1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *	- make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/module.h>
40 
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60 
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63 
64 #define LCD_MINOR		156
65 #define KEYPAD_MINOR		185
66 
67 #define PANEL_VERSION		"0.9.5"
68 
69 #define LCD_MAXBYTES		256	/* max burst write */
70 
71 #define KEYPAD_BUFFER		64
72 
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME		(HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START	(10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY	(2)
79 
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO	(200)
82 
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
85 
86 #define PNL_PBUSY		0x80	/* inverted input, active low */
87 #define PNL_PACK		0x40	/* direct input, active low */
88 #define PNL_POUTPA		0x20	/* direct input, active high */
89 #define PNL_PSELECD		0x10	/* direct input, active high */
90 #define PNL_PERRORP		0x08	/* direct input, active low */
91 
92 #define PNL_PBIDIR		0x20	/* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN		0x10
95 #define PNL_PSELECP		0x08	/* inverted output, active low */
96 #define PNL_PINITP		0x04	/* direct output, active low */
97 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
98 #define PNL_PSTROBE		0x01	/* inverted output */
99 
100 #define PNL_PD0			0x01
101 #define PNL_PD1			0x02
102 #define PNL_PD2			0x04
103 #define PNL_PD3			0x08
104 #define PNL_PD4			0x10
105 #define PNL_PD5			0x20
106 #define PNL_PD6			0x40
107 #define PNL_PD7			0x80
108 
109 #define PIN_NONE		0
110 #define PIN_STROBE		1
111 #define PIN_D0			2
112 #define PIN_D1			3
113 #define PIN_D2			4
114 #define PIN_D3			5
115 #define PIN_D4			6
116 #define PIN_D5			7
117 #define PIN_D6			8
118 #define PIN_D7			9
119 #define PIN_AUTOLF		14
120 #define PIN_INITP		16
121 #define PIN_SELECP		17
122 #define PIN_NOT_SET		127
123 
124 #define LCD_FLAG_S		0x0001
125 #define LCD_FLAG_ID		0x0002
126 #define LCD_FLAG_B		0x0004	/* blink on */
127 #define LCD_FLAG_C		0x0008	/* cursor on */
128 #define LCD_FLAG_D		0x0010	/* display on */
129 #define LCD_FLAG_F		0x0020	/* large font mode */
130 #define LCD_FLAG_N		0x0040	/* 2-rows mode */
131 #define LCD_FLAG_L		0x0080	/* backlight enabled */
132 
133 /* LCD commands */
134 #define LCD_CMD_DISPLAY_CLEAR	0x01	/* Clear entire display */
135 
136 #define LCD_CMD_ENTRY_MODE	0x04	/* Set entry mode */
137 #define LCD_CMD_CURSOR_INC	0x02	/* Increment cursor */
138 
139 #define LCD_CMD_DISPLAY_CTRL	0x08	/* Display control */
140 #define LCD_CMD_DISPLAY_ON	0x04	/* Set display on */
141 #define LCD_CMD_CURSOR_ON	0x02	/* Set cursor on */
142 #define LCD_CMD_BLINK_ON	0x01	/* Set blink on */
143 
144 #define LCD_CMD_SHIFT		0x10	/* Shift cursor/display */
145 #define LCD_CMD_DISPLAY_SHIFT	0x08	/* Shift display instead of cursor */
146 #define LCD_CMD_SHIFT_RIGHT	0x04	/* Shift display/cursor to the right */
147 
148 #define LCD_CMD_FUNCTION_SET	0x20	/* Set function */
149 #define LCD_CMD_DATA_LEN_8BITS	0x10	/* Set data length to 8 bits */
150 #define LCD_CMD_TWO_LINES	0x08	/* Set to two display lines */
151 #define LCD_CMD_FONT_5X10_DOTS	0x04	/* Set char font to 5x10 dots */
152 
153 #define LCD_CMD_SET_CGRAM_ADDR	0x40	/* Set char generator RAM address */
154 
155 #define LCD_CMD_SET_DDRAM_ADDR	0x80	/* Set display data RAM address */
156 
157 #define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
158 #define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
159 
160 #define NOT_SET			-1
161 
162 /* macros to simplify use of the parallel port */
163 #define r_ctr(x)        (parport_read_control((x)->port))
164 #define r_dtr(x)        (parport_read_data((x)->port))
165 #define r_str(x)        (parport_read_status((x)->port))
166 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
167 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
168 
169 /* this defines which bits are to be used and which ones to be ignored */
170 /* logical or of the output bits involved in the scan matrix */
171 static __u8 scan_mask_o;
172 /* logical or of the input bits involved in the scan matrix */
173 static __u8 scan_mask_i;
174 
175 typedef __u64 pmask_t;
176 
177 enum input_type {
178 	INPUT_TYPE_STD,
179 	INPUT_TYPE_KBD,
180 };
181 
182 enum input_state {
183 	INPUT_ST_LOW,
184 	INPUT_ST_RISING,
185 	INPUT_ST_HIGH,
186 	INPUT_ST_FALLING,
187 };
188 
189 struct logical_input {
190 	struct list_head list;
191 	pmask_t mask;
192 	pmask_t value;
193 	enum input_type type;
194 	enum input_state state;
195 	__u8 rise_time, fall_time;
196 	__u8 rise_timer, fall_timer, high_timer;
197 
198 	union {
199 		struct {	/* valid when type == INPUT_TYPE_STD */
200 			void (*press_fct)(int);
201 			void (*release_fct)(int);
202 			int press_data;
203 			int release_data;
204 		} std;
205 		struct {	/* valid when type == INPUT_TYPE_KBD */
206 			/* strings can be non null-terminated */
207 			char press_str[sizeof(void *) + sizeof(int)];
208 			char repeat_str[sizeof(void *) + sizeof(int)];
209 			char release_str[sizeof(void *) + sizeof(int)];
210 		} kbd;
211 	} u;
212 };
213 
214 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
215 
216 /* physical contacts history
217  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
218  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
219  * corresponds to the ground.
220  * Within each group, bits are stored in the same order as read on the port :
221  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
222  * So, each __u64 (or pmask_t) is represented like this :
223  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
224  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
225  */
226 
227 /* what has just been read from the I/O ports */
228 static pmask_t phys_read;
229 /* previous phys_read */
230 static pmask_t phys_read_prev;
231 /* stabilized phys_read (phys_read|phys_read_prev) */
232 static pmask_t phys_curr;
233 /* previous phys_curr */
234 static pmask_t phys_prev;
235 /* 0 means that at least one logical signal needs be computed */
236 static char inputs_stable;
237 
238 /* these variables are specific to the keypad */
239 static struct {
240 	bool enabled;
241 } keypad;
242 
243 static char keypad_buffer[KEYPAD_BUFFER];
244 static int keypad_buflen;
245 static int keypad_start;
246 static char keypressed;
247 static wait_queue_head_t keypad_read_wait;
248 
249 /* lcd-specific variables */
250 static struct {
251 	bool enabled;
252 	bool initialized;
253 	bool must_clear;
254 
255 	int height;
256 	int width;
257 	int bwidth;
258 	int hwidth;
259 	int charset;
260 	int proto;
261 	int light_tempo;
262 
263 	/* TODO: use union here? */
264 	struct {
265 		int e;
266 		int rs;
267 		int rw;
268 		int cl;
269 		int da;
270 		int bl;
271 	} pins;
272 
273 	/* contains the LCD config state */
274 	unsigned long int flags;
275 
276 	/* Contains the LCD X and Y offset */
277 	struct {
278 		unsigned long int x;
279 		unsigned long int y;
280 	} addr;
281 
282 	/* Current escape sequence and it's length or -1 if outside */
283 	struct {
284 		char buf[LCD_ESCAPE_LEN + 1];
285 		int len;
286 	} esc_seq;
287 } lcd;
288 
289 /* Needed only for init */
290 static int selected_lcd_type = NOT_SET;
291 
292 /*
293  * Bit masks to convert LCD signals to parallel port outputs.
294  * _d_ are values for data port, _c_ are for control port.
