1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
enforcing_setup(char * str)103 static int __init enforcing_setup(char *str)
104 {
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
selinux_enabled_setup(char * str)116 static int __init selinux_enabled_setup(char *str)
117 {
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132 *
133 * Description:
134 * This function checks the SECMARK reference counter to see if any SECMARK
135 * targets are currently configured, if the reference counter is greater than
136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
137 * enabled, false (0) if SECMARK is disabled. If the always_check_network
138 * policy capability is enabled, SECMARK is always considered enabled.
139 *
140 */
selinux_secmark_enabled(void)141 static int selinux_secmark_enabled(void)
142 {
143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145
146 /**
147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148 *
149 * Description:
150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
151 * (1) if any are enabled or false (0) if neither are enabled. If the
152 * always_check_network policy capability is enabled, peer labeling
153 * is always considered enabled.
154 *
155 */
selinux_peerlbl_enabled(void)156 static int selinux_peerlbl_enabled(void)
157 {
158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160
selinux_netcache_avc_callback(u32 event)161 static int selinux_netcache_avc_callback(u32 event)
162 {
163 if (event == AVC_CALLBACK_RESET) {
164 sel_netif_flush();
165 sel_netnode_flush();
166 sel_netport_flush();
167 synchronize_net();
168 }
169 return 0;
170 }
171
172 /*
173 * initialise the security for the init task
174 */
cred_init_security(void)175 static void cred_init_security(void)
176 {
177 struct cred *cred = (struct cred *) current->real_cred;
178 struct task_security_struct *tsec;
179
180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181 if (!tsec)
182 panic("SELinux: Failed to initialize initial task.\n");
183
184 tsec->osid = tsec->sid = SECINITSID_KERNEL;
185 cred->security = tsec;
186 }
187
188 /*
189 * get the security ID of a set of credentials
190 */
cred_sid(const struct cred * cred)191 static inline u32 cred_sid(const struct cred *cred)
192 {
193 const struct task_security_struct *tsec;
194
195 tsec = cred->security;
196 return tsec->sid;
197 }
198
199 /*
200 * get the objective security ID of a task
201 */
task_sid(const struct task_struct * task)202 static inline u32 task_sid(const struct task_struct *task)
203 {
204 u32 sid;
205
206 rcu_read_lock();
207 sid = cred_sid(__task_cred(task));
208 rcu_read_unlock();
209 return sid;
210 }
211
212 /*
213 * get the subjective security ID of the current task
214 */
current_sid(void)215 static inline u32 current_sid(void)
216 {
217 const struct task_security_struct *tsec = current_security();
218
219 return tsec->sid;
220 }
221
222 /* Allocate and free functions for each kind of security blob. */
223
inode_alloc_security(struct inode * inode)224 static int inode_alloc_security(struct inode *inode)
225 {
226 struct inode_security_struct *isec;
227 u32 sid = current_sid();
228
229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230 if (!isec)
231 return -ENOMEM;
232
233 mutex_init(&isec->lock);
234 INIT_LIST_HEAD(&isec->list);
235 isec->inode = inode;
236 isec->sid = SECINITSID_UNLABELED;
237 isec->sclass = SECCLASS_FILE;
238 isec->task_sid = sid;
239 inode->i_security = isec;
240
241 return 0;
242 }
243
inode_free_rcu(struct rcu_head * head)244 static void inode_free_rcu(struct rcu_head *head)
245 {
246 struct inode_security_struct *isec;
247
248 isec = container_of(head, struct inode_security_struct, rcu);
249 kmem_cache_free(sel_inode_cache, isec);
250 }
251
inode_free_security(struct inode * inode)252 static void inode_free_security(struct inode *inode)
253 {
254 struct inode_security_struct *isec = inode->i_security;
255 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256
257 spin_lock(&sbsec->isec_lock);
258 if (!list_empty(&isec->list))
259 list_del_init(&isec->list);
260 spin_unlock(&sbsec->isec_lock);
261
262 /*
263 * The inode may still be referenced in a path walk and
264 * a call to selinux_inode_permission() can be made
265 * after inode_free_security() is called. Ideally, the VFS
266 * wouldn't do this, but fixing that is a much harder
267 * job. For now, simply free the i_security via RCU, and
268 * leave the current inode->i_security pointer intact.
