QPS_ERR;
1041 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1042 }
1043
1044 /**
1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1046 */
srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1048 struct srpt_send_ioctx *ioctx)
1049 {
1050 struct scatterlist *sg;
1051 enum dma_data_direction dir;
1052
1053 BUG_ON(!ch);
1054 BUG_ON(!ioctx);
1055 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1056
1057 while (ioctx->n_rdma)
1058 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1059
1060 kfree(ioctx->rdma_ius);
1061 ioctx->rdma_ius = NULL;
1062
1063 if (ioctx->mapped_sg_count) {
1064 sg = ioctx->sg;
1065 WARN_ON(!sg);
1066 dir = ioctx->cmd.data_direction;
1067 BUG_ON(dir == DMA_NONE);
1068 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1069 opposite_dma_dir(dir));
1070 ioctx->mapped_sg_count = 0;
1071 }
1072 }
1073
1074 /**
1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1076 */
srpt_map_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1078 struct srpt_send_ioctx *ioctx)
1079 {
1080 struct ib_device *dev = ch->sport->sdev->device;
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = ib_sg_dma_len(dev, &sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = ib_sg_dma_len(
1159 dev, sg);
1160 }
1161 }
1162 } else {
1163 tsize -= rsize;
1164 dma_len -= rsize;
1165 rsize = 0;
1166 }
1167
1168 ++riu->sge_cnt;
1169
1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171 ++ioctx->n_rdma;
1172 riu->sge =
1173 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174 GFP_KERNEL);
1175 if (!riu->sge)
1176 goto free_mem;
1177
1178 ++riu;
1179 riu->sge_cnt = 0;
1180 riu->raddr = raddr;
1181 riu->rkey = be32_to_cpu(db->key);
1182 }
1183 }
1184
1185 ++ioctx->n_rdma;
1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187 GFP_KERNEL);
1188 if (!riu->sge)
1189 goto free_mem;
1190 }
1191
1192 db = ioctx->rbufs;
1193 tsize = cmd->data_length;
1194 riu = ioctx->rdma_ius;
1195 sg = sg_orig;
1196 dma_len = ib_sg_dma_len(dev, &sg[0]);
1197 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1198
1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200 for (i = 0, j = 0;
1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202 rsize = be32_to_cpu(db->len);
1203 sge = riu->sge;
1204 k = 0;
1205
1206 while (rsize > 0 && tsize > 0) {
1207 sge->addr = dma_addr;
1208 sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1209
1210 if (rsize >= dma_len) {
1211 sge->length =
1212 (tsize < dma_len) ? tsize : dma_len;
1213 tsize -= dma_len;
1214 rsize -= dma_len;
1215
1216 if (tsize > 0) {
1217 ++j;
1218 if (j < count) {
1219 sg = sg_next(sg);
1220 dma_len = ib_sg_dma_len(
1221 dev, sg);
1222 dma_addr = ib_sg_dma_address(
1223 dev, sg);
1224 }
1225 }
1226 } else {
1227 sge->length = (tsize < rsize) ? tsize : rsize;
1228 tsize -= rsize;
1229 dma_len -= rsize;
1230 dma_addr += rsize;
1231 rsize = 0;
1232 }
1233
1234 ++k;
1235 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1236 ++riu;
1237 sge = riu->sge;
1238 k = 0;
1239 } else if (rsize > 0 && tsize > 0)
1240 ++sge;
1241 }
1242 }
1243
1244 return 0;
1245
1246 free_mem:
1247 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1248
1249 return -ENOMEM;
1250 }
1251
1252 /**
1253 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1254 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1255 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1256 {
1257 struct srpt_send_ioctx *ioctx;
1258 unsigned long flags;
1259
1260 BUG_ON(!ch);
1261
1262 ioctx = NULL;
1263 spin_lock_irqsave(&ch->spinlock, flags);
1264 if (!list_empty(&ch->free_list)) {
1265 ioctx = list_first_entry(&ch->free_list,
1266 struct srpt_send_ioctx, free_list);
1267 list_del(&ioctx->free_list);
1268 }
1269 spin_unlock_irqrestore(&ch->spinlock, flags);
1270
1271 if (!ioctx)
1272 return ioctx;
1273
1274 BUG_ON(ioctx->ch != ch);
1275 spin_lock_init(&ioctx->spinlock);
1276 ioctx->state = SRPT_STATE_NEW;
1277 ioctx->n_rbuf = 0;
1278 ioctx->rbufs = NULL;
1279 ioctx->n_rdma = 0;
1280 ioctx->n_rdma_ius = 0;
1281 ioctx->rdma_ius = NULL;
1282 ioctx->mapped_sg_count = 0;
1283 init_completion(&ioctx->tx_done);
1284 ioctx->queue_status_only = false;
1285 /*
1286 * transport_init_se_cmd() does not initialize all fields, so do it
1287 * here.
1288 */
1289 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1290 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1291
1292 return ioctx;
1293 }
1294
1295 /**
1296 * srpt_abort_cmd() - Abort a SCSI command.
1297 * @ioctx: I/O context associated with the SCSI command.
1298 * @context: Preferred execution context.
1299 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1300 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1301 {
1302 enum srpt_command_state state;
1303 unsigned long flags;
1304
1305 BUG_ON(!ioctx);
1306
1307 /*
1308 * If the command is in a state where the target core is waiting for
1309 * the ib_srpt driver, change the state to the next state. Changing
1310 * the state of the command from SRPT_STATE_NEED_DATA to
1311 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1312 * function a second time.
1313 */
1314
1315 spin_lock_irqsave(&ioctx->spinlock, flags);
1316 state = ioctx->state;
1317 switch (state) {
1318 case SRPT_STATE_NEED_DATA:
1319 ioctx->state = SRPT_STATE_DATA_IN;
1320 break;
1321 case SRPT_STATE_DATA_IN:
1322 case SRPT_STATE_CMD_RSP_SENT:
1323 case SRPT_STATE_MGMT_RSP_SENT:
1324 ioctx->state = SRPT_STATE_DONE;
1325 break;
1326 default:
1327 break;
1328 }
1329 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1330
1331 if (state == SRPT_STATE_DONE) {
1332 struct srpt_rdma_ch *ch = ioctx->ch;
1333
1334 BUG_ON(ch->sess == NULL);
1335
1336 target_put_sess_cmd(&ioctx->cmd);
1337 goto out;
1338 }
1339
1340 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1341 ioctx->cmd.tag);
1342
1343 switch (state) {
1344 case SRPT_STATE_NEW:
1345 case SRPT_STATE_DATA_IN:
1346 case SRPT_STATE_MGMT:
1347 /*
1348 * Do nothing - defer abort processing until
1349 * srpt_queue_response() is invoked.
1350 */
1351 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1352 break;
1353 case SRPT_STATE_NEED_DATA:
1354 /* DMA_TO_DEVICE (write) - RDMA read error. */
1355
1356 /* XXX(hch): this is a horrible layering violation.. */
1357 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1358 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1359 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1360 break;
1361 case SRPT_STATE_CMD_RSP_SENT:
1362 /*
1363 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 * not been received in time.
1365 */
1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1367 target_put_sess_cmd(&ioctx->cmd);
1368 break;
1369 case SRPT_STATE_MGMT_RSP_SENT:
1370 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1371 target_put_sess_cmd(&ioctx->cmd);
1372 break;
1373 default:
1374 WARN(1, "Unexpected command state (%d)", state);
1375 break;
1376 }
1377
1378 out:
1379 return state;
1380 }
1381
1382 /**
1383 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1384 */
srpt_handle_send_err_comp(struct srpt_rdma_ch * ch,u64 wr_id)1385 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1386 {
1387 struct srpt_send_ioctx *ioctx;
1388 enum srpt_command_state state;
1389 u32 index;
1390
1391 atomic_inc(&ch->sq_wr_avail);
1392
1393 index = idx_from_wr_id(wr_id);
1394 ioctx = ch->ioctx_ring[index];
1395 state = srpt_get_cmd_state(ioctx);
1396
1397 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1398 && state != SRPT_STATE_MGMT_RSP_SENT
1399 && state != SRPT_STATE_NEED_DATA
1400 && state != SRPT_STATE_DONE);
1401
1402 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1403 if (state == SRPT_STATE_CMD_RSP_SENT
1404 || state == SRPT_STATE_MGMT_RSP_SENT)
1405 atomic_dec(&ch->req_lim);
1406
1407 srpt_abort_cmd(ioctx);
1408 }
1409
1410 /**
1411 * srpt_handle_send_comp() - Process an IB send completion notification.
1412 */
srpt_handle_send_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1413 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1414 struct srpt_send_ioctx *ioctx)
1415 {
1416 enum srpt_command_state state;
1417
1418 atomic_inc(&ch->sq_wr_avail);
1419
1420 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1421
1422 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1423 && state != SRPT_STATE_MGMT_RSP_SENT
1424 && state != SRPT_STATE_DONE))
1425 pr_debug("state = %d\n", state);
1426
1427 if (state != SRPT_STATE_DONE) {
1428 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1429 transport_generic_free_cmd(&ioctx->cmd, 0);
1430 } else {
1431 pr_err("IB completion has been received too late for"
1432 " wr_id = %u.\n", ioctx->ioctx.index);
1433 }
1434 }
1435
1436 /**
1437 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1438 *
1439 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1440 * the data that has been transferred via IB RDMA had to be postponed until the
1441 * check_stop_free() callback. None of this is necessary anymore and needs to
1442 * be cleaned up.
1443 */
srpt_handle_rdma_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1444 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1445 struct srpt_send_ioctx *ioctx,
1446 enum srpt_opcode opcode)
1447 {
1448 WARN_ON(ioctx->n_rdma <= 0);
1449 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1450
1451 if (opcode == SRPT_RDMA_READ_LAST) {
1452 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1453 SRPT_STATE_DATA_IN))
1454 target_execute_cmd(&ioctx->cmd);
1455 else
1456 pr_err("%s[%d]: wrong state = %d\n", __func__,
1457 __LINE__, srpt_get_cmd_state(ioctx));
1458 } else if (opcode == SRPT_RDMA_ABORT) {
1459 ioctx->rdma_aborted = true;
1460 } else {
1461 WARN(true, "unexpected opcode %d\n", opcode);
1462 }
1463 }
1464
1465 /**
1466 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1467 */
srpt_handle_rdma_err_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1468 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1469 struct srpt_send_ioctx *ioctx,
1470 enum srpt_opcode opcode)
1471 {
1472 enum srpt_command_state state;
1473
1474 state = srpt_get_cmd_state(ioctx);
1475 switch (opcode) {
1476 case SRPT_RDMA_READ_LAST:
1477 if (ioctx->n_rdma <= 0) {
1478 pr_err("Received invalid RDMA read"
1479 " error completion with idx %d\n",
1480 ioctx->ioctx.index);
1481 break;
1482 }
1483 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1484 if (state == SRPT_STATE_NEED_DATA)
1485 srpt_abort_cmd(ioctx);
1486 else
1487 pr_err("%s[%d]: wrong state = %d\n",
1488 __func__, __LINE__, state);
1489 break;
1490 case SRPT_RDMA_WRITE_LAST:
1491 break;
1492 default:
1493 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1494 break;
1495 }
1496 }
1497
1498 /**
1499 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1500 * @ch: RDMA channel through which the request has been received.