295  * [0] = signal OFF, [1] = signal ON, [2] = mask
296  */
297 #define BIT_CLR		0
298 #define BIT_SET		1
299 #define BIT_MSK		2
300 #define BIT_STATES	3
301 /*
302  * one entry for each bit on the LCD
303  */
304 #define LCD_BIT_E	0
305 #define LCD_BIT_RS	1
306 #define LCD_BIT_RW	2
307 #define LCD_BIT_BL	3
308 #define LCD_BIT_CL	4
309 #define LCD_BIT_DA	5
310 #define LCD_BITS	6
311 
312 /*
313  * each bit can be either connected to a DATA or CTRL port
314  */
315 #define LCD_PORT_C	0
316 #define LCD_PORT_D	1
317 #define LCD_PORTS	2
318 
319 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320 
321 /*
322  * LCD protocols
323  */
324 #define LCD_PROTO_PARALLEL      0
325 #define LCD_PROTO_SERIAL        1
326 #define LCD_PROTO_TI_DA8XX_LCD	2
327 
328 /*
329  * LCD character sets
330  */
331 #define LCD_CHARSET_NORMAL      0
332 #define LCD_CHARSET_KS0074      1
333 
334 /*
335  * LCD types
336  */
337 #define LCD_TYPE_NONE		0
338 #define LCD_TYPE_CUSTOM		1
339 #define LCD_TYPE_OLD		2
340 #define LCD_TYPE_KS0074		3
341 #define LCD_TYPE_HANTRONIX	4
342 #define LCD_TYPE_NEXCOM		5
343 
344 /*
345  * keypad types
346  */
347 #define KEYPAD_TYPE_NONE	0
348 #define KEYPAD_TYPE_OLD		1
349 #define KEYPAD_TYPE_NEW		2
350 #define KEYPAD_TYPE_NEXCOM	3
351 
352 /*
353  * panel profiles
354  */
355 #define PANEL_PROFILE_CUSTOM	0
356 #define PANEL_PROFILE_OLD	1
357 #define PANEL_PROFILE_NEW	2
358 #define PANEL_PROFILE_HANTRONIX	3
359 #define PANEL_PROFILE_NEXCOM	4
360 #define PANEL_PROFILE_LARGE	5
361 
362 /*
363  * Construct custom config from the kernel's configuration
364  */
365 #define DEFAULT_PARPORT         0
366 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
367 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
368 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
369 #define DEFAULT_LCD_HEIGHT      2
370 #define DEFAULT_LCD_WIDTH       40
371 #define DEFAULT_LCD_BWIDTH      40
372 #define DEFAULT_LCD_HWIDTH      64
373 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
374 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
375 
376 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
377 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
378 #define DEFAULT_LCD_PIN_RW      PIN_INITP
379 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
380 #define DEFAULT_LCD_PIN_SDA     PIN_D0
381 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
382 
383 #ifdef CONFIG_PANEL_PARPORT
384 #undef DEFAULT_PARPORT
385 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
386 #endif
387 
388 #ifdef CONFIG_PANEL_PROFILE
389 #undef DEFAULT_PROFILE
390 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
391 #endif
392 
393 #if DEFAULT_PROFILE == 0	/* custom */
394 #ifdef CONFIG_PANEL_KEYPAD
395 #undef DEFAULT_KEYPAD_TYPE
396 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
397 #endif
398 
399 #ifdef CONFIG_PANEL_LCD
400 #undef DEFAULT_LCD_TYPE
401 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
402 #endif
403 
404 #ifdef CONFIG_PANEL_LCD_HEIGHT
405 #undef DEFAULT_LCD_HEIGHT
406 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
407 #endif
408 
409 #ifdef CONFIG_PANEL_LCD_WIDTH
410 #undef DEFAULT_LCD_WIDTH
411 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
412 #endif
413 
414 #ifdef CONFIG_PANEL_LCD_BWIDTH
415 #undef DEFAULT_LCD_BWIDTH
416 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
417 #endif
418 
419 #ifdef CONFIG_PANEL_LCD_HWIDTH
420 #undef DEFAULT_LCD_HWIDTH
421 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
422 #endif
423 
424 #ifdef CONFIG_PANEL_LCD_CHARSET
425 #undef DEFAULT_LCD_CHARSET
426 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
427 #endif
428 
429 #ifdef CONFIG_PANEL_LCD_PROTO
430 #undef DEFAULT_LCD_PROTO
431 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
432 #endif
433 
434 #ifdef CONFIG_PANEL_LCD_PIN_E
435 #undef DEFAULT_LCD_PIN_E
436 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
437 #endif
438 
439 #ifdef CONFIG_PANEL_LCD_PIN_RS
440 #undef DEFAULT_LCD_PIN_RS
441 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
442 #endif
443 
444 #ifdef CONFIG_PANEL_LCD_PIN_RW
445 #undef DEFAULT_LCD_PIN_RW
446 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
447 #endif
448 
449 #ifdef CONFIG_PANEL_LCD_PIN_SCL
450 #undef DEFAULT_LCD_PIN_SCL
451 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
452 #endif
453 
454 #ifdef CONFIG_PANEL_LCD_PIN_SDA
455 #undef DEFAULT_LCD_PIN_SDA
456 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
457 #endif
458 
459 #ifdef CONFIG_PANEL_LCD_PIN_BL
460 #undef DEFAULT_LCD_PIN_BL
461 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
462 #endif
463 
464 #endif /* DEFAULT_PROFILE == 0 */
465 
466 /* global variables */
467 
468 /* Device single-open policy control */
469 static atomic_t lcd_available = ATOMIC_INIT(1);
470 static atomic_t keypad_available = ATOMIC_INIT(1);
471 
472 static struct pardevice *pprt;
473 
474 static int keypad_initialized;
475 
476 static void (*lcd_write_cmd)(int);
477 static void (*lcd_write_data)(int);
478 static void (*lcd_clear_fast)(void);
479 
480 static DEFINE_SPINLOCK(pprt_lock);
481 static struct timer_list scan_timer;
482 
483 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
484 
485 static int parport = DEFAULT_PARPORT;
486 module_param(parport, int, 0000);
487 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
488 
489 static int profile = DEFAULT_PROFILE;
490 module_param(profile, int, 0000);
491 MODULE_PARM_DESC(profile,
492 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
493 		 "4=16x2 nexcom; default=40x2, old kp");
494 
495 static int keypad_type = NOT_SET;
496 module_param(keypad_type, int, 0000);
497 MODULE_PARM_DESC(keypad_type,
498 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
499 
500 static int lcd_type = NOT_SET;
501 module_param(lcd_type, int, 0000);
502 MODULE_PARM_DESC(lcd_type,
503 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
504 
505 static int lcd_height = NOT_SET;
506 module_param(lcd_height, int, 0000);
507 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
508 
509 static int lcd_width = NOT_SET;
510 module_param(lcd_width, int, 0000);
511 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
512 
513 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
514 module_param(lcd_bwidth, int, 0000);
515 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
516 
517 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
518 module_param(lcd_hwidth, int, 0000);
519 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
520 
521 static int lcd_charset = NOT_SET;
522 module_param(lcd_charset, int, 0000);
523 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
524 
525 static int lcd_proto = NOT_SET;
526 module_param(lcd_proto, int, 0000);
527 MODULE_PARM_DESC(lcd_proto,
528 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529 
530 /*
531  * These are the parallel port pins the LCD control signals are connected to.
532  * Set this to 0 if the signal is not used. Set it to its opposite value
533  * (negative) if the signal is negated. -MAXINT is used to indicate that the
534  * pin has not been explicitly specified.
535  *
536  * WARNING! no check will be performed about collisions with keypad !
537  */
538 
539 static int lcd_e_pin  = PIN_NOT_SET;
540 module_param(lcd_e_pin, int, 0000);
541 MODULE_PARM_DESC(lcd_e_pin,
542 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
543 
544 static int lcd_rs_pin = PIN_NOT_SET;
545 module_param(lcd_rs_pin, int, 0000);
546 MODULE_PARM_DESC(lcd_rs_pin,
547 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
548 
549 static int lcd_rw_pin = PIN_NOT_SET;
550 module_param(lcd_rw_pin, int, 0000);
551 MODULE_PARM_DESC(lcd_rw_pin,
552 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
553 
554 static int lcd_cl_pin = PIN_NOT_SET;
555 module_param(lcd_cl_pin, int, 0000);
556 MODULE_PARM_DESC(lcd_cl_pin,
557 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
558 
559 static int lcd_da_pin = PIN_NOT_SET;
560 module_param(lcd_da_pin, int, 0000);
561 MODULE_PARM_DESC(lcd_da_pin,
562 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
563 
564 static int lcd_bl_pin = PIN_NOT_SET;
565 module_param(lcd_bl_pin, int, 0000);
566 MODULE_PARM_DESC(lcd_bl_pin,
567 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
568 
569 /* Deprecated module parameters - consider not using them anymore */
570 
571 static int lcd_enabled = NOT_SET;
572 module_param(lcd_enabled, int, 0000);
573 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
574 
575 static int keypad_enabled = NOT_SET;
576 module_param(keypad_enabled, int, 0000);
577 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
578 
579 
580 static const unsigned char *lcd_char_conv;
581 
582 /* for some LCD drivers (ks0074) we need a charset conversion table. */
583 static const unsigned char lcd_char_conv_ks0074[256] = {
584 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
585 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
586 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
587 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
588 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
589 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
590 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
591 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
592 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
593 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
594 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
595 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
596 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
597 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
598 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
599 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
600 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
601 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
602 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
603 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
604 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
605 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
606 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
607 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
608 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
609 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
610 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
611 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
612 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
613 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
614 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
615 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
616 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
617 };
618 
619 static const char old_keypad_profile[][4][9] = {
620 	{"S0", "Left\n", "Left\n", ""},
621 	{"S1", "Down\n", "Down\n", ""},
622 	{"S2", "Up\n", "Up\n", ""},
623 	{"S3", "Right\n", "Right\n", ""},
624 	{"S4", "Esc\n", "Esc\n", ""},
625 	{"S5", "Ret\n", "Ret\n", ""},
626 	{"", "", "", ""}
627 };
628 
629 /* signals, press, repeat, release */
630 static const char new_keypad_profile[][4][9] = {
631 	{"S0", "Left\n", "Left\n", ""},
632 	{"S1", "Down\n", "Down\n", ""},
633 	{"S2", "Up\n", "Up\n", ""},
634 	{"S3", "Right\n", "Right\n", ""},
635 	{"S4s5", "", "Esc\n", "Esc\n"},
636 	{"s4S5", "", "Ret\n", "Ret\n"},
637 	{"S4S5", "Help\n", "", ""},
638 	/* add new signals above this line */
639 	{"", "", "", ""}
640 };
641 
642 /* signals, press, repeat, release */
643 static const char nexcom_keypad_profile[][4][9] = {
644 	{"a-p-e-", "Down\n", "Down\n", ""},
645 	{"a-p-E-", "Ret\n", "Ret\n", ""},
646 	{"a-P-E-", "Esc\n", "Esc\n", ""},
647 	{"a-P-e-", "Up\n", "Up\n", ""},
648 	/* add new signals above this line */
649 	{"", "", "", ""}
650 };
651 
652 static const char (*keypad_profile)[4][9] = old_keypad_profile;
653 
654 /* FIXME: this should be converted to a bit array containing signals states */
655 static struct {
656 	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
657 	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
658 	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
659 	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
660 	unsigned char cl; /* serial LCD clock (latch on rising edge) */
661 	unsigned char da; /* serial LCD data */
662 } bits;
663 
664 static void init_scan_timer(void);
665 
666 /* sets data port bits according to current signals values */
set_data_bits(void)667 static int set_data_bits(void)
668 {
669 	int val, bit;
670 
671 	val = r_dtr(pprt);
672 	for (bit = 0; bit < LCD_BITS; bit++)
673 		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
674 
675 	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
676 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
677 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
678 	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
679 	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
680 	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
681 
682 	w_dtr(pprt, val);
683 	return val;
684 }
685 
686 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)687 static int set_ctrl_bits(void)
688 {
689 	int val, bit;
690 
691 	val = r_ctr(pprt);
692 	for (bit = 0; bit < LCD_BITS; bit++)
693 		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
694 
695 	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
696 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
697 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
698 	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
699 	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
700 	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
701 
702 	w_ctr(pprt, val);
703 	return val;
704 }
705 
706 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)707 static void panel_set_bits(void)
708 {
709 	set_data_bits();
710 	set_ctrl_bits();
711 }
712 
713 /*
714  * Converts a parallel port pin (from -25 to 25) to data and control ports
715  * masks, and data and control port bits. The signal will be considered
716  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
717  *
718  * Result will be used this way :
719  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
720  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
721  */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)722 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
723 {
724 	int d_bit, c_bit, inv;
725 
726 	d_val[0] = 0;
727 	c_val[0] = 0;
728 	d_val[1] = 0;
729 	c_val[1] = 0;
730 	d_val[2] = 0xFF;
731 	c_val[2] = 0xFF;
732 
733 	if (pin == 0)
734 		return;
735 
736 	inv = (pin < 0);
737 	if (inv)
738 		pin = -pin;
739 
740 	d_bit = 0;
741 	c_bit = 0;
742 
743 	switch (pin) {
744 	case PIN_STROBE:	/* strobe, inverted */
745 		c_bit = PNL_PSTROBE;
746 		inv = !inv;
747 		break;
748 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
749 		d_bit = 1 << (pin - 2);
750 		break;
751 	case PIN_AUTOLF:	/* autofeed, inverted */
752 		c_bit = PNL_PAUTOLF;
753 		inv = !inv;
754 		break;
755 	case PIN_INITP:		/* init, direct */
756 		c_bit = PNL_PINITP;
757 		break;
758 	case PIN_SELECP:	/* select_in, inverted */
759 		c_bit = PNL_PSELECP;
760 		inv = !inv;
761 		break;
762 	default:		/* unknown pin, ignore */
763 		break;
764 	}
765 
766 	if (c_bit) {
767 		c_val[2] &= ~c_bit;
768 		c_val[!inv] = c_bit;
769 	} else if (d_bit) {
770 		d_val[2] &= ~d_bit;
771 		d_val[!inv] = d_bit;
772 	}
773 }
774 
775 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)776 static void long_sleep(int ms)
777 {
778 	if (in_interrupt()) {
779 		mdelay(ms);
780 	} else {
781 		__set_current_state(TASK_INTERRUPTIBLE);
782 		schedule_timeout((ms * HZ + 999) / 1000);
783 	}
784 }
785 
786 /* send a serial byte to the LCD panel. The caller is responsible for locking
787    if needed. */
lcd_send_serial(int byte)788 static void lcd_send_serial(int byte)
789 {
790 	int bit;
791 
792 	/* the data bit is set on D0, and the clock on STROBE.