269 * The inode will be freed after the RCU grace period too.
270 */
271 call_rcu(&isec->rcu, inode_free_rcu);
272 }
273
file_alloc_security(struct file * file)274 static int file_alloc_security(struct file *file)
275 {
276 struct file_security_struct *fsec;
277 u32 sid = current_sid();
278
279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
280 if (!fsec)
281 return -ENOMEM;
282
283 fsec->sid = sid;
284 fsec->fown_sid = sid;
285 file->f_security = fsec;
286
287 return 0;
288 }
289
file_free_security(struct file * file)290 static void file_free_security(struct file *file)
291 {
292 struct file_security_struct *fsec = file->f_security;
293 file->f_security = NULL;
294 kfree(fsec);
295 }
296
superblock_alloc_security(struct super_block * sb)297 static int superblock_alloc_security(struct super_block *sb)
298 {
299 struct superblock_security_struct *sbsec;
300
301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
302 if (!sbsec)
303 return -ENOMEM;
304
305 mutex_init(&sbsec->lock);
306 INIT_LIST_HEAD(&sbsec->isec_head);
307 spin_lock_init(&sbsec->isec_lock);
308 sbsec->sb = sb;
309 sbsec->sid = SECINITSID_UNLABELED;
310 sbsec->def_sid = SECINITSID_FILE;
311 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
312 sb->s_security = sbsec;
313
314 return 0;
315 }
316
superblock_free_security(struct super_block * sb)317 static void superblock_free_security(struct super_block *sb)
318 {
319 struct superblock_security_struct *sbsec = sb->s_security;
320 sb->s_security = NULL;
321 kfree(sbsec);
322 }
323
324 /* The file system's label must be initialized prior to use. */
325
326 static const char *labeling_behaviors[7] = {
327 "uses xattr",
328 "uses transition SIDs",
329 "uses task SIDs",
330 "uses genfs_contexts",
331 "not configured for labeling",
332 "uses mountpoint labeling",
333 "uses native labeling",
334 };
335
336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
337
inode_doinit(struct inode * inode)338 static inline int inode_doinit(struct inode *inode)
339 {
340 return inode_doinit_with_dentry(inode, NULL);
341 }
342
343 enum {
344 Opt_error = -1,
345 Opt_context = 1,
346 Opt_fscontext = 2,
347 Opt_defcontext = 3,
348 Opt_rootcontext = 4,
349 Opt_labelsupport = 5,
350 Opt_nextmntopt = 6,
351 };
352
353 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
354
355 static const match_table_t tokens = {
356 {Opt_context, CONTEXT_STR "%s"},
357 {Opt_fscontext, FSCONTEXT_STR "%s"},
358 {Opt_defcontext, DEFCONTEXT_STR "%s"},
359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
360 {Opt_labelsupport, LABELSUPP_STR},
361 {Opt_error, NULL},
362 };
363
364 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
365
may_context_mount_sb_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)366 static int may_context_mount_sb_relabel(u32 sid,
367 struct superblock_security_struct *sbsec,
368 const struct cred *cred)
369 {
370 const struct task_security_struct *tsec = cred->security;
371 int rc;
372
373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374 FILESYSTEM__RELABELFROM, NULL);
375 if (rc)
376 return rc;
377
378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
379 FILESYSTEM__RELABELTO, NULL);
380 return rc;
381 }
382
may_context_mount_inode_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)383 static int may_context_mount_inode_relabel(u32 sid,
384 struct superblock_security_struct *sbsec,
385 const struct cred *cred)
386 {
387 const struct task_security_struct *tsec = cred->security;
388 int rc;
389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
390 FILESYSTEM__RELABELFROM, NULL);
391 if (rc)