1501 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1502 * be built in the buffer ioctx->buf points at and hence this function will
1503 * overwrite the request data.
1504 * @tag: tag of the request for which this response is being generated.
1505 * @status: value for the STATUS field of the SRP_RSP information unit.
1506 *
1507 * Returns the size in bytes of the SRP_RSP response.
1508 *
1509 * An SRP_RSP response contains a SCSI status or service response. See also
1510 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1511 * response. See also SPC-2 for more information about sense data.
1512 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1513 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1514 struct srpt_send_ioctx *ioctx, u64 tag,
1515 int status)
1516 {
1517 struct srp_rsp *srp_rsp;
1518 const u8 *sense_data;
1519 int sense_data_len, max_sense_len;
1520
1521 /*
1522 * The lowest bit of all SAM-3 status codes is zero (see also
1523 * paragraph 5.3 in SAM-3).
1524 */
1525 WARN_ON(status & 1);
1526
1527 srp_rsp = ioctx->ioctx.buf;
1528 BUG_ON(!srp_rsp);
1529
1530 sense_data = ioctx->sense_data;
1531 sense_data_len = ioctx->cmd.scsi_sense_length;
1532 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1533
1534 memset(srp_rsp, 0, sizeof *srp_rsp);
1535 srp_rsp->opcode = SRP_RSP;
1536 srp_rsp->req_lim_delta =
1537 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1538 srp_rsp->tag = tag;
1539 srp_rsp->status = status;
1540
1541 if (sense_data_len) {
1542 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1543 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1544 if (sense_data_len > max_sense_len) {
1545 pr_warn("truncated sense data from %d to %d"
1546 " bytes\n", sense_data_len, max_sense_len);
1547 sense_data_len = max_sense_len;
1548 }
1549
1550 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1551 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1552 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1553 }
1554
1555 return sizeof(*srp_rsp) + sense_data_len;
1556 }
1557
1558 /**
1559 * srpt_build_tskmgmt_rsp() - Build a task management response.
1560 * @ch: RDMA channel through which the request has been received.
1561 * @ioctx: I/O context in which the SRP_RSP response will be built.
1562 * @rsp_code: RSP_CODE that will be stored in the response.
1563 * @tag: Tag of the request for which this response is being generated.
1564 *
1565 * Returns the size in bytes of the SRP_RSP response.
1566 *
1567 * An SRP_RSP response contains a SCSI status or service response. See also
1568 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1569 * response.
1570 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1571 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1572 struct srpt_send_ioctx *ioctx,
1573 u8 rsp_code, u64 tag)
1574 {
1575 struct srp_rsp *srp_rsp;
1576 int resp_data_len;
1577 int resp_len;
1578
1579 resp_data_len = 4;
1580 resp_len = sizeof(*srp_rsp) + resp_data_len;
1581
1582 srp_rsp = ioctx->ioctx.buf;
1583 BUG_ON(!srp_rsp);
1584 memset(srp_rsp, 0, sizeof *srp_rsp);
1585
1586 srp_rsp->opcode = SRP_RSP;
1587 srp_rsp->req_lim_delta =
1588 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1589 srp_rsp->tag = tag;
1590
1591 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1592 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1593 srp_rsp->data[3] = rsp_code;
1594
1595 return resp_len;
1596 }
1597
1598 #define NO_SUCH_LUN ((uint64_t)-1LL)
1599
1600 /*
1601 * SCSI LUN addressing method. See also SAM-2 and the section about
1602 * eight byte LUNs.
1603 */
1604 enum scsi_lun_addr_method {
1605 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1606 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1607 SCSI_LUN_ADDR_METHOD_LUN = 2,
1608 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1609 };
1610
1611 /*
1612 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1613 *
1614 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1615 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1616 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1617 */
srpt_unpack_lun(const uint8_t * lun,int len)1618 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1619 {
1620 uint64_t res = NO_SUCH_LUN;
1621 int addressing_method;
1622
1623 if (unlikely(len < 2)) {
1624 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1625 len);
1626 goto out;
1627 }
1628
1629 switch (len) {
1630 case 8:
1631 if ((*((__be64 *)lun) &
1632 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1633 goto out_err;
1634 break;
1635 case 4:
1636 if (*((__be16 *)&lun[2]) != 0)
1637 goto out_err;
1638 break;
1639 case 6:
1640 if (*((__be32 *)&lun[2]) != 0)
1641 goto out_err;
1642 break;
1643 case 2:
1644 break;
1645 default:
1646 goto out_err;
1647 }
1648
1649 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1650 switch (addressing_method) {
1651 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1652 case SCSI_LUN_ADDR_METHOD_FLAT:
1653 case SCSI_LUN_ADDR_METHOD_LUN:
1654 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1655 break;
1656
1657 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1658 default:
1659 pr_err("Unimplemented LUN addressing method %u\n",
1660 addressing_method);
1661 break;
1662 }
1663
1664 out:
1665 return res;
1666
1667 out_err:
1668 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1669 goto out;
1670 }
1671
srpt_check_stop_free(struct se_cmd * cmd)1672 static int srpt_check_stop_free(struct se_cmd *cmd)
1673 {
1674 struct srpt_send_ioctx *ioctx = container_of(cmd,
1675 struct srpt_send_ioctx, cmd);
1676
1677 return target_put_sess_cmd(&ioctx->cmd);
1678 }
1679
1680 /**
1681 * srpt_handle_cmd() - Process SRP_CMD.
1682 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1683 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1684 struct srpt_recv_ioctx *recv_ioctx,
1685 struct srpt_send_ioctx *send_ioctx)
1686 {
1687 struct se_cmd *cmd;
1688 struct srp_cmd *srp_cmd;
1689 uint64_t unpacked_lun;
1690 u64 data_len;
1691 enum dma_data_direction dir;
1692 sense_reason_t ret;
1693 int rc;
1694
1695 BUG_ON(!send_ioctx);
1696
1697 srp_cmd = recv_ioctx->ioctx.buf;
1698 cmd = &send_ioctx->cmd;
1699 cmd->tag = srp_cmd->tag;
1700
1701 switch (srp_cmd->task_attr) {
1702 case SRP_CMD_SIMPLE_Q:
1703 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1704 break;
1705 case SRP_CMD_ORDERED_Q:
1706 default:
1707 cmd->sam_task_attr = TCM_ORDERED_TAG;
1708 break;
1709 case SRP_CMD_HEAD_OF_Q:
1710 cmd->sam_task_attr = TCM_HEAD_TAG;
1711 break;
1712 case SRP_CMD_ACA:
1713 cmd->sam_task_attr = TCM_ACA_TAG;
1714 break;
1715 }
1716
1717 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1718 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1719 srp_cmd->tag);
1720 ret = TCM_INVALID_CDB_FIELD;
1721 goto send_sense;
1722 }
1723
1724 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1725 sizeof(srp_cmd->lun));
1726 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1727 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1728 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1729 if (rc != 0) {
1730 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1731 goto send_sense;
1732 }
1733 return 0;
1734
1735 send_sense:
1736 transport_send_check_condition_and_sense(cmd, ret, 0);
1737 return -1;
1738 }
1739
srp_tmr_to_tcm(int fn)1740 static int srp_tmr_to_tcm(int fn)
1741 {
1742 switch (fn) {
1743 case SRP_TSK_ABORT_TASK:
1744 return TMR_ABORT_TASK;
1745 case SRP_TSK_ABORT_TASK_SET:
1746 return TMR_ABORT_TASK_SET;
1747 case SRP_TSK_CLEAR_TASK_SET:
1748 return TMR_CLEAR_TASK_SET;
1749 case SRP_TSK_LUN_RESET:
1750 return TMR_LUN_RESET;
1751 case SRP_TSK_CLEAR_ACA:
1752 return TMR_CLEAR_ACA;
1753 default:
1754 return -1;
1755 }
1756 }
1757
1758 /**
1759 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1760 *
1761 * Returns 0 if and only if the request will be processed by the target core.
1762 *
1763 * For more information about SRP_TSK_MGMT information units, see also section
1764 * 6.7 in the SRP r16a document.
1765 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1766 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1767 struct srpt_recv_ioctx *recv_ioctx,
1768 struct srpt_send_ioctx *send_ioctx)
1769 {
1770 struct srp_tsk_mgmt *srp_tsk;
1771 struct se_cmd *cmd;
1772 struct se_session *sess = ch->sess;
1773 uint64_t unpacked_lun;
1774 int tcm_tmr;
1775 int rc;
1776
1777 BUG_ON(!send_ioctx);
1778
1779 srp_tsk = recv_ioctx->ioctx.buf;
1780 cmd = &send_ioctx->cmd;
1781
1782 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1783 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1784 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1785
1786 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1787 send_ioctx->cmd.tag = srp_tsk->tag;
1788 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1789 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1790 sizeof(srp_tsk->lun));
1791 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1792 srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1793 TARGET_SCF_ACK_KREF);
1794 if (rc != 0) {
1795 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1796 goto fail;
1797 }
1798 return;
1799 fail:
1800 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1801 }
1802
1803 /**
1804 * srpt_handle_new_iu() - Process a newly received information unit.
1805 * @ch: RDMA channel through which the information unit has been received.
1806 * @ioctx: SRPT I/O context associated with the information unit.