793 	 * LCD reads D0 on STROBE's rising edge. */
794 	for (bit = 0; bit < 8; bit++) {
795 		bits.cl = BIT_CLR;	/* CLK low */
796 		panel_set_bits();
797 		bits.da = byte & 1;
798 		panel_set_bits();
799 		udelay(2);  /* maintain the data during 2 us before CLK up */
800 		bits.cl = BIT_SET;	/* CLK high */
801 		panel_set_bits();
802 		udelay(1);  /* maintain the strobe during 1 us */
803 		byte >>= 1;
804 	}
805 }
806 
807 /* turn the backlight on or off */
lcd_backlight(int on)808 static void lcd_backlight(int on)
809 {
810 	if (lcd.pins.bl == PIN_NONE)
811 		return;
812 
813 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
814 	spin_lock_irq(&pprt_lock);
815 	bits.bl = on;
816 	panel_set_bits();
817 	spin_unlock_irq(&pprt_lock);
818 }
819 
820 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)821 static void lcd_write_cmd_s(int cmd)
822 {
823 	spin_lock_irq(&pprt_lock);
824 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
825 	lcd_send_serial(cmd & 0x0F);
826 	lcd_send_serial((cmd >> 4) & 0x0F);
827 	udelay(40);		/* the shortest command takes at least 40 us */
828 	spin_unlock_irq(&pprt_lock);
829 }
830 
831 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)832 static void lcd_write_data_s(int data)
833 {
834 	spin_lock_irq(&pprt_lock);
835 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
836 	lcd_send_serial(data & 0x0F);
837 	lcd_send_serial((data >> 4) & 0x0F);
838 	udelay(40);		/* the shortest data takes at least 40 us */
839 	spin_unlock_irq(&pprt_lock);
840 }
841 
842 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)843 static void lcd_write_cmd_p8(int cmd)
844 {
845 	spin_lock_irq(&pprt_lock);
846 	/* present the data to the data port */
847 	w_dtr(pprt, cmd);
848 	udelay(20);	/* maintain the data during 20 us before the strobe */
849 
850 	bits.e = BIT_SET;
851 	bits.rs = BIT_CLR;
852 	bits.rw = BIT_CLR;
853 	set_ctrl_bits();
854 
855 	udelay(40);	/* maintain the strobe during 40 us */
856 
857 	bits.e = BIT_CLR;
858 	set_ctrl_bits();
859 
860 	udelay(120);	/* the shortest command takes at least 120 us */
861 	spin_unlock_irq(&pprt_lock);
862 }
863 
864 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)865 static void lcd_write_data_p8(int data)
866 {
867 	spin_lock_irq(&pprt_lock);
868 	/* present the data to the data port */
869 	w_dtr(pprt, data);
870 	udelay(20);	/* maintain the data during 20 us before the strobe */
871 
872 	bits.e = BIT_SET;
873 	bits.rs = BIT_SET;
874 	bits.rw = BIT_CLR;
875 	set_ctrl_bits();
876 
877 	udelay(40);	/* maintain the strobe during 40 us */
878 
879 	bits.e = BIT_CLR;
880 	set_ctrl_bits();
881 
882 	udelay(45);	/* the shortest data takes at least 45 us */
883 	spin_unlock_irq(&pprt_lock);
884 }
885 
886 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)887 static void lcd_write_cmd_tilcd(int cmd)
888 {
889 	spin_lock_irq(&pprt_lock);
890 	/* present the data to the control port */
891 	w_ctr(pprt, cmd);
892 	udelay(60);
893 	spin_unlock_irq(&pprt_lock);
894 }
895 
896 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)897 static void lcd_write_data_tilcd(int data)
898 {
899 	spin_lock_irq(&pprt_lock);
900 	/* present the data to the data port */
901 	w_dtr(pprt, data);
902 	udelay(60);
903 	spin_unlock_irq(&pprt_lock);
904 }
905 
lcd_gotoxy(void)906 static void lcd_gotoxy(void)
907 {
908 	lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
909 		      | (lcd.addr.y ? lcd.hwidth : 0)
910 		      /* we force the cursor to stay at the end of the
911 			 line if it wants to go farther */
912 		      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
913 			 (lcd.hwidth - 1) : lcd.bwidth - 1));
914 }
915 
lcd_print(char c)916 static void lcd_print(char c)
917 {
918 	if (lcd.addr.x < lcd.bwidth) {
919 		if (lcd_char_conv != NULL)
920 			c = lcd_char_conv[(unsigned char)c];
921 		lcd_write_data(c);
922 		lcd.addr.x++;
923 	}
924 	/* prevents the cursor from wrapping onto the next line */
925 	if (lcd.addr.x == lcd.bwidth)
926 		lcd_gotoxy();
927 }
928 
929 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)930 static void lcd_clear_fast_s(void)
931 {
932 	int pos;
933 
934 	lcd.addr.x = 0;
935 	lcd.addr.y = 0;
936 	lcd_gotoxy();
937 
938 	spin_lock_irq(&pprt_lock);
939 	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
940 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
941 		lcd_send_serial(' ' & 0x0F);
942 		lcd_send_serial((' ' >> 4) & 0x0F);
943 		udelay(40);	/* the shortest data takes at least 40 us */
944 	}
945 	spin_unlock_irq(&pprt_lock);
946 
947 	lcd.addr.x = 0;
948 	lcd.addr.y = 0;
949 	lcd_gotoxy();
950 }
951 
952 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)953 static void lcd_clear_fast_p8(void)
954 {
955 	int pos;
956 
957 	lcd.addr.x = 0;
958 	lcd.addr.y = 0;
959 	lcd_gotoxy();
960 
961 	spin_lock_irq(&pprt_lock);
962 	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
963 		/* present the data to the data port */
964 		w_dtr(pprt, ' ');
965 
966 		/* maintain the data during 20 us before the strobe */
967 		udelay(20);
968 
969 		bits.e = BIT_SET;
970 		bits.rs = BIT_SET;
971 		bits.rw = BIT_CLR;
972 		set_ctrl_bits();
973 
974 		/* maintain the strobe during 40 us */
975 		udelay(40);
976 
977 		bits.e = BIT_CLR;
978 		set_ctrl_bits();
979 
980 		/* the shortest data takes at least 45 us */
981 		udelay(45);
982 	}
983 	spin_unlock_irq(&pprt_lock);
984 
985 	lcd.addr.x = 0;
986 	lcd.addr.y = 0;
987 	lcd_gotoxy();
988 }
989 
990 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)991 static void lcd_clear_fast_tilcd(void)
992 {
993 	int pos;
994 
995 	lcd.addr.x = 0;
996 	lcd.addr.y = 0;
997 	lcd_gotoxy();
998 
999 	spin_lock_irq(&pprt_lock);
1000 	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1001 		/* present the data to the data port */
1002 		w_dtr(pprt, ' ');
1003 		udelay(60);
1004 	}
1005 
1006 	spin_unlock_irq(&pprt_lock);
1007 
1008 	lcd.addr.x = 0;
1009 	lcd.addr.y = 0;
1010 	lcd_gotoxy();
1011 }
1012 
1013 /* clears the display and resets X/Y */
lcd_clear_display(void)1014 static void lcd_clear_display(void)
1015 {
1016 	lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1017 	lcd.addr.x = 0;
1018 	lcd.addr.y = 0;
1019 	/* we must wait a few milliseconds (15) */
1020 	long_sleep(15);
1021 }
1022 
lcd_init_display(void)1023 static void lcd_init_display(void)
1024 {
1025 	lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1026 	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1027 
1028 	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
1029 
1030 	/* 8bits, 1 line, small fonts; let's do it 3 times */
1031 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1032 	long_sleep(10);
1033 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1034 	long_sleep(10);
1035 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1036 	long_sleep(10);
1037 
1038 	/* set font height and lines number */
1039 	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1040 		      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1041 		      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1042 	    );
1043 	long_sleep(10);
1044 
1045 	/* display off, cursor off, blink off */
1046 	lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1047 	long_sleep(10);
1048 
1049 	lcd_write_cmd(LCD_CMD_DISPLAY_CTRL	/* set display mode */
1050 		      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1051 		      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1052 		      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1053 	    );
1054 
1055 	lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1056 
1057 	long_sleep(10);
1058 
1059 	/* entry mode set : increment, cursor shifting */
1060 	lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1061 
1062 	lcd_clear_display();
1063 }
1064 
1065 /*
1066  * These are the file operation function for user access to /dev/lcd
1067  * This function can also be called from inside the kernel, by
1068  * setting file and ppos to NULL.