392 return rc;
393
394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
395 FILESYSTEM__ASSOCIATE, NULL);
396 return rc;
397 }
398
selinux_is_sblabel_mnt(struct super_block * sb)399 static int selinux_is_sblabel_mnt(struct super_block *sb)
400 {
401 struct superblock_security_struct *sbsec = sb->s_security;
402
403 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
404 sbsec->behavior == SECURITY_FS_USE_TRANS ||
405 sbsec->behavior == SECURITY_FS_USE_TASK ||
406 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
407 /* Special handling. Genfs but also in-core setxattr handler */
408 !strcmp(sb->s_type->name, "sysfs") ||
409 !strcmp(sb->s_type->name, "pstore") ||
410 !strcmp(sb->s_type->name, "debugfs") ||
411 !strcmp(sb->s_type->name, "rootfs");
412 }
413
sb_finish_set_opts(struct super_block * sb)414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = d_backing_inode(root);
419 int rc = 0;
420
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
430 rc = -EOPNOTSUPP;
431 goto out;
432 }
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
443 goto out;
444 }
445 }
446
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
450
451 sbsec->flags |= SE_SBINITIALIZED;
452 if (selinux_is_sblabel_mnt(sb))
453 sbsec->flags |= SBLABEL_MNT;
454
455 /* Initialize the root inode. */
456 rc = inode_doinit_with_dentry(root_inode, root);
457
458 /* Initialize any other inodes associated with the superblock, e.g.
459 inodes created prior to initial policy load or inodes created
460 during get_sb by a pseudo filesystem that directly
461 populates itself. */
462 spin_lock(&sbsec->isec_lock);
463 next_inode:
464 if (!list_empty(&sbsec->isec_head)) {
465 struct inode_security_struct *isec =
466 list_entry(sbsec->isec_head.next,
467 struct inode_security_struct, list);
468 struct inode *inode = isec->inode;
469 list_del_init(&isec->list);
470 spin_unlock(&sbsec->isec_lock);
471 inode = igrab(inode);
472 if (inode) {
473 if (!IS_PRIVATE(inode))
474 inode_doinit(inode);
475 iput(inode);
476 }
477 spin_lock(&sbsec->isec_lock);
478 goto next_inode;
479 }
480 spin_unlock(&sbsec->isec_lock);
481 out:
482 return rc;
483 }
484
485 /*
486 * This function should allow an FS to ask what it's mount security
487 * options were so it can use those later for submounts, displaying
488 * mount options, or whatever.
489 */
selinux_get_mnt_opts(const struct super_block * sb,struct security_mnt_opts * opts)490 static int selinux_get_mnt_opts(const struct super_block *sb,
491 struct security_mnt_opts *opts)
492 {
493 int rc = 0, i;
494 struct superblock_security_struct *sbsec = sb->s_security;
495 char *context = NULL;
496 u32 len;
497 char tmp;
498
499 security_init_mnt_opts(opts);
500
501 if (!(sbsec->flags & SE_SBINITIALIZED))
502 return -EINVAL;
503
504 if (!ss_initialized)
505 return -EINVAL;
506
507 /* make sure we always check enough bits to cover the mask */
508 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
509
510 tmp = sbsec->flags & SE_MNTMASK;
511 /* count the number of mount options for this sb */
512 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
513 if (tmp & 0x01)
514 opts->num_mnt_opts++;
515 tmp >>= 1;
516 }
517 /* Check if the Label support flag is set */
518 if (sbsec->flags & SBLABEL_MNT)
519 opts->num_mnt_opts++;
520
521 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
522 if (!opts->mnt_opts) {
523 rc = -ENOMEM;
524 goto out_free;
525 }
526
527 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
528 if (!opts->mnt_opts_flags) {
529 rc = -ENOMEM;
530 goto out_free;
531 }
532
533 i = 0;
534 if (sbsec->flags & FSCONTEXT_MNT) {