1807 */
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1808 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1809 struct srpt_recv_ioctx *recv_ioctx,
1810 struct srpt_send_ioctx *send_ioctx)
1811 {
1812 struct srp_cmd *srp_cmd;
1813 enum rdma_ch_state ch_state;
1814
1815 BUG_ON(!ch);
1816 BUG_ON(!recv_ioctx);
1817
1818 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1819 recv_ioctx->ioctx.dma, srp_max_req_size,
1820 DMA_FROM_DEVICE);
1821
1822 ch_state = srpt_get_ch_state(ch);
1823 if (unlikely(ch_state == CH_CONNECTING)) {
1824 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1825 goto out;
1826 }
1827
1828 if (unlikely(ch_state != CH_LIVE))
1829 goto out;
1830
1831 srp_cmd = recv_ioctx->ioctx.buf;
1832 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1833 if (!send_ioctx)
1834 send_ioctx = srpt_get_send_ioctx(ch);
1835 if (unlikely(!send_ioctx)) {
1836 list_add_tail(&recv_ioctx->wait_list,
1837 &ch->cmd_wait_list);
1838 goto out;
1839 }
1840 }
1841
1842 switch (srp_cmd->opcode) {
1843 case SRP_CMD:
1844 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1845 break;
1846 case SRP_TSK_MGMT:
1847 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1848 break;
1849 case SRP_I_LOGOUT:
1850 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1851 break;
1852 case SRP_CRED_RSP:
1853 pr_debug("received SRP_CRED_RSP\n");
1854 break;
1855 case SRP_AER_RSP:
1856 pr_debug("received SRP_AER_RSP\n");
1857 break;
1858 case SRP_RSP:
1859 pr_err("Received SRP_RSP\n");
1860 break;
1861 default:
1862 pr_err("received IU with unknown opcode 0x%x\n",
1863 srp_cmd->opcode);
1864 break;
1865 }
1866
1867 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1868 out:
1869 return;
1870 }
1871
srpt_process_rcv_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1872 static void srpt_process_rcv_completion(struct ib_cq *cq,
1873 struct srpt_rdma_ch *ch,
1874 struct ib_wc *wc)
1875 {
1876 struct srpt_device *sdev = ch->sport->sdev;
1877 struct srpt_recv_ioctx *ioctx;
1878 u32 index;
1879
1880 index = idx_from_wr_id(wc->wr_id);
1881 if (wc->status == IB_WC_SUCCESS) {
1882 int req_lim;
1883
1884 req_lim = atomic_dec_return(&ch->req_lim);
1885 if (unlikely(req_lim < 0))
1886 pr_err("req_lim = %d < 0\n", req_lim);
1887 ioctx = sdev->ioctx_ring[index];
1888 srpt_handle_new_iu(ch, ioctx, NULL);
1889 } else {
1890 pr_info("receiving failed for idx %u with status %d\n",
1891 index, wc->status);
1892 }
1893 }
1894
1895 /**
1896 * srpt_process_send_completion() - Process an IB send completion.
1897 *
1898 * Note: Although this has not yet been observed during tests, at least in
1899 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1900 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1901 * value in each response is set to one, and it is possible that this response
1902 * makes the initiator send a new request before the send completion for that
1903 * response has been processed. This could e.g. happen if the call to
1904 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1905 * if IB retransmission causes generation of the send completion to be
1906 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1907 * are queued on cmd_wait_list. The code below processes these delayed
1908 * requests one at a time.
1909 */
srpt_process_send_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1910 static void srpt_process_send_completion(struct ib_cq *cq,
1911 struct srpt_rdma_ch *ch,
1912 struct ib_wc *wc)
1913 {
1914 struct srpt_send_ioctx *send_ioctx;
1915 uint32_t index;
1916 enum srpt_opcode opcode;
1917
1918 index = idx_from_wr_id(wc->wr_id);
1919 opcode = opcode_from_wr_id(wc->wr_id);
1920 send_ioctx = ch->ioctx_ring[index];
1921 if (wc->status == IB_WC_SUCCESS) {
1922 if (opcode == SRPT_SEND)
1923 srpt_handle_send_comp(ch, send_ioctx);
1924 else {
1925 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1926 wc->opcode != IB_WC_RDMA_READ);
1927 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1928 }
1929 } else {
1930 if (opcode == SRPT_SEND) {
1931 pr_info("sending response for idx %u failed"
1932 " with status %d\n", index, wc->status);
1933 srpt_handle_send_err_comp(ch, wc->wr_id);
1934 } else if (opcode != SRPT_RDMA_MID) {
1935 pr_info("RDMA t %d for idx %u failed with"
1936 " status %d\n", opcode, index, wc->status);
1937 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1938 }
1939 }
1940
1941 while (unlikely(opcode == SRPT_SEND
1942 && !list_empty(&ch->cmd_wait_list)
1943 && srpt_get_ch_state(ch) == CH_LIVE
1944 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1945 struct srpt_recv_ioctx *recv_ioctx;
1946
1947 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1948 struct srpt_recv_ioctx,
1949 wait_list);
1950 list_del(&recv_ioctx->wait_list);
1951 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1952 }
1953 }
1954
srpt_process_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch)1955 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1956 {
1957 struct ib_wc *const wc = ch->wc;
1958 int i, n;
1959
1960 WARN_ON(cq != ch->cq);
1961
1962 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1963 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1964 for (i = 0; i < n; i++) {
1965 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1966 srpt_process_rcv_completion(cq, ch, &wc[i]);
1967 else
1968 srpt_process_send_completion(cq, ch, &wc[i]);
1969 }
1970 }
1971 }
1972
1973 /**
1974 * srpt_completion() - IB completion queue callback function.
1975 *
1976 * Notes:
1977 * - It is guaranteed that a completion handler will never be invoked
1978 * concurrently on two different CPUs for the same completion queue. See also
1979 * Documentation/infiniband/core_locking.txt and the implementation of
1980 * handle_edge_irq() in kernel/irq/chip.c.
1981 * - When threaded IRQs are enabled, completion handlers are invoked in thread
1982 * context instead of interrupt context.
1983 */
srpt_completion(struct ib_cq * cq,void * ctx)1984 static void srpt_completion(struct ib_cq *cq, void *ctx)
1985 {
1986 struct srpt_rdma_ch *ch = ctx;
1987
1988 wake_up_interruptible(&ch->wait_queue);
1989 }
1990
srpt_compl_thread(void * arg)1991 static int srpt_compl_thread(void *arg)
1992 {
1993 struct srpt_rdma_ch *ch;
1994
1995 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
1996 current->flags |= PF_NOFREEZE;
1997
1998 ch = arg;
1999 BUG_ON(!ch);
2000 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2001 ch->sess_name, ch->thread->comm, current->pid);
2002 while (!kthread_should_stop()) {
2003 wait_event_interruptible(ch->wait_queue,
2004 (srpt_process_completion(ch->cq, ch),
2005 kthread_should_stop()));
2006 }
2007 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2008 ch->sess_name, ch->thread->comm, current->pid);
2009 return 0;
2010 }
2011
2012 /**
2013 * srpt_create_ch_ib() - Create receive and send completion queues.
2014 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)2015 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2016 {
2017 struct ib_qp_init_attr *qp_init;
2018 struct srpt_port *sport = ch->sport;
2019 struct srpt_device *sdev = sport->sdev;
2020 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2021 struct ib_cq_init_attr cq_attr = {};
2022 int ret;
2023
2024 WARN_ON(ch->rq_size < 1);
2025
2026 ret = -ENOMEM;
2027 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2028 if (!qp_init)
2029 goto out;
2030
2031 retry:
2032 cq_attr.cqe = ch->rq_size + srp_sq_size;
2033 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2034 &cq_attr);
2035 if (IS_ERR(ch->cq)) {
2036 ret = PTR_ERR(ch->cq);
2037 pr_err("failed to create CQ cqe= %d ret= %d\n",
2038 ch->rq_size + srp_sq_size, ret);
2039 goto out;
2040 }
2041
2042 qp_init->qp_context = (void *)ch;
2043 qp_init->event_handler
2044 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2045 qp_init->send_cq = ch->cq;
2046 qp_init->recv_cq = ch->cq;
2047 qp_init->srq = sdev->srq;
2048 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2049 qp_init->qp_type = IB_QPT_RC;
2050 qp_init->cap.max_send_wr = srp_sq_size;
2051 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2052
2053 ch->qp = ib_create_qp(sdev->pd, qp_init);
2054 if (IS_ERR(ch->qp)) {
2055 ret = PTR_ERR(ch->qp);
2056 if (ret == -ENOMEM) {
2057 srp_sq_size /= 2;
2058 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2059 ib_destroy_cq(ch->cq);
2060 goto retry;
2061 }
2062 }
2063 pr_err("failed to create_qp ret= %d\n", ret);
2064 goto err_destroy_cq;
2065 }
2066
2067 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2068
2069 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2070 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2071 qp_init->cap.max_send_wr, ch->cm_id);
2072
2073 ret = srpt_init_ch_qp(ch, ch->qp);
2074 if (ret)
2075 goto err_destroy_qp;
2076
2077 init_waitqueue_head(&ch->wait_queue);
2078
2079 pr_debug("creating thread for session %s\n", ch->sess_name);
2080
2081 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2082 if (IS_ERR(ch->thread)) {
2083 pr_err("failed to create kernel thread %ld\n",
2084 PTR_ERR(ch->thread));
2085 ch->thread = NULL;
2086 goto err_destroy_qp;
2087 }
2088
2089 out:
2090 kfree(qp_init);
2091 return ret;
2092
2093 err_destroy_qp:
2094 ib_destroy_qp(ch->qp);
2095 err_destroy_cq:
2096 ib_destroy_cq(ch->cq);
2097 goto out;
2098 }
2099
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)2100 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2101 {
2102 if (ch->thread)
2103 kthread_stop(ch->thread);
2104
2105 ib_destroy_qp(ch->qp);
2106 ib_destroy_cq(ch->cq);
2107 }
2108
2109 /**
2110 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2111 *
2112 * Reset the QP and make sure all resources associated with the channel will
2113 * be deallocated at an appropriate time.
2114 *
2115 * Note: The caller must hold ch->sport->sdev->spinlock.
2116 */
__srpt_close_ch(struct srpt_rdma_ch * ch)2117 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2118 {
2119 enum rdma_ch_state prev_state;
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&ch->spinlock, flags);
2123 prev_state = ch->state;
2124 switch (prev_state) {
2125 case CH_CONNECTING:
2126 case CH_LIVE:
2127 ch->state = CH_DISCONNECTING;
2128 break;
2129 default:
2130 break;
2131 }
2132 spin_unlock_irqrestore(&ch->spinlock, flags);
2133
2134 switch (prev_state) {
2135 case CH_CONNECTING:
2136 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2137 NULL, 0);
2138 /* fall through */
2139 case CH_LIVE:
2140 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2141 pr_err("sending CM DREQ failed.\n");
2142 break;
2143 case CH_DISCONNECTING:
2144 break;
2145 case CH_DRAINING:
2146 case CH_RELEASING:
2147 break;
2148 }
2149 }
2150
2151 /**
2152 * srpt_close_ch() - Close an RDMA channel.