1069  *
1070  */
1071 
handle_lcd_special_code(void)1072 static inline int handle_lcd_special_code(void)
1073 {
1074 	/* LCD special codes */
1075 
1076 	int processed = 0;
1077 
1078 	char *esc = lcd.esc_seq.buf + 2;
1079 	int oldflags = lcd.flags;
1080 
1081 	/* check for display mode flags */
1082 	switch (*esc) {
1083 	case 'D':	/* Display ON */
1084 		lcd.flags |= LCD_FLAG_D;
1085 		processed = 1;
1086 		break;
1087 	case 'd':	/* Display OFF */
1088 		lcd.flags &= ~LCD_FLAG_D;
1089 		processed = 1;
1090 		break;
1091 	case 'C':	/* Cursor ON */
1092 		lcd.flags |= LCD_FLAG_C;
1093 		processed = 1;
1094 		break;
1095 	case 'c':	/* Cursor OFF */
1096 		lcd.flags &= ~LCD_FLAG_C;
1097 		processed = 1;
1098 		break;
1099 	case 'B':	/* Blink ON */
1100 		lcd.flags |= LCD_FLAG_B;
1101 		processed = 1;
1102 		break;
1103 	case 'b':	/* Blink OFF */
1104 		lcd.flags &= ~LCD_FLAG_B;
1105 		processed = 1;
1106 		break;
1107 	case '+':	/* Back light ON */
1108 		lcd.flags |= LCD_FLAG_L;
1109 		processed = 1;
1110 		break;
1111 	case '-':	/* Back light OFF */
1112 		lcd.flags &= ~LCD_FLAG_L;
1113 		processed = 1;
1114 		break;
1115 	case '*':
1116 		/* flash back light using the keypad timer */
1117 		if (scan_timer.function != NULL) {
1118 			if (lcd.light_tempo == 0
1119 					&& ((lcd.flags & LCD_FLAG_L) == 0))
1120 				lcd_backlight(1);
1121 			lcd.light_tempo = FLASH_LIGHT_TEMPO;
1122 		}
1123 		processed = 1;
1124 		break;
1125 	case 'f':	/* Small Font */
1126 		lcd.flags &= ~LCD_FLAG_F;
1127 		processed = 1;
1128 		break;
1129 	case 'F':	/* Large Font */
1130 		lcd.flags |= LCD_FLAG_F;
1131 		processed = 1;
1132 		break;
1133 	case 'n':	/* One Line */
1134 		lcd.flags &= ~LCD_FLAG_N;
1135 		processed = 1;
1136 		break;
1137 	case 'N':	/* Two Lines */
1138 		lcd.flags |= LCD_FLAG_N;
1139 		break;
1140 	case 'l':	/* Shift Cursor Left */
1141 		if (lcd.addr.x > 0) {
1142 			/* back one char if not at end of line */
1143 			if (lcd.addr.x < lcd.bwidth)
1144 				lcd_write_cmd(LCD_CMD_SHIFT);
1145 			lcd.addr.x--;
1146 		}
1147 		processed = 1;
1148 		break;
1149 	case 'r':	/* shift cursor right */
1150 		if (lcd.addr.x < lcd.width) {
1151 			/* allow the cursor to pass the end of the line */
1152 			if (lcd.addr.x < (lcd.bwidth - 1))
1153 				lcd_write_cmd(LCD_CMD_SHIFT |
1154 						LCD_CMD_SHIFT_RIGHT);
1155 			lcd.addr.x++;
1156 		}
1157 		processed = 1;
1158 		break;
1159 	case 'L':	/* shift display left */
1160 		lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1161 		processed = 1;
1162 		break;
1163 	case 'R':	/* shift display right */
1164 		lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1165 				LCD_CMD_SHIFT_RIGHT);
1166 		processed = 1;
1167 		break;
1168 	case 'k': {	/* kill end of line */
1169 		int x;
1170 
1171 		for (x = lcd.addr.x; x < lcd.bwidth; x++)
1172 			lcd_write_data(' ');
1173 
1174 		/* restore cursor position */
1175 		lcd_gotoxy();
1176 		processed = 1;
1177 		break;
1178 	}
1179 	case 'I':	/* reinitialize display */
1180 		lcd_init_display();
1181 		processed = 1;
1182 		break;
1183 	case 'G': {
1184 		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1185 		 * and '7', representing the numerical ASCII code of the
1186 		 * redefined character, and <xx...xx> a sequence of 16
1187 		 * hex digits representing 8 bytes for each character.
1188 		 * Most LCDs will only use 5 lower bits of the 7 first
1189 		 * bytes.
1190 		 */
1191 
1192 		unsigned char cgbytes[8];
1193 		unsigned char cgaddr;
1194 		int cgoffset;
1195 		int shift;
1196 		char value;
1197 		int addr;
1198 
1199 		if (strchr(esc, ';') == NULL)
1200 			break;
1201 
1202 		esc++;
1203 
1204 		cgaddr = *(esc++) - '0';
1205 		if (cgaddr > 7) {
1206 			processed = 1;
1207 			break;
1208 		}
1209 
1210 		cgoffset = 0;
1211 		shift = 0;
1212 		value = 0;
1213 		while (*esc && cgoffset < 8) {
1214 			shift ^= 4;
1215 			if (*esc >= '0' && *esc <= '9') {
1216 				value |= (*esc - '0') << shift;
1217 			} else if (*esc >= 'A' && *esc <= 'Z') {
1218 				value |= (*esc - 'A' + 10) << shift;
1219 			} else if (*esc >= 'a' && *esc <= 'z') {
1220 				value |= (*esc - 'a' + 10) << shift;
1221 			} else {
1222 				esc++;
1223 				continue;
1224 			}
1225 
1226 			if (shift == 0) {
1227 				cgbytes[cgoffset++] = value;
1228 				value = 0;
1229 			}
1230 
1231 			esc++;
1232 		}
1233 
1234 		lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1235 		for (addr = 0; addr < cgoffset; addr++)
1236 			lcd_write_data(cgbytes[addr]);
1237 
1238 		/* ensures that we stop writing to CGRAM */
1239 		lcd_gotoxy();
1240 		processed = 1;
1241 		break;
1242 	}
1243 	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1244 	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1245 		if (strchr(esc, ';') == NULL)
1246 			break;
1247 
1248 		while (*esc) {
1249 			if (*esc == 'x') {
1250 				esc++;
1251 				if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1252 					break;
1253 			} else if (*esc == 'y') {
1254 				esc++;
1255 				if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1256 					break;
1257 			} else {
1258 				break;
1259 			}
1260 		}
1261 
1262 		lcd_gotoxy();
1263 		processed = 1;
1264 		break;
1265 	}
1266 
1267 	/* TODO: This indent party here got ugly, clean it! */
1268 	/* Check whether one flag was changed */
1269 	if (oldflags != lcd.flags) {
1270 		/* check whether one of B,C,D flags were changed */
1271 		if ((oldflags ^ lcd.flags) &
1272 		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1273 			/* set display mode */
1274 			lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1275 				      | ((lcd.flags & LCD_FLAG_D)
1276 						      ? LCD_CMD_DISPLAY_ON : 0)
1277 				      | ((lcd.flags & LCD_FLAG_C)
1278 						      ? LCD_CMD_CURSOR_ON : 0)
1279 				      | ((lcd.flags & LCD_FLAG_B)
1280 						      ? LCD_CMD_BLINK_ON : 0));
1281 		/* check whether one of F,N flags was changed */
1282 		else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1283 			lcd_write_cmd(LCD_CMD_FUNCTION_SET
1284 				      | LCD_CMD_DATA_LEN_8BITS
1285 				      | ((lcd.flags & LCD_FLAG_F)
1286 						      ? LCD_CMD_TWO_LINES : 0)
1287 				      | ((lcd.flags & LCD_FLAG_N)
1288 						      ? LCD_CMD_FONT_5X10_DOTS
1289 								      : 0));
1290 		/* check whether L flag was changed */
1291 		else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1292 			if (lcd.flags & (LCD_FLAG_L))
1293 				lcd_backlight(1);
1294 			else if (lcd.light_tempo == 0)
1295 				/* switch off the light only when the tempo
1296 				   lighting is gone */
1297 				lcd_backlight(0);
1298 		}
1299 	}
1300 
1301 	return processed;
1302 }
1303 
lcd_write_char(char c)1304 static void lcd_write_char(char c)
1305 {
1306 	/* first, we'll test if we're in escape mode */
1307 	if ((c != '\n') && lcd.esc_seq.len >= 0) {
1308 		/* yes, let's add this char to the buffer */
1309 		lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1310 		lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1311 	} else {
1312 		/* aborts any previous escape sequence */
1313 		lcd.esc_seq.len = -1;
1314 
1315 		switch (c) {
1316 		case LCD_ESCAPE_CHAR:
1317 			/* start of an escape sequence */
1318 			lcd.esc_seq.len = 0;
1319 			lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1320 			break;
1321 		case '\b':
1322 			/* go back one char and clear it */
1323 			if (lcd.addr.x > 0) {
1324 				/* check if we're not at the
1325 				   end of the line */
1326 				if (lcd.addr.x < lcd.bwidth)
1327 					/* back one char */
1328 					lcd_write_cmd(LCD_CMD_SHIFT);
1329 				lcd.addr.x--;
1330 			}
1331 			/* replace with a space */
1332 			lcd_write_data(' ');
1333 			/* back one char again */
1334 			lcd_write_cmd(LCD_CMD_SHIFT);
1335 			break;
1336 		case '\014':
1337 			/* quickly clear the display */
1338 			lcd_clear_fast();
1339 			break;
1340 		case '\n':
1341 			/* flush the remainder of the current line and
1342 			   go to the beginning of the next line */
1343 			for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1344 				lcd_write_data(' ');
1345 			lcd.addr.x = 0;
1346 			lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1347 			lcd_gotoxy();
1348 			break;
1349 		case '\r':
1350 			/* go to the beginning of the same line */
1351 			lcd.addr.x = 0;
1352 			lcd_gotoxy();
1353 			break;
1354 		case '\t':
1355 			/* print a space instead of the tab */
1356 			lcd_print(' ');
1357 			break;
1358 		default:
1359 			/* simply print this char */
1360 			lcd_print(c);
1361 			break;
1362 		}
1363 	}
1364 
1365 	/* now we'll see if we're in an escape mode and if the current