535 rc = security_sid_to_context(sbsec->sid, &context, &len);
536 if (rc)
537 goto out_free;
538 opts->mnt_opts[i] = context;
539 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
540 }
541 if (sbsec->flags & CONTEXT_MNT) {
542 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
543 if (rc)
544 goto out_free;
545 opts->mnt_opts[i] = context;
546 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
547 }
548 if (sbsec->flags & DEFCONTEXT_MNT) {
549 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
550 if (rc)
551 goto out_free;
552 opts->mnt_opts[i] = context;
553 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
554 }
555 if (sbsec->flags & ROOTCONTEXT_MNT) {
556 struct inode *root = d_backing_inode(sbsec->sb->s_root);
557 struct inode_security_struct *isec = root->i_security;
558
559 rc = security_sid_to_context(isec->sid, &context, &len);
560 if (rc)
561 goto out_free;
562 opts->mnt_opts[i] = context;
563 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
564 }
565 if (sbsec->flags & SBLABEL_MNT) {
566 opts->mnt_opts[i] = NULL;
567 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
568 }
569
570 BUG_ON(i != opts->num_mnt_opts);
571
572 return 0;
573
574 out_free:
575 security_free_mnt_opts(opts);
576 return rc;
577 }
578
bad_option(struct superblock_security_struct * sbsec,char flag,u32 old_sid,u32 new_sid)579 static int bad_option(struct superblock_security_struct *sbsec, char flag,
580 u32 old_sid, u32 new_sid)
581 {
582 char mnt_flags = sbsec->flags & SE_MNTMASK;
583
584 /* check if the old mount command had the same options */
585 if (sbsec->flags & SE_SBINITIALIZED)
586 if (!(sbsec->flags & flag) ||
587 (old_sid != new_sid))
588 return 1;
589
590 /* check if we were passed the same options twice,
591 * aka someone passed context=a,context=b
592 */
593 if (!(sbsec->flags & SE_SBINITIALIZED))
594 if (mnt_flags & flag)
595 return 1;
596 return 0;
597 }
598
599 /*
600 * Allow filesystems with binary mount data to explicitly set mount point
601 * labeling information.
602 */
selinux_set_mnt_opts(struct super_block * sb,struct security_mnt_opts * opts,unsigned long kern_flags,unsigned long * set_kern_flags)603 static int selinux_set_mnt_opts(struct super_block *sb,
604 struct security_mnt_opts *opts,
605 unsigned long kern_flags,
606 unsigned long *set_kern_flags)
607 {
608 const struct cred *cred = current_cred();
609 int rc = 0, i;
610 struct superblock_security_struct *sbsec = sb->s_security;
611 const char *name = sb->s_type->name;
612 struct inode *inode = d_backing_inode(sbsec->sb->s_root);
613 struct inode_security_struct *root_isec = inode->i_security;
614 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
615 u32 defcontext_sid = 0;
616 char **mount_options = opts->mnt_opts;
617 int *flags = opts->mnt_opts_flags;
618 int num_opts = opts->num_mnt_opts;
619
620 mutex_lock(&sbsec->lock);
621
622 if (!ss_initialized) {
623 if (!num_opts) {
624 /* Defer initialization until selinux_complete_init,
625 after the initial policy is loaded and the security
626 server is ready to handle calls. */
627 goto out;
628 }
629 rc = -EINVAL;
630 printk(KERN_WARNING "SELinux: Unable to set superblock options "
631 "before the security server is initialized\n");
632 goto out;
633 }
634 if (kern_flags && !set_kern_flags) {
635 /* Specifying internal flags without providing a place to
636 * place the results is not allowed */
637 rc = -EINVAL;
638 goto out;
639 }
640
641 /*
642 * Binary mount data FS will come through this function twice. Once
643 * from an explicit call and once from the generic calls from the vfs.