2153 */
srpt_close_ch(struct srpt_rdma_ch * ch)2154 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2155 {
2156 struct srpt_device *sdev;
2157
2158 sdev = ch->sport->sdev;
2159 spin_lock_irq(&sdev->spinlock);
2160 __srpt_close_ch(ch);
2161 spin_unlock_irq(&sdev->spinlock);
2162 }
2163
2164 /**
2165 * srpt_shutdown_session() - Whether or not a session may be shut down.
2166 */
srpt_shutdown_session(struct se_session * se_sess)2167 static int srpt_shutdown_session(struct se_session *se_sess)
2168 {
2169 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2170 unsigned long flags;
2171
2172 spin_lock_irqsave(&ch->spinlock, flags);
2173 if (ch->in_shutdown) {
2174 spin_unlock_irqrestore(&ch->spinlock, flags);
2175 return true;
2176 }
2177
2178 ch->in_shutdown = true;
2179 target_sess_cmd_list_set_waiting(se_sess);
2180 spin_unlock_irqrestore(&ch->spinlock, flags);
2181
2182 return true;
2183 }
2184
2185 /**
2186 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2187 * @cm_id: Pointer to the CM ID of the channel to be drained.
2188 *
2189 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2190 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2191 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2192 * waits until all target sessions for the associated IB device have been
2193 * unregistered and target session registration involves a call to
2194 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2195 * this function has finished).
2196 */
srpt_drain_channel(struct ib_cm_id * cm_id)2197 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2198 {
2199 struct srpt_device *sdev;
2200 struct srpt_rdma_ch *ch;
2201 int ret;
2202 bool do_reset = false;
2203
2204 WARN_ON_ONCE(irqs_disabled());
2205
2206 sdev = cm_id->context;
2207 BUG_ON(!sdev);
2208 spin_lock_irq(&sdev->spinlock);
2209 list_for_each_entry(ch, &sdev->rch_list, list) {
2210 if (ch->cm_id == cm_id) {
2211 do_reset = srpt_test_and_set_ch_state(ch,
2212 CH_CONNECTING, CH_DRAINING) ||
2213 srpt_test_and_set_ch_state(ch,
2214 CH_LIVE, CH_DRAINING) ||
2215 srpt_test_and_set_ch_state(ch,
2216 CH_DISCONNECTING, CH_DRAINING);
2217 break;
2218 }
2219 }
2220 spin_unlock_irq(&sdev->spinlock);
2221
2222 if (do_reset) {
2223 if (ch->sess)
2224 srpt_shutdown_session(ch->sess);
2225
2226 ret = srpt_ch_qp_err(ch);
2227 if (ret < 0)
2228 pr_err("Setting queue pair in error state"
2229 " failed: %d\n", ret);
2230 }
2231 }
2232
2233 /**
2234 * srpt_find_channel() - Look up an RDMA channel.
2235 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2236 *
2237 * Return NULL if no matching RDMA channel has been found.
2238 */
srpt_find_channel(struct srpt_device * sdev,struct ib_cm_id * cm_id)2239 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2240 struct ib_cm_id *cm_id)
2241 {
2242 struct srpt_rdma_ch *ch;
2243 bool found;
2244
2245 WARN_ON_ONCE(irqs_disabled());
2246 BUG_ON(!sdev);
2247
2248 found = false;
2249 spin_lock_irq(&sdev->spinlock);
2250 list_for_each_entry(ch, &sdev->rch_list, list) {
2251 if (ch->cm_id == cm_id) {
2252 found = true;
2253 break;
2254 }
2255 }
2256 spin_unlock_irq(&sdev->spinlock);
2257
2258 return found ? ch : NULL;
2259 }
2260
2261 /**
2262 * srpt_release_channel() - Release channel resources.
2263 *
2264 * Schedules the actual release because:
2265 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2266 * trigger a deadlock.
2267 * - It is not safe to call TCM transport_* functions from interrupt context.
2268 */
srpt_release_channel(struct srpt_rdma_ch * ch)2269 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2270 {
2271 schedule_work(&ch->release_work);
2272 }
2273
srpt_release_channel_work(struct work_struct * w)2274 static void srpt_release_channel_work(struct work_struct *w)
2275 {
2276 struct srpt_rdma_ch *ch;
2277 struct srpt_device *sdev;
2278 struct se_session *se_sess;
2279
2280 ch = container_of(w, struct srpt_rdma_ch, release_work);
2281 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2282 ch->release_done);
2283
2284 sdev = ch->sport->sdev;
2285 BUG_ON(!sdev);
2286
2287 se_sess = ch->sess;
2288 BUG_ON(!se_sess);
2289
2290 target_wait_for_sess_cmds(se_sess);
2291
2292 transport_deregister_session_configfs(se_sess);
2293 transport_deregister_session(se_sess);
2294 ch->sess = NULL;
2295
2296 ib_destroy_cm_id(ch->cm_id);
2297
2298 srpt_destroy_ch_ib(ch);
2299
2300 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2301 ch->sport->sdev, ch->rq_size,
2302 ch->rsp_size, DMA_TO_DEVICE);
2303
2304 spin_lock_irq(&sdev->spinlock);
2305 list_del(&ch->list);
2306 spin_unlock_irq(&sdev->spinlock);
2307
2308 if (ch->release_done)
2309 complete(ch->release_done);
2310
2311 wake_up(&sdev->ch_releaseQ);
2312
2313 kfree(ch);
2314 }
2315
__srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2316 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2317 u8 i_port_id[16])
2318 {
2319 struct srpt_node_acl *nacl;
2320
2321 list_for_each_entry(nacl, &sport->port_acl_list, list)
2322 if (memcmp(nacl->i_port_id, i_port_id,
2323 sizeof(nacl->i_port_id)) == 0)
2324 return nacl;
2325
2326 return NULL;
2327 }
2328
srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2329 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2330 u8 i_port_id[16])
2331 {
2332 struct srpt_node_acl *nacl;
2333
2334 spin_lock_irq(&sport->port_acl_lock);
2335 nacl = __srpt_lookup_acl(sport, i_port_id);
2336 spin_unlock_irq(&sport->port_acl_lock);
2337
2338 return nacl;
2339 }
2340
2341 /**
2342 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2343 *
2344 * Ownership of the cm_id is transferred to the target session if this
2345 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2346 */
srpt_cm_req_recv(struct ib_cm_id * cm_id,struct ib_cm_req_event_param * param,void * private_data)2347 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2348 struct ib_cm_req_event_param *param,
2349 void *private_data)
2350 {
2351 struct srpt_device *sdev = cm_id->context;
2352 struct srpt_port *sport = &sdev->port[param->port - 1];
2353 struct srp_login_req *req;
2354 struct srp_login_rsp *rsp;
2355 struct srp_login_rej *rej;
2356 struct ib_cm_rep_param *rep_param;
2357 struct srpt_rdma_ch *ch, *tmp_ch;
2358 struct srpt_node_acl *nacl;
2359 u32 it_iu_len;
2360 int i;
2361 int ret = 0;
2362
2363 WARN_ON_ONCE(irqs_disabled());
2364
2365 if (WARN_ON(!sdev || !private_data))
2366 return -EINVAL;
2367
2368 req = (struct srp_login_req *)private_data;
2369
2370 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2371
2372 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2373 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2374 " (guid=0x%llx:0x%llx)\n",
2375 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2376 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2377 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2378 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2379 it_iu_len,
2380 param->port,
2381 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2382 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2383
2384 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2385 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2386 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2387
2388 if (!rsp || !rej || !rep_param) {
2389 ret = -ENOMEM;
2390 goto out;
2391 }
2392
2393 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2394 rej->reason = cpu_to_be32(
2395 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2396 ret = -EINVAL;
2397 pr_err("rejected SRP_LOGIN_REQ because its"
2398 " length (%d bytes) is out of range (%d .. %d)\n",
2399 it_iu_len, 64, srp_max_req_size);
2400 goto reject;
2401 }
2402
2403 if (!sport->enabled) {
2404 rej->reason = cpu_to_be32(
2405 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2406 ret = -EINVAL;
2407 pr_err("rejected SRP_LOGIN_REQ because the target port"
2408 " has not yet been enabled\n");
2409 goto reject;
2410 }
2411
2412 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2413 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2414
2415 spin_lock_irq(&sdev->spinlock);
2416
2417 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2418 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2419 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2420 && param->port == ch->sport->port
2421 && param->listen_id == ch->sport->sdev->cm_id
2422 && ch->cm_id) {
2423 enum rdma_ch_state ch_state;
2424
2425 ch_state = srpt_get_ch_state(ch);
2426 if (ch_state != CH_CONNECTING
2427 && ch_state != CH_LIVE)
2428 continue;
2429
2430 /* found an existing channel */
2431 pr_debug("Found existing channel %s"
2432 " cm_id= %p state= %d\n",
2433 ch->sess_name, ch->cm_id, ch_state);
2434
2435 __srpt_close_ch(ch);
2436
2437 rsp->rsp_flags =
2438 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2439 }
2440 }
2441
2442 spin_unlock_irq(&sdev->spinlock);
2443
2444 } else
2445 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2446
2447 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2448 || *(__be64 *)(req->target_port_id + 8) !=
2449 cpu_to_be64(srpt_service_guid)) {
2450 rej->reason = cpu_to_be32(
2451 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2452 ret = -ENOMEM;
2453 pr_err("rejected SRP_LOGIN_REQ because it"
2454 " has an invalid target port identifier.\n");
2455 goto reject;
2456 }
2457
2458 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2459 if (!ch) {
2460 rej->reason = cpu_to_be32(
2461 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2462 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2463 ret = -ENOMEM;
2464 goto reject;
2465 }
2466
2467 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2468 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2469 memcpy(ch->t_port_id, req->target_port_id, 16);
2470 ch->sport = &sdev->port[param->port - 1];
2471 ch->cm_id = cm_id;
2472 /*
2473 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2474 * for the SRP protocol to the command queue size.