1366 	   escape sequence can be understood. */
1367 	if (lcd.esc_seq.len >= 2) {
1368 		int processed = 0;
1369 
1370 		if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1371 			/* clear the display */
1372 			lcd_clear_fast();
1373 			processed = 1;
1374 		} else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1375 			/* cursor to home */
1376 			lcd.addr.x = 0;
1377 			lcd.addr.y = 0;
1378 			lcd_gotoxy();
1379 			processed = 1;
1380 		}
1381 		/* codes starting with ^[[L */
1382 		else if ((lcd.esc_seq.len >= 3) &&
1383 			 (lcd.esc_seq.buf[0] == '[') &&
1384 			 (lcd.esc_seq.buf[1] == 'L')) {
1385 			processed = handle_lcd_special_code();
1386 		}
1387 
1388 		/* LCD special escape codes */
1389 		/* flush the escape sequence if it's been processed
1390 		   or if it is getting too long. */
1391 		if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1392 			lcd.esc_seq.len = -1;
1393 	} /* escape codes */
1394 }
1395 
lcd_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1396 static ssize_t lcd_write(struct file *file,
1397 			 const char __user *buf, size_t count, loff_t *ppos)
1398 {
1399 	const char __user *tmp = buf;
1400 	char c;
1401 
1402 	for (; count-- > 0; (*ppos)++, tmp++) {
1403 		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1404 			/* let's be a little nice with other processes
1405 			   that need some CPU */
1406 			schedule();
1407 
1408 		if (get_user(c, tmp))
1409 			return -EFAULT;
1410 
1411 		lcd_write_char(c);
1412 	}
1413 
1414 	return tmp - buf;
1415 }
1416 
lcd_open(struct inode * inode,struct file * file)1417 static int lcd_open(struct inode *inode, struct file *file)
1418 {
1419 	if (!atomic_dec_and_test(&lcd_available))
1420 		return -EBUSY;	/* open only once at a time */
1421 
1422 	if (file->f_mode & FMODE_READ)	/* device is write-only */
1423 		return -EPERM;
1424 
1425 	if (lcd.must_clear) {
1426 		lcd_clear_display();
1427 		lcd.must_clear = false;
1428 	}
1429 	return nonseekable_open(inode, file);
1430 }
1431 
lcd_release(struct inode * inode,struct file * file)1432 static int lcd_release(struct inode *inode, struct file *file)
1433 {
1434 	atomic_inc(&lcd_available);
1435 	return 0;
1436 }
1437 
1438 static const struct file_operations lcd_fops = {
1439 	.write   = lcd_write,
1440 	.open    = lcd_open,
1441 	.release = lcd_release,
1442 	.llseek  = no_llseek,
1443 };
1444 
1445 static struct miscdevice lcd_dev = {
1446 	.minor	= LCD_MINOR,
1447 	.name	= "lcd",
1448 	.fops	= &lcd_fops,
1449 };
1450 
1451 /* public function usable from the kernel for any purpose */
panel_lcd_print(const char * s)1452 static void panel_lcd_print(const char *s)
1453 {
1454 	const char *tmp = s;
1455 	int count = strlen(s);
1456 
1457 	if (lcd.enabled && lcd.initialized) {
1458 		for (; count-- > 0; tmp++) {
1459 			if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1460 				/* let's be a little nice with other processes
1461 				   that need some CPU */
1462 				schedule();
1463 
1464 			lcd_write_char(*tmp);
1465 		}
1466 	}
1467 }
1468 
1469 /* initialize the LCD driver */
lcd_init(void)1470 static void lcd_init(void)
1471 {
1472 	switch (selected_lcd_type) {
1473 	case LCD_TYPE_OLD:
1474 		/* parallel mode, 8 bits */
1475 		lcd.proto = LCD_PROTO_PARALLEL;
1476 		lcd.charset = LCD_CHARSET_NORMAL;
1477 		lcd.pins.e = PIN_STROBE;
1478 		lcd.pins.rs = PIN_AUTOLF;
1479 
1480 		lcd.width = 40;
1481 		lcd.bwidth = 40;
1482 		lcd.hwidth = 64;
1483 		lcd.height = 2;
1484 		break;
1485 	case LCD_TYPE_KS0074:
1486 		/* serial mode, ks0074 */
1487 		lcd.proto = LCD_PROTO_SERIAL;
1488 		lcd.charset = LCD_CHARSET_KS0074;
1489 		lcd.pins.bl = PIN_AUTOLF;
1490 		lcd.pins.cl = PIN_STROBE;
1491 		lcd.pins.da = PIN_D0;
1492 
1493 		lcd.width = 16;
1494 		lcd.bwidth = 40;
1495 		lcd.hwidth = 16;
1496 		lcd.height = 2;
1497 		break;
1498 	case LCD_TYPE_NEXCOM:
1499 		/* parallel mode, 8 bits, generic */
1500 		lcd.proto = LCD_PROTO_PARALLEL;
1501 		lcd.charset = LCD_CHARSET_NORMAL;
1502 		lcd.pins.e = PIN_AUTOLF;
1503 		lcd.pins.rs = PIN_SELECP;
1504 		lcd.pins.rw = PIN_INITP;
1505 
1506 		lcd.width = 16;
1507 		lcd.bwidth = 40;
1508 		lcd.hwidth = 64;
1509 		lcd.height = 2;
1510 		break;
1511 	case LCD_TYPE_CUSTOM:
1512 		/* customer-defined */
1513 		lcd.proto = DEFAULT_LCD_PROTO;
1514 		lcd.charset = DEFAULT_LCD_CHARSET;
1515 		/* default geometry will be set later */
1516 		break;
1517 	case LCD_TYPE_HANTRONIX:
1518 		/* parallel mode, 8 bits, hantronix-like */
1519 	default:
1520 		lcd.proto = LCD_PROTO_PARALLEL;
1521 		lcd.charset = LCD_CHARSET_NORMAL;
1522 		lcd.pins.e = PIN_STROBE;
1523 		lcd.pins.rs = PIN_SELECP;
1524 
1525 		lcd.width = 16;
1526 		lcd.bwidth = 40;
1527 		lcd.hwidth = 64;
1528 		lcd.height = 2;
1529 		break;
1530 	}
1531 
1532 	/* Overwrite with module params set on loading */
1533 	if (lcd_height != NOT_SET)
1534 		lcd.height = lcd_height;
1535 	if (lcd_width != NOT_SET)
1536 		lcd.width = lcd_width;
1537 	if (lcd_bwidth != NOT_SET)
1538 		lcd.bwidth = lcd_bwidth;
1539 	if (lcd_hwidth != NOT_SET)
1540 		lcd.hwidth = lcd_hwidth;
1541 	if (lcd_charset != NOT_SET)
1542 		lcd.charset = lcd_charset;
1543 	if (lcd_proto != NOT_SET)
1544 		lcd.proto = lcd_proto;
1545 	if (lcd_e_pin != PIN_NOT_SET)
1546 		lcd.pins.e = lcd_e_pin;
1547 	if (lcd_rs_pin != PIN_NOT_SET)
1548 		lcd.pins.rs = lcd_rs_pin;
1549 	if (lcd_rw_pin != PIN_NOT_SET)
1550 		lcd.pins.rw = lcd_rw_pin;
1551 	if (lcd_cl_pin != PIN_NOT_SET)
1552 		lcd.pins.cl = lcd_cl_pin;
1553 	if (lcd_da_pin != PIN_NOT_SET)
1554 		lcd.pins.da = lcd_da_pin;
1555 	if (lcd_bl_pin != PIN_NOT_SET)
1556 		lcd.pins.bl = lcd_bl_pin;
1557 
1558 	/* this is used to catch wrong and default values */
1559 	if (lcd.width <= 0)
1560 		lcd.width = DEFAULT_LCD_WIDTH;
1561 	if (lcd.bwidth <= 0)
1562 		lcd.bwidth = DEFAULT_LCD_BWIDTH;
1563 	if (lcd.hwidth <= 0)
1564 		lcd.hwidth = DEFAULT_LCD_HWIDTH;
1565 	if (lcd.height <= 0)
1566 		lcd.height = DEFAULT_LCD_HEIGHT;
1567 
1568 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1569 		lcd_write_cmd = lcd_write_cmd_s;
1570 		lcd_write_data = lcd_write_data_s;
1571 		lcd_clear_fast = lcd_clear_fast_s;
1572 
1573 		if (lcd.pins.cl == PIN_NOT_SET)
1574 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1575 		if (lcd.pins.da == PIN_NOT_SET)
1576 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1577 
1578 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1579 		lcd_write_cmd = lcd_write_cmd_p8;
1580 		lcd_write_data = lcd_write_data_p8;
1581 		lcd_clear_fast = lcd_clear_fast_p8;
1582 
1583 		if (lcd.pins.e == PIN_NOT_SET)
1584 			lcd.pins.e = DEFAULT_LCD_PIN_E;
1585 		if (lcd.pins.rs == PIN_NOT_SET)
1586 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1587 		if (lcd.pins.rw == PIN_NOT_SET)
1588 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1589 	} else {
1590 		lcd_write_cmd = lcd_write_cmd_tilcd;
1591 		lcd_write_data = lcd_write_data_tilcd;
1592 		lcd_clear_fast = lcd_clear_fast_tilcd;
1593 	}
1594 
1595 	if (lcd.pins.bl == PIN_NOT_SET)
1596 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1597 
1598 	if (lcd.pins.e == PIN_NOT_SET)
1599 		lcd.pins.e = PIN_NONE;
1600 	if (lcd.pins.rs == PIN_NOT_SET)
1601 		lcd.pins.rs = PIN_NONE;
1602 	if (lcd.pins.rw == PIN_NOT_SET)
1603 		lcd.pins.rw = PIN_NONE;
1604 	if (lcd.pins.bl == PIN_NOT_SET)
1605 		lcd.pins.bl = PIN_NONE;
1606 	if (lcd.pins.cl == PIN_NOT_SET)
1607 		lcd.pins.cl = PIN_NONE;
1608 	if (lcd.pins.da == PIN_NOT_SET)
1609 		lcd.pins.da = PIN_NONE;
1610 
1611 	if (lcd.charset == NOT_SET)
1612 		lcd.charset = DEFAULT_LCD_CHARSET;
1613 
1614 	if (lcd.charset == LCD_CHARSET_KS0074)
1615 		lcd_char_conv = lcd_char_conv_ks0074;
1616 	else
1617 		lcd_char_conv = NULL;
1618 
1619 	if (lcd.pins.bl != PIN_NONE)
1620 		init_scan_timer();
1621 
1622 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1623 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1624 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1625 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1626 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1627 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1628 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1629 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1630 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1631 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1632 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1633 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1634 
1635 	/* before this line, we must NOT send anything to the display.