644 * Since the generic VFS calls will not contain any security mount data
645 * we need to skip the double mount verification.
646 *
647 * This does open a hole in which we will not notice if the first
648 * mount using this sb set explict options and a second mount using
649 * this sb does not set any security options. (The first options
650 * will be used for both mounts)
651 */
652 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
653 && (num_opts == 0))
654 goto out;
655
656 /*
657 * parse the mount options, check if they are valid sids.
658 * also check if someone is trying to mount the same sb more
659 * than once with different security options.
660 */
661 for (i = 0; i < num_opts; i++) {
662 u32 sid;
663
664 if (flags[i] == SBLABEL_MNT)
665 continue;
666 rc = security_context_to_sid(mount_options[i],
667 strlen(mount_options[i]), &sid, GFP_KERNEL);
668 if (rc) {
669 printk(KERN_WARNING "SELinux: security_context_to_sid"
670 "(%s) failed for (dev %s, type %s) errno=%d\n",
671 mount_options[i], sb->s_id, name, rc);
672 goto out;
673 }
674 switch (flags[i]) {
675 case FSCONTEXT_MNT:
676 fscontext_sid = sid;
677
678 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
679 fscontext_sid))
680 goto out_double_mount;
681
682 sbsec->flags |= FSCONTEXT_MNT;
683 break;
684 case CONTEXT_MNT:
685 context_sid = sid;
686
687 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
688 context_sid))
689 goto out_double_mount;
690
691 sbsec->flags |= CONTEXT_MNT;
692 break;
693 case ROOTCONTEXT_MNT:
694 rootcontext_sid = sid;
695
696 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
697 rootcontext_sid))
698 goto out_double_mount;
699
700 sbsec->flags |= ROOTCONTEXT_MNT;
701
702 break;
703 case DEFCONTEXT_MNT:
704 defcontext_sid = sid;
705
706 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
707 defcontext_sid))
708 goto out_double_mount;
709
710 sbsec->flags |= DEFCONTEXT_MNT;
711
712 break;
713 default:
714 rc = -EINVAL;
715 goto out;
716 }
717 }
718
719 if (sbsec->flags & SE_SBINITIALIZED) {
720 /* previously mounted with options, but not on this attempt? */
721 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
722 goto out_double_mount;
723 rc = 0;
724 goto out;
725 }
726
727 if (strcmp(sb->s_type->name, "proc") == 0)
728 sbsec->flags |= SE_SBPROC;
729
730 if (!sbsec->behavior) {
731 /*
732 * Determine the labeling behavior to use for this
733 * filesystem type.
734 */
735 rc = security_fs_use(sb);
736 if (rc) {
737 printk(KERN_WARNING
738 "%s: security_fs_use(%s) returned %d\n",
739 __func__, sb->s_type->name, rc);
740 goto out;
741 }
742 }
743 /* sets the context of the superblock for the fs being mounted. */
744 if (fscontext_sid) {
745 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
746 if (rc)
747 goto out;
748
749 sbsec->sid = fscontext_sid;
750 }
751
752 /*
753 * Switch to using mount point labeling behavior.
754 * sets the label used on all file below the mountpoint, and will set
755 * the superblock context if not already set.