2475 */
2476 ch->rq_size = SRPT_RQ_SIZE;
2477 spin_lock_init(&ch->spinlock);
2478 ch->state = CH_CONNECTING;
2479 INIT_LIST_HEAD(&ch->cmd_wait_list);
2480 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2481
2482 ch->ioctx_ring = (struct srpt_send_ioctx **)
2483 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2484 sizeof(*ch->ioctx_ring[0]),
2485 ch->rsp_size, DMA_TO_DEVICE);
2486 if (!ch->ioctx_ring)
2487 goto free_ch;
2488
2489 INIT_LIST_HEAD(&ch->free_list);
2490 for (i = 0; i < ch->rq_size; i++) {
2491 ch->ioctx_ring[i]->ch = ch;
2492 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2493 }
2494
2495 ret = srpt_create_ch_ib(ch);
2496 if (ret) {
2497 rej->reason = cpu_to_be32(
2498 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2499 pr_err("rejected SRP_LOGIN_REQ because creating"
2500 " a new RDMA channel failed.\n");
2501 goto free_ring;
2502 }
2503
2504 ret = srpt_ch_qp_rtr(ch, ch->qp);
2505 if (ret) {
2506 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2507 pr_err("rejected SRP_LOGIN_REQ because enabling"
2508 " RTR failed (error code = %d)\n", ret);
2509 goto destroy_ib;
2510 }
2511 /*
2512 * Use the initator port identifier as the session name.
2513 */
2514 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2515 be64_to_cpu(*(__be64 *)ch->i_port_id),
2516 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2517
2518 pr_debug("registering session %s\n", ch->sess_name);
2519
2520 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2521 if (!nacl) {
2522 pr_info("Rejected login because no ACL has been"
2523 " configured yet for initiator %s.\n", ch->sess_name);
2524 rej->reason = cpu_to_be32(
2525 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2526 goto destroy_ib;
2527 }
2528
2529 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2530 if (IS_ERR(ch->sess)) {
2531 rej->reason = cpu_to_be32(
2532 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2533 pr_debug("Failed to create session\n");
2534 goto deregister_session;
2535 }
2536 ch->sess->se_node_acl = &nacl->nacl;
2537 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2538
2539 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2540 ch->sess_name, ch->cm_id);
2541
2542 /* create srp_login_response */
2543 rsp->opcode = SRP_LOGIN_RSP;
2544 rsp->tag = req->tag;
2545 rsp->max_it_iu_len = req->req_it_iu_len;
2546 rsp->max_ti_iu_len = req->req_it_iu_len;
2547 ch->max_ti_iu_len = it_iu_len;
2548 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2549 | SRP_BUF_FORMAT_INDIRECT);
2550 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2551 atomic_set(&ch->req_lim, ch->rq_size);
2552 atomic_set(&ch->req_lim_delta, 0);
2553
2554 /* create cm reply */
2555 rep_param->qp_num = ch->qp->qp_num;
2556 rep_param->private_data = (void *)rsp;
2557 rep_param->private_data_len = sizeof *rsp;
2558 rep_param->rnr_retry_count = 7;
2559 rep_param->flow_control = 1;
2560 rep_param->failover_accepted = 0;
2561 rep_param->srq = 1;
2562 rep_param->responder_resources = 4;
2563 rep_param->initiator_depth = 4;
2564
2565 ret = ib_send_cm_rep(cm_id, rep_param);
2566 if (ret) {
2567 pr_err("sending SRP_LOGIN_REQ response failed"
2568 " (error code = %d)\n", ret);
2569 goto release_channel;
2570 }
2571
2572 spin_lock_irq(&sdev->spinlock);
2573 list_add_tail(&ch->list, &sdev->rch_list);
2574 spin_unlock_irq(&sdev->spinlock);
2575
2576 goto out;
2577
2578 release_channel:
2579 srpt_set_ch_state(ch, CH_RELEASING);
2580 transport_deregister_session_configfs(ch->sess);
2581
2582 deregister_session:
2583 transport_deregister_session(ch->sess);
2584 ch->sess = NULL;
2585
2586 destroy_ib:
2587 srpt_destroy_ch_ib(ch);
2588
2589 free_ring:
2590 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2591 ch->sport->sdev, ch->rq_size,
2592 ch->rsp_size, DMA_TO_DEVICE);
2593 free_ch:
2594 kfree(ch);
2595
2596 reject:
2597 rej->opcode = SRP_LOGIN_REJ;
2598 rej->tag = req->tag;
2599 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2600 | SRP_BUF_FORMAT_INDIRECT);
2601
2602 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2603 (void *)rej, sizeof *rej);
2604
2605 out:
2606 kfree(rep_param);
2607 kfree(rsp);
2608 kfree(rej);
2609
2610 return ret;
2611 }
2612
srpt_cm_rej_recv(struct ib_cm_id * cm_id)2613 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2614 {
2615 pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2616 srpt_drain_channel(cm_id);
2617 }
2618
2619 /**
2620 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2621 *
2622 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2623 * and that the recipient may begin transmitting (RTU = ready to use).
2624 */
srpt_cm_rtu_recv(struct ib_cm_id * cm_id)2625 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2626 {
2627 struct srpt_rdma_ch *ch;
2628 int ret;
2629
2630 ch = srpt_find_channel(cm_id->context, cm_id);
2631 BUG_ON(!ch);
2632
2633 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2634 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2635
2636 ret = srpt_ch_qp_rts(ch, ch->qp);
2637
2638 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2639 wait_list) {
2640 list_del(&ioctx->wait_list);
2641 srpt_handle_new_iu(ch, ioctx, NULL);
2642 }
2643 if (ret)
2644 srpt_close_ch(ch);
2645 }
2646 }
2647
srpt_cm_timewait_exit(struct ib_cm_id * cm_id)2648 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2649 {
2650 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2651 srpt_drain_channel(cm_id);
2652 }
2653
srpt_cm_rep_error(struct ib_cm_id * cm_id)2654 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2655 {
2656 pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2657 srpt_drain_channel(cm_id);
2658 }
2659
2660 /**
2661 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2662 */
srpt_cm_dreq_recv(struct ib_cm_id * cm_id)2663 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2664 {
2665 struct srpt_rdma_ch *ch;
2666 unsigned long flags;
2667 bool send_drep = false;
2668
2669 ch = srpt_find_channel(cm_id->context, cm_id);
2670 BUG_ON(!ch);
2671
2672 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2673
2674 spin_lock_irqsave(&ch->spinlock, flags);
2675 switch (ch->state) {
2676 case CH_CONNECTING:
2677 case CH_LIVE:
2678 send_drep = true;
2679 ch->state = CH_DISCONNECTING;
2680 break;
2681 case CH_DISCONNECTING:
2682 case CH_DRAINING:
2683 case CH_RELEASING:
2684 WARN(true, "unexpected channel state %d\n", ch->state);
2685 break;
2686 }
2687 spin_unlock_irqrestore(&ch->spinlock, flags);
2688
2689 if (send_drep) {
2690 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2691 pr_err("Sending IB DREP failed.\n");
2692 pr_info("Received DREQ and sent DREP for session %s.\n",
2693 ch->sess_name);
2694 }
2695 }
2696
2697 /**
2698 * srpt_cm_drep_recv() - Process reception of a DREP message.
2699 */
srpt_cm_drep_recv(struct ib_cm_id * cm_id)2700 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2701 {
2702 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2703 srpt_drain_channel(cm_id);
2704 }
2705
2706 /**
2707 * srpt_cm_handler() - IB connection manager callback function.
2708 *
2709 * A non-zero return value will cause the caller destroy the CM ID.
2710 *
2711 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2712 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2713 * a non-zero value in any other case will trigger a race with the
2714 * ib_destroy_cm_id() call in srpt_release_channel().
2715 */
srpt_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2716 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2717 {
2718 int ret;
2719
2720 ret = 0;
2721 switch (event->event) {
2722 case IB_CM_REQ_RECEIVED:
2723 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2724 event->private_data);
2725 break;
2726 case IB_CM_REJ_RECEIVED:
2727 srpt_cm_rej_recv(cm_id);
2728 break;
2729 case IB_CM_RTU_RECEIVED:
2730 case IB_CM_USER_ESTABLISHED:
2731 srpt_cm_rtu_recv(cm_id);
2732 break;
2733 case IB_CM_DREQ_RECEIVED:
2734 srpt_cm_dreq_recv(cm_id);
2735 break;
2736 case IB_CM_DREP_RECEIVED:
2737 srpt_cm_drep_recv(cm_id);
2738 break;
2739 case IB_CM_TIMEWAIT_EXIT:
2740 srpt_cm_timewait_exit(cm_id);
2741 break;
2742 case IB_CM_REP_ERROR:
2743 srpt_cm_rep_error(cm_id);
2744 break;
2745 case IB_CM_DREQ_ERROR:
2746 pr_info("Received IB DREQ ERROR event.\n");
2747 break;
2748 case IB_CM_MRA_RECEIVED:
2749 pr_info("Received IB MRA event\n");
2750 break;
2751 default:
2752 pr_err("received unrecognized IB CM event %d\n", event->event);
2753 break;
2754 }
2755
2756 return ret;
2757 }
2758
2759 /**
2760 * srpt_perform_rdmas() - Perform IB RDMA.
2761 *
2762 * Returns zero upon success or a negative number upon failure.