1636 	 * Since lcd_init_display() needs to write data, we have to
1637 	 * enable mark the LCD initialized just before. */
1638 	lcd.initialized = true;
1639 	lcd_init_display();
1640 
1641 	/* display a short message */
1642 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1643 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1644 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1645 #endif
1646 #else
1647 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1648 			PANEL_VERSION);
1649 #endif
1650 	lcd.addr.x = 0;
1651 	lcd.addr.y = 0;
1652 	/* clear the display on the next device opening */
1653 	lcd.must_clear = true;
1654 	lcd_gotoxy();
1655 }
1656 
1657 /*
1658  * These are the file operation function for user access to /dev/keypad
1659  */
1660 
keypad_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1661 static ssize_t keypad_read(struct file *file,
1662 			   char __user *buf, size_t count, loff_t *ppos)
1663 {
1664 	unsigned i = *ppos;
1665 	char __user *tmp = buf;
1666 
1667 	if (keypad_buflen == 0) {
1668 		if (file->f_flags & O_NONBLOCK)
1669 			return -EAGAIN;
1670 
1671 		if (wait_event_interruptible(keypad_read_wait,
1672 					     keypad_buflen != 0))
1673 			return -EINTR;
1674 	}
1675 
1676 	for (; count-- > 0 && (keypad_buflen > 0);
1677 	     ++i, ++tmp, --keypad_buflen) {
1678 		put_user(keypad_buffer[keypad_start], tmp);
1679 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1680 	}
1681 	*ppos = i;
1682 
1683 	return tmp - buf;
1684 }
1685 
keypad_open(struct inode * inode,struct file * file)1686 static int keypad_open(struct inode *inode, struct file *file)
1687 {
1688 	if (!atomic_dec_and_test(&keypad_available))
1689 		return -EBUSY;	/* open only once at a time */
1690 
1691 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1692 		return -EPERM;
1693 
1694 	keypad_buflen = 0;	/* flush the buffer on opening */
1695 	return 0;
1696 }
1697 
keypad_release(struct inode * inode,struct file * file)1698 static int keypad_release(struct inode *inode, struct file *file)
1699 {
1700 	atomic_inc(&keypad_available);
1701 	return 0;
1702 }
1703 
1704 static const struct file_operations keypad_fops = {
1705 	.read    = keypad_read,		/* read */
1706 	.open    = keypad_open,		/* open */
1707 	.release = keypad_release,	/* close */
1708 	.llseek  = default_llseek,
1709 };
1710 
1711 static struct miscdevice keypad_dev = {
1712 	.minor	= KEYPAD_MINOR,
1713 	.name	= "keypad",
1714 	.fops	= &keypad_fops,
1715 };
1716 
keypad_send_key(const char * string,int max_len)1717 static void keypad_send_key(const char *string, int max_len)
1718 {
1719 	/* send the key to the device only if a process is attached to it. */
1720 	if (!atomic_read(&keypad_available)) {
1721 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1722 			keypad_buffer[(keypad_start + keypad_buflen++) %
1723 				      KEYPAD_BUFFER] = *string++;
1724 		}
1725 		wake_up_interruptible(&keypad_read_wait);
1726 	}
1727 }
1728 
1729 /* this function scans all the bits involving at least one logical signal,
1730  * and puts the results in the bitfield "phys_read" (one bit per established
1731  * contact), and sets "phys_read_prev" to "phys_read".
1732  *
1733  * Note: to debounce input signals, we will only consider as switched a signal
1734  * which is stable across 2 measures. Signals which are different between two
1735  * reads will be kept as they previously were in their logical form (phys_prev).
1736  * A signal which has just switched will have a 1 in
1737  * (phys_read ^ phys_read_prev).
1738  */
phys_scan_contacts(void)1739 static void phys_scan_contacts(void)
1740 {
1741 	int bit, bitval;
1742 	char oldval;
1743 	char bitmask;
1744 	char gndmask;
1745 
1746 	phys_prev = phys_curr;
1747 	phys_read_prev = phys_read;
1748 	phys_read = 0;		/* flush all signals */
1749 
1750 	/* keep track of old value, with all outputs disabled */
1751 	oldval = r_dtr(pprt) | scan_mask_o;
1752 	/* activate all keyboard outputs (active low) */
1753 	w_dtr(pprt, oldval & ~scan_mask_o);
1754 
1755 	/* will have a 1 for each bit set to gnd */
1756 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1757 	/* disable all matrix signals */
1758 	w_dtr(pprt, oldval);
1759 
1760 	/* now that all outputs are cleared, the only active input bits are
1761 	 * directly connected to the ground
1762 	 */
1763 
1764 	/* 1 for each grounded input */
1765 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1766 
1767 	/* grounded inputs are signals 40-44 */
1768 	phys_read |= (pmask_t) gndmask << 40;
1769 
1770 	if (bitmask != gndmask) {
1771 		/* since clearing the outputs changed some inputs, we know
1772 		 * that some input signals are currently tied to some outputs.
1773 		 * So we'll scan them.
1774 		 */
1775 		for (bit = 0; bit < 8; bit++) {
1776 			bitval = 1 << bit;
1777 
1778 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1779 				continue;
1780 
1781 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1782 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1783 			phys_read |= (pmask_t) bitmask << (5 * bit);
1784 		}
1785 		w_dtr(pprt, oldval);	/* disable all outputs */
1786 	}
1787 	/* this is easy: use old bits when they are flapping,
1788 	 * use new ones when stable */
1789 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1790 		    (phys_read & ~(phys_read ^ phys_read_prev));
1791 }
1792 
input_state_high(struct logical_input * input)1793 static inline int input_state_high(struct logical_input *input)
1794 {
1795 #if 0
1796 	/* FIXME:
1797 	 * this is an invalid test. It tries to catch
1798 	 * transitions from single-key to multiple-key, but
1799 	 * doesn't take into account the contacts polarity.
1800 	 * The only solution to the problem is to parse keys
1801 	 * from the most complex to the simplest combinations,
1802 	 * and mark them as 'caught' once a combination
1803 	 * matches, then unmatch it for all other ones.
1804 	 */
1805 
1806 	/* try to catch dangerous transitions cases :
1807 	 * someone adds a bit, so this signal was a false
1808 	 * positive resulting from a transition. We should
1809 	 * invalidate the signal immediately and not call the
1810 	 * release function.