756 */
757 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
758 sbsec->behavior = SECURITY_FS_USE_NATIVE;
759 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
760 }
761
762 if (context_sid) {
763 if (!fscontext_sid) {
764 rc = may_context_mount_sb_relabel(context_sid, sbsec,
765 cred);
766 if (rc)
767 goto out;
768 sbsec->sid = context_sid;
769 } else {
770 rc = may_context_mount_inode_relabel(context_sid, sbsec,
771 cred);
772 if (rc)
773 goto out;
774 }
775 if (!rootcontext_sid)
776 rootcontext_sid = context_sid;
777
778 sbsec->mntpoint_sid = context_sid;
779 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
780 }
781
782 if (rootcontext_sid) {
783 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
784 cred);
785 if (rc)
786 goto out;
787
788 root_isec->sid = rootcontext_sid;
789 root_isec->initialized = 1;
790 }
791
792 if (defcontext_sid) {
793 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
794 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
795 rc = -EINVAL;
796 printk(KERN_WARNING "SELinux: defcontext option is "
797 "invalid for this filesystem type\n");
798 goto out;
799 }
800
801 if (defcontext_sid != sbsec->def_sid) {
802 rc = may_context_mount_inode_relabel(defcontext_sid,
803 sbsec, cred);
804 if (rc)
805 goto out;
806 }
807
808 sbsec->def_sid = defcontext_sid;
809 }
810
811 rc = sb_finish_set_opts(sb);
812 out:
813 mutex_unlock(&sbsec->lock);
814 return rc;
815 out_double_mount:
816 rc = -EINVAL;
817 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
818 "security settings for (dev %s, type %s)\n", sb->s_id, name);
819 goto out;
820 }
821
selinux_cmp_sb_context(const struct super_block * oldsb,const struct super_block * newsb)822 static int selinux_cmp_sb_context(const struct super_block *oldsb,
823 const struct super_block *newsb)
824 {
825 struct superblock_security_struct *old = oldsb->s_security;
826 struct superblock_security_struct *new = newsb->s_security;
827 char oldflags = old->flags & SE_MNTMASK;
828 char newflags = new->flags & SE_MNTMASK;
829
830 if (oldflags != newflags)
831 goto mismatch;
832 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
833 goto mismatch;
834 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
835 goto mismatch;
836 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
837 goto mismatch;
838 if (oldflags & ROOTCONTEXT_MNT) {
839 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security;
840 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security;
841 if (oldroot->sid != newroot->sid)
842 goto mismatch;
843 }
844 return 0;
845 mismatch:
846 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
847 "different security settings for (dev %s, "
848 "type %s)\n", newsb->s_id, newsb->s_type->name);
849 return -EBUSY;
850 }
851
selinux_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb)852 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
853 struct super_block *newsb)
854 {
855 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
856 struct superblock_security_struct *newsbsec = newsb->s_security;
857
858 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
859 int set_context = (oldsbsec->flags & CONTEXT_MNT);
860 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
861
862 /*
863 * if the parent was able to be mounted it clearly had no special lsm
864 * mount options. thus we can safely deal with this superblock later
865 */
866 if (!ss_initialized)
867 return 0;
868
869 /* how can we clone if the old one wasn't set up?? */
870 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
871
872 /* if fs is reusing a sb, make sure that the contexts match */
873 if (newsbsec->flags & SE_SBINITIALIZED)
874 return selinux_cmp_sb_context(oldsb, newsb);