2763 */
srpt_perform_rdmas(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2764 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2765 struct srpt_send_ioctx *ioctx)
2766 {
2767 struct ib_rdma_wr wr;
2768 struct ib_send_wr *bad_wr;
2769 struct rdma_iu *riu;
2770 int i;
2771 int ret;
2772 int sq_wr_avail;
2773 enum dma_data_direction dir;
2774 const int n_rdma = ioctx->n_rdma;
2775
2776 dir = ioctx->cmd.data_direction;
2777 if (dir == DMA_TO_DEVICE) {
2778 /* write */
2779 ret = -ENOMEM;
2780 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2781 if (sq_wr_avail < 0) {
2782 pr_warn("IB send queue full (needed %d)\n",
2783 n_rdma);
2784 goto out;
2785 }
2786 }
2787
2788 ioctx->rdma_aborted = false;
2789 ret = 0;
2790 riu = ioctx->rdma_ius;
2791 memset(&wr, 0, sizeof wr);
2792
2793 for (i = 0; i < n_rdma; ++i, ++riu) {
2794 if (dir == DMA_FROM_DEVICE) {
2795 wr.wr.opcode = IB_WR_RDMA_WRITE;
2796 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2797 SRPT_RDMA_WRITE_LAST :
2798 SRPT_RDMA_MID,
2799 ioctx->ioctx.index);
2800 } else {
2801 wr.wr.opcode = IB_WR_RDMA_READ;
2802 wr.wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2803 SRPT_RDMA_READ_LAST :
2804 SRPT_RDMA_MID,
2805 ioctx->ioctx.index);
2806 }
2807 wr.wr.next = NULL;
2808 wr.remote_addr = riu->raddr;
2809 wr.rkey = riu->rkey;
2810 wr.wr.num_sge = riu->sge_cnt;
2811 wr.wr.sg_list = riu->sge;
2812
2813 /* only get completion event for the last rdma write */
2814 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2815 wr.wr.send_flags = IB_SEND_SIGNALED;
2816
2817 ret = ib_post_send(ch->qp, &wr.wr, &bad_wr);
2818 if (ret)
2819 break;
2820 }
2821
2822 if (ret)
2823 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2824 __func__, __LINE__, ret, i, n_rdma);
2825 if (ret && i > 0) {
2826 wr.wr.num_sge = 0;
2827 wr.wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2828 wr.wr.send_flags = IB_SEND_SIGNALED;
2829 while (ch->state == CH_LIVE &&
2830 ib_post_send(ch->qp, &wr.wr, &bad_wr) != 0) {
2831 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2832 ioctx->ioctx.index);
2833 msleep(1000);
2834 }
2835 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2836 pr_info("Waiting until RDMA abort finished [%d]\n",
2837 ioctx->ioctx.index);
2838 msleep(1000);
2839 }
2840 }
2841 out:
2842 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2843 atomic_add(n_rdma, &ch->sq_wr_avail);
2844 return ret;
2845 }
2846
2847 /**
2848 * srpt_xfer_data() - Start data transfer from initiator to target.
2849 */
srpt_xfer_data(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2850 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2851 struct srpt_send_ioctx *ioctx)
2852 {
2853 int ret;
2854
2855 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2856 if (ret) {
2857 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2858 goto out;
2859 }
2860
2861 ret = srpt_perform_rdmas(ch, ioctx);
2862 if (ret) {
2863 if (ret == -EAGAIN || ret == -ENOMEM)
2864 pr_info("%s[%d] queue full -- ret=%d\n",
2865 __func__, __LINE__, ret);
2866 else
2867 pr_err("%s[%d] fatal error -- ret=%d\n",
2868 __func__, __LINE__, ret);
2869 goto out_unmap;
2870 }
2871
2872 out:
2873 return ret;
2874 out_unmap:
2875 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2876 goto out;
2877 }
2878
srpt_write_pending_status(struct se_cmd * se_cmd)2879 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2880 {
2881 struct srpt_send_ioctx *ioctx;
2882
2883 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2884 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2885 }
2886
2887 /*
2888 * srpt_write_pending() - Start data transfer from initiator to target (write).
2889 */
srpt_write_pending(struct se_cmd * se_cmd)2890 static int srpt_write_pending(struct se_cmd *se_cmd)
2891 {
2892 struct srpt_rdma_ch *ch;
2893 struct srpt_send_ioctx *ioctx;
2894 enum srpt_command_state new_state;
2895 enum rdma_ch_state ch_state;
2896 int ret;
2897
2898 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2899
2900 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2901 WARN_ON(new_state == SRPT_STATE_DONE);
2902
2903 ch = ioctx->ch;
2904 BUG_ON(!ch);
2905
2906 ch_state = srpt_get_ch_state(ch);
2907 switch (ch_state) {
2908 case CH_CONNECTING:
2909 WARN(true, "unexpected channel state %d\n", ch_state);
2910 ret = -EINVAL;
2911 goto out;
2912 case CH_LIVE:
2913 break;
2914 case CH_DISCONNECTING:
2915 case CH_DRAINING:
2916 case CH_RELEASING:
2917 pr_debug("cmd with tag %lld: channel disconnecting\n",
2918 ioctx->cmd.tag);
2919 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2920 ret = -EINVAL;
2921 goto out;
2922 }
2923 ret = srpt_xfer_data(ch, ioctx);
2924
2925 out:
2926 return ret;
2927 }
2928
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2929 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2930 {
2931 switch (tcm_mgmt_status) {
2932 case TMR_FUNCTION_COMPLETE:
2933 return SRP_TSK_MGMT_SUCCESS;
2934 case TMR_FUNCTION_REJECTED:
2935 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2936 }
2937 return SRP_TSK_MGMT_FAILED;
2938 }
2939
2940 /**
2941 * srpt_queue_response() - Transmits the response to a SCSI command.
2942 *
2943 * Callback function called by the TCM core. Must not block since it can be
2944 * invoked on the context of the IB completion handler.
2945 */
srpt_queue_response(struct se_cmd * cmd)2946 static void srpt_queue_response(struct se_cmd *cmd)
2947 {
2948 struct srpt_rdma_ch *ch;
2949 struct srpt_send_ioctx *ioctx;
2950 enum srpt_command_state state;
2951 unsigned long flags;
2952 int ret;
2953 enum dma_data_direction dir;
2954 int resp_len;
2955 u8 srp_tm_status;
2956
2957 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2958 ch = ioctx->ch;
2959 BUG_ON(!ch);
2960
2961 spin_lock_irqsave(&ioctx->spinlock, flags);
2962 state = ioctx->state;
2963 switch (state) {
2964 case SRPT_STATE_NEW:
2965 case SRPT_STATE_DATA_IN:
2966 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2967 break;
2968 case SRPT_STATE_MGMT:
2969 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2970 break;
2971 default:
2972 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2973 ch, ioctx->ioctx.index, ioctx->state);
2974 break;
2975 }
2976 spin_unlock_irqrestore(&ioctx->spinlock, flags);
2977
2978 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2979 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2980 atomic_inc(&ch->req_lim_delta);
2981 srpt_abort_cmd(ioctx);
2982 return;
2983 }
2984
2985 dir = ioctx->cmd.data_direction;
2986
2987 /* For read commands, transfer the data to the initiator. */
2988 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
2989 !ioctx->queue_status_only) {
2990 ret = srpt_xfer_data(ch, ioctx);
2991 if (ret) {
2992 pr_err("xfer_data failed for tag %llu\n",
2993 ioctx->cmd.tag);
2994 return;
2995 }
2996 }
2997
2998 if (state != SRPT_STATE_MGMT)
2999 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3000 cmd->scsi_status);
3001 else {
3002 srp_tm_status
3003 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3004 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3005 ioctx->cmd.tag);
3006 }
3007 ret = srpt_post_send(ch, ioctx, resp_len);
3008 if (ret) {
3009 pr_err("sending cmd response failed for tag %llu\n",
3010 ioctx->cmd.tag);
3011 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3012 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3013 target_put_sess_cmd(&ioctx->cmd);
3014 }
3015 }
3016
srpt_queue_data_in(struct se_cmd * cmd)3017 static int srpt_queue_data_in(struct se_cmd *cmd)
3018 {
3019 srpt_queue_response(cmd);
3020 return 0;
3021 }
3022
srpt_queue_tm_rsp(struct se_cmd * cmd)3023 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3024 {
3025 srpt_queue_response(cmd);
3026 }
3027
srpt_aborted_task(struct se_cmd * cmd)3028 static void srpt_aborted_task(struct se_cmd *cmd)
3029 {
3030 struct srpt_send_ioctx *ioctx = container_of(cmd,
3031 struct srpt_send_ioctx, cmd);
3032
3033 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3034 }
3035
srpt_queue_status(struct se_cmd * cmd)3036 static int srpt_queue_status(struct se_cmd *cmd)
3037 {
3038 struct srpt_send_ioctx *ioctx;
3039
3040 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3041 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3042 if (cmd->se_cmd_flags &
3043 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3044 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3045 ioctx->queue_status_only = true;
3046 srpt_queue_response(cmd);
3047 return 0;
3048 }
3049
srpt_refresh_port_work(struct work_struct * work)3050 static void srpt_refresh_port_work(struct work_struct *work)
3051 {
3052 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3053
3054 srpt_refresh_port(sport);
3055 }
3056
srpt_ch_list_empty(struct srpt_device * sdev)3057 static int srpt_ch_list_empty(struct srpt_device *sdev)
3058 {
3059 int res;
3060
3061 spin_lock_irq(&sdev->spinlock);
3062 res = list_empty(&sdev->rch_list);
3063 spin_unlock_irq(&sdev->spinlock);
3064
3065 return res;
3066 }
3067
3068 /**
3069 * srpt_release_sdev() - Free the channel resources associated with a target.
3070 */
srpt_release_sdev(struct srpt_device * sdev)3071 static int srpt_release_sdev(struct srpt_device *sdev)
3072 {
3073 struct srpt_rdma_ch *ch, *tmp_ch;
3074 int res;
3075
3076 WARN_ON_ONCE(irqs_disabled());
3077
3078 BUG_ON(!sdev);
3079
3080 spin_lock_irq(&sdev->spinlock);
3081 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3082 __srpt_close_ch(ch);
3083 spin_unlock_irq(&sdev->spinlock);
3084
3085 res = wait_event_interruptible(sdev->ch_releaseQ,
3086 srpt_ch_list_empty(sdev));
3087 if (res)
3088 pr_err("%s: interrupted.\n", __func__);
3089
3090 return 0;
3091 }
3092
__srpt_lookup_port(const char * name)3093 static struct srpt_port *__srpt_lookup_port(const char *name)
3094 {
3095 struct ib_device *dev;
3096 struct srpt_device *sdev;
3097 struct srpt_port *sport;
3098 int i;
3099
3100 list_for_each_entry(sdev, &srpt_dev_list, list) {
3101 dev = sdev->device;
3102 if (!dev)
3103 continue;
3104
3105 for (i = 0; i < dev->phys_port_cnt; i++) {
3106 sport = &sdev->port[i];
3107
3108 if (!strcmp(sport->port_guid, name))
3109 return sport;
3110 }
3111 }
3112
3113 return NULL;
3114 }
3115
srpt_lookup_port(const char * name)3116 static struct srpt_port *srpt_lookup_port(const char *name)
3117 {
3118 struct srpt_port *sport;
3119
3120 spin_lock(&srpt_dev_lock);
3121 sport = __srpt_lookup_port(name);
3122 spin_unlock(&srpt_dev_lock);
3123
3124 return sport;
3125 }
3126
3127 /**
3128 * srpt_add_one() - Infiniband device addition callback function.