1811 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1812 	 */
1813 	if (((phys_prev & input->mask) == input->value) &&
1814 	    ((phys_curr & input->mask) >  input->value)) {
1815 		input->state = INPUT_ST_LOW; /* invalidate */
1816 		return 1;
1817 	}
1818 #endif
1819 
1820 	if ((phys_curr & input->mask) == input->value) {
1821 		if ((input->type == INPUT_TYPE_STD) &&
1822 		    (input->high_timer == 0)) {
1823 			input->high_timer++;
1824 			if (input->u.std.press_fct != NULL)
1825 				input->u.std.press_fct(input->u.std.press_data);
1826 		} else if (input->type == INPUT_TYPE_KBD) {
1827 			/* will turn on the light */
1828 			keypressed = 1;
1829 
1830 			if (input->high_timer == 0) {
1831 				char *press_str = input->u.kbd.press_str;
1832 
1833 				if (press_str[0]) {
1834 					int s = sizeof(input->u.kbd.press_str);
1835 
1836 					keypad_send_key(press_str, s);
1837 				}
1838 			}
1839 
1840 			if (input->u.kbd.repeat_str[0]) {
1841 				char *repeat_str = input->u.kbd.repeat_str;
1842 
1843 				if (input->high_timer >= KEYPAD_REP_START) {
1844 					int s = sizeof(input->u.kbd.repeat_str);
1845 
1846 					input->high_timer -= KEYPAD_REP_DELAY;
1847 					keypad_send_key(repeat_str, s);
1848 				}
1849 				/* we will need to come back here soon */
1850 				inputs_stable = 0;
1851 			}
1852 
1853 			if (input->high_timer < 255)
1854 				input->high_timer++;
1855 		}
1856 		return 1;
1857 	}
1858 
1859 	/* else signal falling down. Let's fall through. */
1860 	input->state = INPUT_ST_FALLING;
1861 	input->fall_timer = 0;
1862 
1863 	return 0;
1864 }
1865 
input_state_falling(struct logical_input * input)1866 static inline void input_state_falling(struct logical_input *input)
1867 {
1868 #if 0
1869 	/* FIXME !!! same comment as in input_state_high */
1870 	if (((phys_prev & input->mask) == input->value) &&
1871 	    ((phys_curr & input->mask) >  input->value)) {
1872 		input->state = INPUT_ST_LOW;	/* invalidate */
1873 		return;
1874 	}
1875 #endif
1876 
1877 	if ((phys_curr & input->mask) == input->value) {
1878 		if (input->type == INPUT_TYPE_KBD) {
1879 			/* will turn on the light */
1880 			keypressed = 1;
1881 
1882 			if (input->u.kbd.repeat_str[0]) {
1883 				char *repeat_str = input->u.kbd.repeat_str;
1884 
1885 				if (input->high_timer >= KEYPAD_REP_START) {
1886 					int s = sizeof(input->u.kbd.repeat_str);
1887 
1888 					input->high_timer -= KEYPAD_REP_DELAY;
1889 					keypad_send_key(repeat_str, s);
1890 				}
1891 				/* we will need to come back here soon */
1892 				inputs_stable = 0;
1893 			}
1894 
1895 			if (input->high_timer < 255)
1896 				input->high_timer++;
1897 		}
1898 		input->state = INPUT_ST_HIGH;
1899 	} else if (input->fall_timer >= input->fall_time) {
1900 		/* call release event */
1901 		if (input->type == INPUT_TYPE_STD) {
1902 			void (*release_fct)(int) = input->u.std.release_fct;
1903 
1904 			if (release_fct != NULL)
1905 				release_fct(input->u.std.release_data);
1906 		} else if (input->type == INPUT_TYPE_KBD) {
1907 			char *release_str = input->u.kbd.release_str;
1908 
1909 			if (release_str[0]) {
1910 				int s = sizeof(input->u.kbd.release_str);
1911 
1912 				keypad_send_key(release_str, s);
1913 			}
1914 		}
1915 
1916 		input->state = INPUT_ST_LOW;
1917 	} else {
1918 		input->fall_timer++;
1919 		inputs_stable = 0;
1920 	}
1921 }
1922 
panel_process_inputs(void)1923 static void panel_process_inputs(void)
1924 {
1925 	struct list_head *item;
1926 	struct logical_input *input;
1927 
1928 	keypressed = 0;
1929 	inputs_stable = 1;
1930 	list_for_each(item, &logical_inputs) {
1931 		input = list_entry(item, struct logical_input, list);
1932 
1933 		switch (input->state) {
1934 		case INPUT_ST_LOW:
1935 			if ((phys_curr & input->mask) != input->value)
1936 				break;
1937 			/* if all needed ones were already set previously,
1938 			 * this means that this logical signal has been
1939 			 * activated by the releasing of another combined
1940 			 * signal, so we don't want to match.
1941 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1942 			 *     don't match A.
1943 			 */
1944 			if ((phys_prev & input->mask) == input->value)
1945 				break;
1946 			input->rise_timer = 0;
1947 			input->state = INPUT_ST_RISING;
1948 			/* no break here, fall through */
1949 		case INPUT_ST_RISING:
1950 			if ((phys_curr & input->mask) != input->value) {
1951 				input->state = INPUT_ST_LOW;
1952 				break;
1953 			}
1954 			if (input->rise_timer < input->rise_time) {
1955 				inputs_stable = 0;
1956 				input->rise_timer++;
1957 				break;
1958 			}
1959 			input->high_timer = 0;
1960 			input->state = INPUT_ST_HIGH;
1961 			/* no break here, fall through */
1962 		case INPUT_ST_HIGH:
1963 			if (input_state_high(input))
1964 				break;
1965 			/* no break here, fall through */
1966 		case INPUT_ST_FALLING:
1967 			input_state_falling(input);
1968 		}
1969 	}
1970 }
1971 
panel_scan_timer(void)1972 static void panel_scan_timer(void)
1973 {
1974 	if (keypad.enabled && keypad_initialized) {
1975 		if (spin_trylock_irq(&pprt_lock)) {
1976 			phys_scan_contacts();
1977 
1978 			/* no need for the parport anymore */
1979 			spin_unlock_irq(&pprt_lock);
1980 		}
1981 
1982 		if (!inputs_stable || phys_curr != phys_prev)
1983 			panel_process_inputs();
1984 	}
1985 
1986 	if (lcd.enabled && lcd.initialized) {
1987 		if (keypressed) {
1988 			if (lcd.light_tempo == 0
1989 					&& ((lcd.flags & LCD_FLAG_L) == 0))
1990 				lcd_backlight(1);
1991 			lcd.light_tempo = FLASH_LIGHT_TEMPO;
1992 		} else if (lcd.light_tempo > 0) {
1993 			lcd.light_tempo--;
1994 			if (lcd.light_tempo == 0
1995 					&& ((lcd.flags & LCD_FLAG_L) == 0))
1996 				lcd_backlight(0);
1997 		}
1998 	}
1999 
2000 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2001 }
2002 
init_scan_timer(void)2003 static void init_scan_timer(void)
2004 {
2005 	if (scan_timer.function != NULL)
2006 		return;		/* already started */
2007 
2008 	setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2009 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
2010 	add_timer(&scan_timer);
2011 }
2012 
2013 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2014  * if <omask> or <imask> are non-null, they will be or'ed with the bits
2015  * corresponding to out and in bits respectively.
2016  * returns 1 if ok, 0 if error (in which case, nothing is written).
2017  */
input_name2mask(const char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)2018 static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2019 			   char *imask, char *omask)
2020 {
2021 	static char sigtab[10] = "EeSsPpAaBb";
2022 	char im, om;
2023 	pmask_t m, v;
2024 
2025 	om = 0ULL;
2026 	im = 0ULL;
2027 	m = 0ULL;
2028 	v = 0ULL;
2029 	while (*name) {
2030 		int in, out, bit, neg;
2031 
2032 		for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2033 		     in++)
2034 			;
2035 
2036 		if (in >= sizeof(sigtab))
2037 			return 0;	/* input name not found */
2038 		neg = (in & 1);	/* odd (lower) names are negated */
2039 		in >>= 1;
2040 		im |= (1 << in);
2041 
2042 		name++;
2043 		if (isdigit(*name)) {
2044 			out = *name - '0';
2045 			om |= (1 << out);
2046 		} else if (*name == '-') {
2047 			out = 8;
2048 		} else {
2049 			return 0;	/* unknown bit name */
2050 		}
2051 
2052 		bit = (out * 5) + in;
2053 
2054 		m |= 1ULL << bit;
2055 		if (!neg)
2056 			v |= 1ULL << bit;
2057 		name++;
2058 	}
2059 	*mask = m;
2060 	*value = v;
2061 	if (imask)
2062 		*imask |= im;
2063 	if (omask)
2064 		*omask |= om;
2065 	return 1;
2066 }
2067 
2068 /* tries to bind a key to the signal name <name>. The key will send the
2069  * strings <press>, <repeat>, <release> for these respective events.
2070  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2071  */
panel_bind_key(const char * name,const char * press,const char * repeat,const char * release)2072 static struct logical_input *panel_bind_key(const char *name, const char *press,
2073 					    const char *repeat,
2074 					    const char *release)
2075 {
2076 	struct logical_input *key;
2077 
2078 	key = kzalloc(sizeof(*key), GFP_KERNEL);
2079 	if (!key)
2080 		return NULL;
2081 
2082 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2083 			     &scan_mask_o)) {
2084 		kfree(key);
2085 		return NULL;
2086 	}
2087 
2088 	key->type = INPUT_TYPE_KBD;
2089 	key->state = INPUT_ST_LOW;
2090 	key->rise_time = 1;
2091 	key->fall_time = 1;
2092 
2093 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2094 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2095 	strncpy(key->u.kbd.release_str, release,
2096 		sizeof(key->u.kbd.release_str));
2097 	list_add(&key->list, &logical_inputs);
2098 	return key;
2099 }
2100 
2101 #if 0
2102 /* tries to bind a callback function to the signal name <name>. The function
2103  * <press_fct> will be called with the <press_data> arg when the signal is
2104  * activated, and so on for <release_fct>/<release_data>
2105  * Returns the pointer to the new signal if ok, NULL if the signal could not
2106  * be bound.
2107  */
2108 static struct logical_input *panel_bind_callback(char *name,
2109 						 void (*press_fct)(int),
2110 						 int press_data,
2111 						 void (*release_fct)(int),
2112 						 int release_data)
2113 {
2114 	struct logical_input *callback;
2115 
2116 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2117 	if (!callback)
2118 		return NULL;
2119 
2120 	memset(callback, 0, sizeof(struct logical_input));
2121 	if (!input_name2mask(name, &callback->mask, &callback->value,
2122 			     &scan_mask_i, &scan_mask_o))
2123 		return NULL;
2124 
2125 	callback->type = INPUT_TYPE_STD;
2126 	callback->state = INPUT_ST_LOW;
2127 	callback->rise_time = 1;
2128 	callback->fall_time = 1;
2129 	callback->u.std.press_fct = press_fct;
2130 	callback->u.std.press_data = press_data;
2131 	callback->u.std.release_fct = release_fct;
2132 	callback->u.std.release_data = release_data;
2133 	list_add(&callback->list, &logical_inputs);
2134 	return callback;
2135 }
2136 #endif
2137 
keypad_init(void)2138 static void keypad_init(void)
2139 {
2140 	int keynum;
2141 
2142 	init_waitqueue_head(&keypad_read_wait);
2143 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2144 
2145 	/* Let's create all known keys */
2146 
2147 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2148 		panel_bind_key(keypad_profile[keynum][0],
2149 			       keypad_profile[keynum][1],
2150 			       keypad_profile[keynum][2],
2151 			       keypad_profile[keynum][3]);
2152 	}
2153 
2154 	init_scan_timer();
2155 	keypad_initialized = 1;
2156 }
2157 
2158 /**************************************************/
2159 /* device initialization                          */
2160 /**************************************************/
2161 
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2162 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2163 			    void *unused)
2164 {
2165 	if (lcd.enabled && lcd.initialized) {
2166 		switch (code) {
2167 		case SYS_DOWN:
2168 			panel_lcd_print
2169 			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2170 			break;
2171 		case SYS_HALT:
2172 			panel_lcd_print
2173 			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2174 			break;
2175 		case SYS_POWER_OFF:
2176 			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2177 			break;
2178 		default:
2179 			break;
2180 		}
2181 	}
2182 	return NOTIFY_DONE;
2183 }
2184 
2185 static struct notifier_block panel_notifier = {
2186 	panel_notify_sys,
2187 	NULL,
2188 	0
2189 };
2190 
panel_attach(struct parport * port)2191 static void panel_attach(struct parport *port)
2192 {
2193 	if (port->number != parport)
2194 		return;
2195 
2196 	if (pprt) {
2197 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
2198 		       __func__, port->number, parport);
2199 		return;
2200 	}
2201 
2202 	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2203 				       NULL,
2204 				       /*PARPORT_DEV_EXCL */
2205 				       0, (void *)&pprt);
2206 	if (pprt == NULL) {
2207 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2208 		       __func__, port->number, parport);
2209 		return;
2210 	}
2211 
2212 	if (parport_claim(pprt)) {
2213 		pr_err("could not claim access to parport%d. Aborting.\n",
2214 		       parport);
2215 		goto err_unreg_device;
2216 	}
2217 
2218 	/* must init LCD first, just in case an IRQ from the keypad is
2219 	 * generated at keypad init
2220 	 */
2221 	if (lcd.enabled) {
2222 		lcd_init();
2223 		if (misc_register(&lcd_dev))
2224 			goto err_unreg_device;
2225 	}
2226 
2227 	if (keypad.enabled) {
2228 		keypad_init();
2229 		if (misc_register(&keypad_dev))
2230 			goto err_lcd_unreg;
2231 	}
2232 	register_reboot_notifier(&panel_notifier);
2233 	return;
2234 
2235 err_lcd_unreg:
2236 	if (lcd.enabled)
2237 		misc_deregister(&lcd_dev);
2238 err_unreg_device:
2239 	parport_unregister_device(pprt);
2240 	pprt = NULL;
2241 }
2242 
panel_detach(struct parport * port)2243 static void panel_detach(struct parport *port)
2244 {
2245 	if (port->number != parport)
2246 		return;
2247 
2248 	if (!pprt) {
2249 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2250 		       __func__, port->number, parport);
2251 		return;
2252 	}
2253 
2254 	unregister_reboot_notifier(&panel_notifier);
2255 
2256 	if (keypad.enabled && keypad_initialized) {
2257 		misc_deregister(&keypad_dev);
2258 		keypad_initialized = 0;
2259 	}
2260 
2261 	if (lcd.enabled && lcd.initialized) {
2262 		misc_deregister(&lcd_dev);
2263 		lcd.initialized = false;
2264 	}
2265 
2266 	parport_release(pprt);
2267 	parport_unregister_device(pprt);
2268 	pprt = NULL;
2269 }
2270 
2271 static struct parport_driver panel_driver = {
2272 	.name = "panel",
2273 	.attach = panel_attach,
2274 	.detach = panel_detach,
2275 };
2276 
2277 /* init function */
panel_init_module(void)2278 static int __init panel_init_module(void)
2279 {
2280 	int selected_keypad_type = NOT_SET, err;
2281 
2282 	/* take care of an eventual profile */
2283 	switch (profile) {
2284 	case PANEL_PROFILE_CUSTOM:
2285 		/* custom profile */
2286 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2287 		selected_lcd_type = DEFAULT_LCD_TYPE;
2288 		break;
2289 	case PANEL_PROFILE_OLD:
2290 		/* 8 bits, 2*16, old keypad */
2291 		selected_keypad_type = KEYPAD_TYPE_OLD;
2292 		selected_lcd_type = LCD_TYPE_OLD;
2293 
2294 		/* TODO: This two are a little hacky, sort it out later */
2295 		if (lcd_width == NOT_SET)
2296 			lcd_width = 16;
2297 		if (lcd_hwidth == NOT_SET)
2298 			lcd_hwidth = 16;
2299 		break;
2300 	case PANEL_PROFILE_NEW:
2301 		/* serial, 2*16, new keypad */
2302 		selected_keypad_type = KEYPAD_TYPE_NEW;
2303 		selected_lcd_type = LCD_TYPE_KS0074;
2304 		break;
2305 	case PANEL_PROFILE_HANTRONIX:
2306 		/* 8 bits, 2*16 hantronix-like, no keypad */
2307 		selected_keypad_type = KEYPAD_TYPE_NONE;
2308 		selected_lcd_type = LCD_TYPE_HANTRONIX;
2309 		break;
2310 	case PANEL_PROFILE_NEXCOM:
2311 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2312 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2313 		selected_lcd_type = LCD_TYPE_NEXCOM;
2314 		break;
2315 	case PANEL_PROFILE_LARGE:
2316 		/* 8 bits, 2*40, old keypad */
2317 		selected_keypad_type = KEYPAD_TYPE_OLD;
2318 		selected_lcd_type = LCD_TYPE_OLD;
2319 		break;
2320 	}
2321 
2322 	/*
2323 	 * Overwrite selection with module param values (both keypad and lcd),
2324 	 * where the deprecated params have lower prio.
2325 	 */
2326 	if (keypad_enabled != NOT_SET)
2327 		selected_keypad_type = keypad_enabled;
2328 	if (keypad_type != NOT_SET)
2329 		selected_keypad_type = keypad_type;
2330 
2331 	keypad.enabled = (selected_keypad_type > 0);
2332 
2333 	if (lcd_enabled != NOT_SET)
2334 		selected_lcd_type = lcd_enabled;
2335 	if (lcd_type != NOT_SET)
2336 		selected_lcd_type = lcd_type;
2337 
2338 	lcd.enabled = (selected_lcd_type > 0);
2339 
2340 	if (lcd.enabled) {
2341 		/*
2342 		 * Init lcd struct with load-time values to preserve exact
2343 		 * current functionality (at least for now).
2344 		 */
2345 		lcd.height = lcd_height;
2346 		lcd.width = lcd_width;
2347 		lcd.bwidth = lcd_bwidth;
2348 		lcd.hwidth = lcd_hwidth;
2349 		lcd.charset = lcd_charset;
2350 		lcd.proto = lcd_proto;
2351 		lcd.pins.e = lcd_e_pin;
2352 		lcd.pins.rs = lcd_rs_pin;
2353 		lcd.pins.rw = lcd_rw_pin;
2354 		lcd.pins.cl = lcd_cl_pin;
2355 		lcd.pins.da = lcd_da_pin;
2356 		lcd.pins.bl = lcd_bl_pin;
2357 
2358 		/* Leave it for now, just in case */
2359 		lcd.esc_seq.len = -1;
2360 	}
2361 
2362 	switch (selected_keypad_type) {
2363 	case KEYPAD_TYPE_OLD:
2364 		keypad_profile = old_keypad_profile;
2365 		break;
2366 	case KEYPAD_TYPE_NEW:
2367 		keypad_profile = new_keypad_profile;
2368 		break;
2369 	case KEYPAD_TYPE_NEXCOM:
2370 		keypad_profile = nexcom_keypad_profile;
2371 		break;
2372 	default:
2373 		keypad_profile = NULL;
2374 		break;
2375 	}
2376 
2377 	if (!lcd.enabled && !keypad.enabled) {
2378 		/* no device enabled, let's exit */
2379 		pr_err("driver version " PANEL_VERSION " disabled.\n");
2380 		return -ENODEV;
2381 	}
2382 
2383 	err = parport_register_driver(&panel_driver);
2384 	if (err) {
2385 		pr_err("could not register with parport. Aborting.\n");
2386 		return err;
2387 	}
2388 
2389 	if (pprt)
2390 		pr_info("driver version " PANEL_VERSION
2391 			" registered on parport%d (io=0x%lx).\n", parport,
2392 			pprt->port->base);
2393 	else
2394 		pr_info("driver version " PANEL_VERSION
2395 			" not yet registered\n");
2396 	return 0;
2397 }
2398 
panel_cleanup_module(void)2399 static void __exit panel_cleanup_module(void)
2400 {
2401 
2402 	if (scan_timer.function != NULL)
2403 		del_timer_sync(&scan_timer);
2404 
2405 	if (pprt != NULL) {
2406 		if (keypad.enabled) {
2407 			misc_deregister(&keypad_dev);
2408 			keypad_initialized = 0;
2409 		}
2410 
2411 		if (lcd.enabled) {
2412 			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2413 					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2414 			misc_deregister(&lcd_dev);
2415 			lcd.initialized = false;
2416 		}
2417 
2418 		/* TODO: free all input signals */
2419 		parport_release(pprt);
2420 		parport_unregister_device(pprt);
2421 		pprt = NULL;
2422 	}
2423 	parport_unregister_driver(&panel_driver);
2424 }
2425 
2426 module_init(panel_init_module);
2427 module_exit(panel_cleanup_module);
2428 MODULE_AUTHOR("Willy Tarreau");
2429 MODULE_LICENSE("GPL");
2430 
2431 /*
2432  * Local variables:
2433  *  c-indent-level: 4
2434  *  tab-width: 8
2435  * End:
2436  */
2437