3129 */
srpt_add_one(struct ib_device * device)3130 static void srpt_add_one(struct ib_device *device)
3131 {
3132 struct srpt_device *sdev;
3133 struct srpt_port *sport;
3134 struct ib_srq_init_attr srq_attr;
3135 int i;
3136
3137 pr_debug("device = %p, device->dma_ops = %p\n", device,
3138 device->dma_ops);
3139
3140 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3141 if (!sdev)
3142 goto err;
3143
3144 sdev->device = device;
3145 INIT_LIST_HEAD(&sdev->rch_list);
3146 init_waitqueue_head(&sdev->ch_releaseQ);
3147 spin_lock_init(&sdev->spinlock);
3148
3149 if (ib_query_device(device, &sdev->dev_attr))
3150 goto free_dev;
3151
3152 sdev->pd = ib_alloc_pd(device);
3153 if (IS_ERR(sdev->pd))
3154 goto free_dev;
3155
3156 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3157
3158 srq_attr.event_handler = srpt_srq_event;
3159 srq_attr.srq_context = (void *)sdev;
3160 srq_attr.attr.max_wr = sdev->srq_size;
3161 srq_attr.attr.max_sge = 1;
3162 srq_attr.attr.srq_limit = 0;
3163 srq_attr.srq_type = IB_SRQT_BASIC;
3164
3165 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3166 if (IS_ERR(sdev->srq))
3167 goto err_pd;
3168
3169 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3170 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3171 device->name);
3172
3173 if (!srpt_service_guid)
3174 srpt_service_guid = be64_to_cpu(device->node_guid);
3175
3176 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3177 if (IS_ERR(sdev->cm_id))
3178 goto err_srq;
3179
3180 /* print out target login information */
3181 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3182 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3183 srpt_service_guid, srpt_service_guid);
3184
3185 /*
3186 * We do not have a consistent service_id (ie. also id_ext of target_id)
3187 * to identify this target. We currently use the guid of the first HCA
3188 * in the system as service_id; therefore, the target_id will change
3189 * if this HCA is gone bad and replaced by different HCA
3190 */
3191 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
3192 goto err_cm;
3193
3194 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3195 srpt_event_handler);
3196 if (ib_register_event_handler(&sdev->event_handler))
3197 goto err_cm;
3198
3199 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3200 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3201 sizeof(*sdev->ioctx_ring[0]),
3202 srp_max_req_size, DMA_FROM_DEVICE);
3203 if (!sdev->ioctx_ring)
3204 goto err_event;
3205
3206 for (i = 0; i < sdev->srq_size; ++i)
3207 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3208
3209 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3210
3211 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3212 sport = &sdev->port[i - 1];
3213 sport->sdev = sdev;
3214 sport->port = i;
3215 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3216 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3217 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3218 INIT_WORK(&sport->work, srpt_refresh_port_work);
3219 INIT_LIST_HEAD(&sport->port_acl_list);
3220 spin_lock_init(&sport->port_acl_lock);
3221
3222 if (srpt_refresh_port(sport)) {
3223 pr_err("MAD registration failed for %s-%d.\n",
3224 srpt_sdev_name(sdev), i);
3225 goto err_ring;
3226 }
3227 snprintf(sport->port_guid, sizeof(sport->port_guid),
3228 "0x%016llx%016llx",
3229 be64_to_cpu(sport->gid.global.subnet_prefix),
3230 be64_to_cpu(sport->gid.global.interface_id));
3231 }
3232
3233 spin_lock(&srpt_dev_lock);
3234 list_add_tail(&sdev->list, &srpt_dev_list);
3235 spin_unlock(&srpt_dev_lock);
3236
3237 out:
3238 ib_set_client_data(device, &srpt_client, sdev);
3239 pr_debug("added %s.\n", device->name);
3240 return;
3241
3242 err_ring:
3243 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3244 sdev->srq_size, srp_max_req_size,
3245 DMA_FROM_DEVICE);
3246 err_event:
3247 ib_unregister_event_handler(&sdev->event_handler);
3248 err_cm:
3249 ib_destroy_cm_id(sdev->cm_id);
3250 err_srq:
3251 ib_destroy_srq(sdev->srq);
3252 err_pd:
3253 ib_dealloc_pd(sdev->pd);
3254 free_dev:
3255 kfree(sdev);
3256 err:
3257 sdev = NULL;
3258 pr_info("%s(%s) failed.\n", __func__, device->name);
3259 goto out;
3260 }
3261
3262 /**
3263 * srpt_remove_one() - InfiniBand device removal callback function.
3264 */
srpt_remove_one(struct ib_device * device,void * client_data)3265 static void srpt_remove_one(struct ib_device *device, void *client_data)
3266 {
3267 struct srpt_device *sdev = client_data;
3268 int i;
3269
3270 if (!sdev) {
3271 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3272 return;
3273 }
3274
3275 srpt_unregister_mad_agent(sdev);
3276
3277 ib_unregister_event_handler(&sdev->event_handler);
3278
3279 /* Cancel any work queued by the just unregistered IB event handler. */
3280 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3281 cancel_work_sync(&sdev->port[i].work);
3282
3283 ib_destroy_cm_id(sdev->cm_id);
3284
3285 /*
3286 * Unregistering a target must happen after destroying sdev->cm_id
3287 * such that no new SRP_LOGIN_REQ information units can arrive while
3288 * destroying the target.
3289 */
3290 spin_lock(&srpt_dev_lock);
3291 list_del(&sdev->list);
3292 spin_unlock(&srpt_dev_lock);
3293 srpt_release_sdev(sdev);
3294
3295 ib_destroy_srq(sdev->srq);
3296 ib_dealloc_pd(sdev->pd);
3297
3298 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3299 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3300 sdev->ioctx_ring = NULL;
3301 kfree(sdev);
3302 }
3303
3304 static struct ib_client srpt_client = {
3305 .name = DRV_NAME,
3306 .add = srpt_add_one,
3307 .remove = srpt_remove_one
3308 };
3309
srpt_check_true(struct se_portal_group * se_tpg)3310 static int srpt_check_true(struct se_portal_group *se_tpg)
3311 {
3312 return 1;
3313 }
3314
srpt_check_false(struct se_portal_group * se_tpg)3315 static int srpt_check_false(struct se_portal_group *se_tpg)
3316 {
3317 return 0;
3318 }
3319
srpt_get_fabric_name(void)3320 static char *srpt_get_fabric_name(void)
3321 {
3322 return "srpt";
3323 }
3324
srpt_get_fabric_wwn(struct se_portal_group * tpg)3325 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3326 {
3327 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3328
3329 return sport->port_guid;
3330 }
3331
srpt_get_tag(struct se_portal_group * tpg)3332 static u16 srpt_get_tag(struct se_portal_group *tpg)
3333 {
3334 return 1;
3335 }
3336
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3337 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3338 {
3339 return 1;
3340 }
3341
srpt_release_cmd(struct se_cmd * se_cmd)3342 static void srpt_release_cmd(struct se_cmd *se_cmd)
3343 {
3344 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3345 struct srpt_send_ioctx, cmd);
3346 struct srpt_rdma_ch *ch = ioctx->ch;
3347 unsigned long flags;
3348
3349 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3350 WARN_ON(ioctx->mapped_sg_count != 0);
3351
3352 if (ioctx->n_rbuf > 1) {
3353 kfree(ioctx->rbufs);
3354 ioctx->rbufs = NULL;
3355 ioctx->n_rbuf = 0;
3356 }
3357
3358 spin_lock_irqsave(&ch->spinlock, flags);
3359 list_add(&ioctx->free_list, &ch->free_list);
3360 spin_unlock_irqrestore(&ch->spinlock, flags);
3361 }
3362
3363 /**
3364 * srpt_close_session() - Forcibly close a session.
3365 *
3366 * Callback function invoked by the TCM core to clean up sessions associated
3367 * with a node ACL when the user invokes
3368 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3369 */
srpt_close_session(struct se_session * se_sess)3370 static void srpt_close_session(struct se_session *se_sess)
3371 {
3372 DECLARE_COMPLETION_ONSTACK(release_done);
3373 struct srpt_rdma_ch *ch;
3374 struct srpt_device *sdev;
3375 unsigned long res;
3376
3377 ch = se_sess->fabric_sess_ptr;
3378 WARN_ON(ch->sess != se_sess);
3379
3380 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3381
3382 sdev = ch->sport->sdev;
3383 spin_lock_irq(&sdev->spinlock);
3384 BUG_ON(ch->release_done);
3385 ch->release_done = &release_done;
3386 __srpt_close_ch(ch);
3387 spin_unlock_irq(&sdev->spinlock);
3388
3389 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3390 WARN_ON(res == 0);
3391 }
3392
3393 /**
3394 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3395 *
3396 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3397 * This object represents an arbitrary integer used to uniquely identify a
3398 * particular attached remote initiator port to a particular SCSI target port
3399 * within a particular SCSI target device within a particular SCSI instance.
3400 */
srpt_sess_get_index(struct se_session * se_sess)3401 static u32 srpt_sess_get_index(struct se_session *se_sess)
3402 {
3403 return 0;
3404 }
3405
srpt_set_default_node_attrs(struct se_node_acl * nacl)3406 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3407 {
3408 }
3409
3410 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3411 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3412 {
3413 struct srpt_send_ioctx *ioctx;
3414
3415 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3416 return srpt_get_cmd_state(ioctx);
3417 }
3418
3419 /**
3420 * srpt_parse_i_port_id() - Parse an initiator port ID.
3421 * @name: ASCII representation of a 128-bit initiator port ID.
3422 * @i_port_id: Binary 128-bit port ID.
3423 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3424 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3425 {
3426 const char *p;
3427 unsigned len, count, leading_zero_bytes;
3428 int ret, rc;
3429
3430 p = name;
3431 if (strncasecmp(p, "0x", 2) == 0)
3432 p += 2;
3433 ret = -EINVAL;
3434 len = strlen(p);
3435 if (len % 2)
3436 goto out;
3437 count = min(len / 2, 16U);
3438 leading_zero_bytes = 16 - count;
3439 memset(i_port_id, 0, leading_zero_bytes);
3440 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3441 if (rc < 0)
3442 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3443 ret = 0;
3444 out:
3445 return ret;
3446 }
3447
3448 /*
3449 * configfs callback function invoked for
3450 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3451 */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3452 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3453 {
3454 struct srpt_port *sport =
3455 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3456 struct srpt_node_acl *nacl =
3457 container_of(se_nacl, struct srpt_node_acl, nacl);
3458 u8 i_port_id[16];
3459
3460 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3461 pr_err("invalid initiator port ID %s\n", name);
3462 return -EINVAL;
3463 }
3464
3465 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3466 nacl->sport = sport;
3467
3468 spin_lock_irq(&sport->port_acl_lock);
3469 list_add_tail(&nacl->list, &sport->port_acl_list);
3470 spin_unlock_irq(&sport->port_acl_lock);
3471
3472 return 0;
3473 }
3474
3475 /*
3476 * configfs callback function invoked for
3477 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3478 */
srpt_cleanup_nodeacl(struct se_node_acl * se_nacl)3479 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3480 {
3481 struct srpt_node_acl *nacl =
3482 container_of(se_nacl, struct srpt_node_acl, nacl);
3483 struct srpt_port *sport = nacl->sport;
3484
3485 spin_lock_irq(&sport->port_acl_lock);
3486 list_del(&nacl->list);
3487 spin_unlock_irq(&sport->port_acl_lock);
3488 }
3489
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3490 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3491 char *page)
3492 {
3493 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3494 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3495
3496 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3497 }
3498
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3499 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3500 const char *page, size_t count)
3501 {
3502 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3503 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3504 unsigned long val;
3505 int ret;
3506
3507 ret = kstrtoul(page, 0, &val);
3508 if (ret < 0) {
3509 pr_err("kstrtoul() failed with ret: %d\n", ret);
3510 return -EINVAL;
3511 }
3512 if (val > MAX_SRPT_RDMA_SIZE) {
3513 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3514 MAX_SRPT_RDMA_SIZE);
3515 return -EINVAL;
3516 }
3517 if (val < DEFAULT_MAX_RDMA_SIZE) {
3518 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3519 val, DEFAULT_MAX_RDMA_SIZE);
3520 return -EINVAL;
3521 }
3522 sport->port_attrib.srp_max_rdma_size = val;
3523
3524 return count;
3525 }
3526
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3527 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3528 char *page)
3529 {
3530 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3531 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3532
3533 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3534 }
3535
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3536 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3537 const char *page, size_t count)
3538 {
3539 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3540 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3541 unsigned long val;
3542 int ret;
3543
3544 ret = kstrtoul(page, 0, &val);
3545 if (ret < 0) {
3546 pr_err("kstrtoul() failed with ret: %d\n", ret);
3547 return -EINVAL;
3548 }
3549 if (val > MAX_SRPT_RSP_SIZE) {
3550 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3551 MAX_SRPT_RSP_SIZE);
3552 return -EINVAL;
3553 }
3554 if (val < MIN_MAX_RSP_SIZE) {
3555 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3556 MIN_MAX_RSP_SIZE);
3557 return -EINVAL;
3558 }
3559 sport->port_attrib.srp_max_rsp_size = val;
3560
3561 return count;
3562 }
3563
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3564 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3565 char *page)
3566 {
3567 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3568 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3569
3570 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3571 }
3572
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3573 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3574 const char *page, size_t count)
3575 {
3576 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3577 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3578 unsigned long val;
3579 int ret;
3580
3581 ret = kstrtoul(page, 0, &val);
3582 if (ret < 0) {
3583 pr_err("kstrtoul() failed with ret: %d\n", ret);
3584 return -EINVAL;
3585 }
3586 if (val > MAX_SRPT_SRQ_SIZE) {
3587 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3588 MAX_SRPT_SRQ_SIZE);
3589 return -EINVAL;
3590 }
3591 if (val < MIN_SRPT_SRQ_SIZE) {
3592 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3593 MIN_SRPT_SRQ_SIZE);
3594 return -EINVAL;
3595 }
3596 sport->port_attrib.srp_sq_size = val;
3597
3598 return count;
3599 }
3600
3601 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3602 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3603 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3604
3605 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3606 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3607 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3608 &srpt_tpg_attrib_attr_srp_sq_size,
3609 NULL,
3610 };
3611
srpt_tpg_enable_show(struct config_item * item,char * page)3612 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3613 {
3614 struct se_portal_group *se_tpg = to_tpg(item);
3615 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3616
3617 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3618 }
3619
srpt_tpg_enable_store(struct config_item * item,const char * page,size_t count)3620 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3621 const char *page, size_t count)
3622 {
3623 struct se_portal_group *se_tpg = to_tpg(item);
3624 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3625 unsigned long tmp;
3626 int ret;
3627
3628 ret = kstrtoul(page, 0, &tmp);
3629 if (ret < 0) {
3630 pr_err("Unable to extract srpt_tpg_store_enable\n");
3631 return -EINVAL;
3632 }
3633
3634 if ((tmp != 0) && (tmp != 1)) {
3635 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3636 return -EINVAL;
3637 }
3638 if (tmp == 1)
3639 sport->enabled = true;
3640 else
3641 sport->enabled = false;
3642
3643 return count;
3644 }
3645
3646 CONFIGFS_ATTR(srpt_tpg_, enable);
3647
3648 static struct configfs_attribute *srpt_tpg_attrs[] = {
3649 &srpt_tpg_attr_enable,
3650 NULL,
3651 };
3652
3653 /**
3654 * configfs callback invoked for
3655 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3656 */
srpt_make_tpg(struct se_wwn * wwn,struct config_group * group,const char * name)3657 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3658 struct config_group *group,
3659 const char *name)
3660 {
3661 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3662 int res;
3663
3664 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3665 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3666 if (res)
3667 return ERR_PTR(res);
3668
3669 return &sport->port_tpg_1;
3670 }
3671
3672 /**
3673 * configfs callback invoked for
3674 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3675 */
srpt_drop_tpg(struct se_portal_group * tpg)3676 static void srpt_drop_tpg(struct se_portal_group *tpg)
3677 {
3678 struct srpt_port *sport = container_of(tpg,
3679 struct srpt_port, port_tpg_1);
3680
3681 sport->enabled = false;
3682 core_tpg_deregister(&sport->port_tpg_1);
3683 }
3684
3685 /**
3686 * configfs callback invoked for
3687 * mkdir /sys/kernel/config/target/$driver/$port
3688 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3689 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3690 struct config_group *group,
3691 const char *name)
3692 {
3693 struct srpt_port *sport;
3694 int ret;
3695
3696 sport = srpt_lookup_port(name);
3697 pr_debug("make_tport(%s)\n", name);
3698 ret = -EINVAL;
3699 if (!sport)
3700 goto err;
3701
3702 return &sport->port_wwn;
3703
3704 err:
3705 return ERR_PTR(ret);
3706 }
3707
3708 /**
3709 * configfs callback invoked for
3710 * rmdir /sys/kernel/config/target/$driver/$port
3711 */
srpt_drop_tport(struct se_wwn * wwn)3712 static void srpt_drop_tport(struct se_wwn *wwn)
3713 {
3714 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3715
3716 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3717 }
3718
srpt_wwn_version_show(struct config_item * item,char * buf)3719 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3720 {
3721 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3722 }
3723
3724 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3725
3726 static struct configfs_attribute *srpt_wwn_attrs[] = {
3727 &srpt_wwn_attr_version,
3728 NULL,
3729 };
3730
3731 static const struct target_core_fabric_ops srpt_template = {
3732 .module = THIS_MODULE,
3733 .name = "srpt",
3734 .node_acl_size = sizeof(struct srpt_node_acl),
3735 .get_fabric_name = srpt_get_fabric_name,
3736 .tpg_get_wwn = srpt_get_fabric_wwn,
3737 .tpg_get_tag = srpt_get_tag,
3738 .tpg_check_demo_mode = srpt_check_false,
3739 .tpg_check_demo_mode_cache = srpt_check_true,
3740 .tpg_check_demo_mode_write_protect = srpt_check_true,
3741 .tpg_check_prod_mode_write_protect = srpt_check_false,
3742 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3743 .release_cmd = srpt_release_cmd,
3744 .check_stop_free = srpt_check_stop_free,
3745 .shutdown_session = srpt_shutdown_session,
3746 .close_session = srpt_close_session,
3747 .sess_get_index = srpt_sess_get_index,
3748 .sess_get_initiator_sid = NULL,
3749 .write_pending = srpt_write_pending,
3750 .write_pending_status = srpt_write_pending_status,
3751 .set_default_node_attributes = srpt_set_default_node_attrs,
3752 .get_cmd_state = srpt_get_tcm_cmd_state,
3753 .queue_data_in = srpt_queue_data_in,
3754 .queue_status = srpt_queue_status,
3755 .queue_tm_rsp = srpt_queue_tm_rsp,
3756 .aborted_task = srpt_aborted_task,
3757 /*
3758 * Setup function pointers for generic logic in
3759 * target_core_fabric_configfs.c
3760 */
3761 .fabric_make_wwn = srpt_make_tport,
3762 .fabric_drop_wwn = srpt_drop_tport,
3763 .fabric_make_tpg = srpt_make_tpg,
3764 .fabric_drop_tpg = srpt_drop_tpg,
3765 .fabric_init_nodeacl = srpt_init_nodeacl,
3766 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl,
3767
3768 .tfc_wwn_attrs = srpt_wwn_attrs,
3769 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3770 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3771 };
3772
3773 /**
3774 * srpt_init_module() - Kernel module initialization.
3775 *
3776 * Note: Since ib_register_client() registers callback functions, and since at
3777 * least one of these callback functions (srpt_add_one()) calls target core
3778 * functions, this driver must be registered with the target core before
3779 * ib_register_client() is called.
3780 */
srpt_init_module(void)3781 static int __init srpt_init_module(void)
3782 {
3783 int ret;
3784
3785 ret = -EINVAL;
3786 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3787 pr_err("invalid value %d for kernel module parameter"
3788 " srp_max_req_size -- must be at least %d.\n",
3789 srp_max_req_size, MIN_MAX_REQ_SIZE);
3790 goto out;
3791 }
3792
3793 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3794 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3795 pr_err("invalid value %d for kernel module parameter"
3796 " srpt_srq_size -- must be in the range [%d..%d].\n",
3797 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3798 goto out;
3799 }
3800
3801 ret = target_register_template(&srpt_template);
3802 if (ret)
3803 goto out;
3804
3805 ret = ib_register_client(&srpt_client);
3806 if (ret) {
3807 pr_err("couldn't register IB client\n");
3808 goto out_unregister_target;
3809 }
3810
3811 return 0;
3812
3813 out_unregister_target:
3814 target_unregister_template(&srpt_template);
3815 out:
3816 return ret;
3817 }
3818
srpt_cleanup_module(void)3819 static void __exit srpt_cleanup_module(void)
3820 {
3821 ib_unregister_client(&srpt_client);
3822 target_unregister_template(&srpt_template);
3823 }
3824
3825 module_init(srpt_init_module);
3826 module_exit(srpt_cleanup_module);
3827