875
876 mutex_lock(&newsbsec->lock);
877
878 newsbsec->flags = oldsbsec->flags;
879
880 newsbsec->sid = oldsbsec->sid;
881 newsbsec->def_sid = oldsbsec->def_sid;
882 newsbsec->behavior = oldsbsec->behavior;
883
884 if (set_context) {
885 u32 sid = oldsbsec->mntpoint_sid;
886
887 if (!set_fscontext)
888 newsbsec->sid = sid;
889 if (!set_rootcontext) {
890 struct inode *newinode = d_backing_inode(newsb->s_root);
891 struct inode_security_struct *newisec = newinode->i_security;
892 newisec->sid = sid;
893 }
894 newsbsec->mntpoint_sid = sid;
895 }
896 if (set_rootcontext) {
897 const struct inode *oldinode = d_backing_inode(oldsb->s_root);
898 const struct inode_security_struct *oldisec = oldinode->i_security;
899 struct inode *newinode = d_backing_inode(newsb->s_root);
900 struct inode_security_struct *newisec = newinode->i_security;
901
902 newisec->sid = oldisec->sid;
903 }
904
905 sb_finish_set_opts(newsb);
906 mutex_unlock(&newsbsec->lock);
907 return 0;
908 }
909
selinux_parse_opts_str(char * options,struct security_mnt_opts * opts)910 static int selinux_parse_opts_str(char *options,
911 struct security_mnt_opts *opts)
912 {
913 char *p;
914 char *context = NULL, *defcontext = NULL;
915 char *fscontext = NULL, *rootcontext = NULL;
916 int rc, num_mnt_opts = 0;
917
918 opts->num_mnt_opts = 0;
919
920 /* Standard string-based options. */
921 while ((p = strsep(&options, "|")) != NULL) {
922 int token;
923 substring_t args[MAX_OPT_ARGS];
924
925 if (!*p)
926 continue;
927
928 token = match_token(p, tokens, args);
929
930 switch (token) {
931 case Opt_context:
932 if (context || defcontext) {
933 rc = -EINVAL;
934 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
935 goto out_err;
936 }
937 context = match_strdup(&args[0]);
938 if (!context) {
939 rc = -ENOMEM;
940 goto out_err;
941 }
942 break;
943
944 case Opt_fscontext:
945 if (fscontext) {
946 rc = -EINVAL;
947 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
948 goto out_err;
949 }
950 fscontext = match_strdup(&args[0]);
951 if (!fscontext) {
952 rc = -ENOMEM;
953 goto out_err;
954 }
955 break;
956
957 case Opt_rootcontext:
958 if (rootcontext) {
959 rc = -EINVAL;
960 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
961 goto out_err;
962 }
963 rootcontext = match_strdup(&args[0]);
964 if (!rootcontext) {
965 rc = -ENOMEM;
966 goto out_err;
967 }
968 break;
969
970 case Opt_defcontext:
971 if (context || defcontext) {
972 rc = -EINVAL;
973 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
974 goto out_err;
975 }
976 defcontext = match_strdup(&args[0]);
977 if (!defcontext) {
978 rc = -ENOMEM;
979 goto out_err;
980 }
981 break;
982 case Opt_labelsupport:
983 break;
984 default:
985 rc = -EINVAL;
986 printk(KERN_WARNING "SELinux: unknown mount option\n");
987 goto out_err;
988
989 }
990 }
991
992 rc = -ENOMEM;
993 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
994 if (!opts->mnt_opts)
995 goto out_err;
996
997 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
998 if (!opts->mnt_opts_flags) {
999 kfree(opts->mnt_opts);
1000 goto out_err;
1001 }
1002
1003 if (fscontext) {
1004 opts->mnt_opts[num_mnt_opts] = fscontext;
1005 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1006 }
1007 if (context) {
1008 opts->mnt_opts[num_mnt_opts] = context;
1009 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1010 }
1011 if (rootcontext) {
1012 opts->mnt_opts[num_mnt_opts] = rootcontext;
1013 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1014 }
1015 if (defcontext) {
1016 opts->mnt_opts[num_mnt_opts] = defcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1018 }
1019
1020 opts->num_mnt_opts = num_mnt_opts;
1021 return 0;
1022
1023 out_err:
1024 kfree(context);
1025 kfree(defcontext);
1026 kfree(fscontext);
1027 kfree(rootcontext);
1028 return rc;
1029 }
1030 /*
1031 * string mount options parsing and call set the sbsec
1032 */
superblock_doinit(struct super_block * sb,void * data)1033 static int superblock_doinit(struct super_block *sb, void *data)
1034 {
1035 int rc = 0;
1036 char *options = data;
1037 struct security_mnt_opts opts;
1038
1039 security_init_mnt_opts(&opts);
1040
1041 if (!data)
1042 goto out;
1043
1044 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1045
1046 rc = selinux_parse_opts_str(options, &opts);
1047 if (rc)
1048 goto out_err;
1049
1050 out:
1051 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1052
1053 out_err:
1054 security_free_mnt_opts(&opts);
1055 return rc;
1056 }
1057
selinux_write_opts(struct seq_file * m,struct security_mnt_opts * opts)1058 static void selinux_write_opts(struct seq_file *m,
1059 struct security_mnt_opts *opts)
1060 {
1061 int i;
1062 char *prefix;
1063
1064 for (i = 0; i < opts->num_mnt_opts; i++) {
1065 char *has_comma;
1066
1067 if (opts->mnt_opts[i])
1068 has_comma = strchr(opts->mnt_opts[i], ',');
1069 else
1070 has_comma = NULL;
1071
1072 switch (opts->mnt_opts_flags[i]) {
1073 case CONTEXT_MNT:
1074 prefix = CONTEXT_STR;
1075 break;
1076 case FSCONTEXT_MNT:
1077 prefix = FSCONTEXT_STR;
1078 break;
1079 case ROOTCONTEXT_MNT:
1080 prefix = ROOTCONTEXT_STR;
1081 break;
1082 case DEFCONTEXT_MNT:
1083 prefix = DEFCONTEXT_STR;
1084 break;
1085 case SBLABEL_MNT:
1086 seq_putc(m, ',');
1087 seq_puts(m, LABELSUPP_STR);
1088 continue;
1089 default:
1090 BUG();
1091 return;
1092 };
1093 /* we need a comma before each option */
1094 seq_putc(m, ',');
1095 seq_puts(m, prefix);
1096 if (has_comma)
1097 seq_putc(m, '\"');
1098 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1099 if (has_comma)
1100 seq_putc(m, '\"');
1101 }
1102 }
1103
selinux_sb_show_options(struct seq_file * m,struct super_block * sb)1104 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1105 {
1106 struct security_mnt_opts opts;
1107 int rc;
1108
1109 rc = selinux_get_mnt_opts(sb, &opts);
1110 if (rc) {
1111 /* before policy load we may get EINVAL, don't show anything */
1112 if (rc == -EINVAL)
1113 rc = 0;
1114 return rc;
1115 }
1116
1117 selinux_write_opts(m, &opts);
1118
1119 security_free_mnt_opts(&opts);
1120
1121 return rc;
1122 }
1123
inode_mode_to_security_class(umode_t mode)1124 static inline u16 inode_mode_to_security_class(umode_t mode)
1125 {
1126 switch (mode & S_IFMT) {
1127 case S_IFSOCK:
1128 return SECCLASS_SOCK_FILE;
1129 case S_IFLNK:
1130 return SECCLASS_LNK_FILE;
1131 case S_IFREG:
1132 return SECCLASS_FILE;
1133 case S_IFBLK:
1134 return SECCLASS_BLK_FILE;
1135 case S_IFDIR:
1136 return SECCLASS_DIR;
1137 case S_IFCHR:
1138 return SECCLASS_CHR_FILE;
1139 case S_IFIFO:
1140 return SECCLASS_FIFO_FILE;
1141
1142 }
1143
1144 return SECCLASS_FILE;
1145 }
1146
default_protocol_stream(int protocol)1147 static inline int default_protocol_stream(int protocol)
1148 {
1149 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1150 }
1151
default_protocol_dgram(int protocol)1152 static inline int default_protocol_dgram(int protocol)
1153 {
1154 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1155 }
1156
socket_type_to_security_class(int family,int type,int protocol)1157 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1158 {
1159 switch (family) {
1160 case PF_UNIX:
1161 switch (type) {
1162 case SOCK_STREAM:
1163 case SOCK_SEQPACKET:
1164 return SECCLASS_UNIX_STREAM_SOCKET;
1165 case SOCK_DGRAM:
1166 return SECCLASS_UNIX_DGRAM_SOCKET;
1167 }
1168 break;
1169 case PF_INET:
1170 case PF_INET6:
1171 switch (type) {
1172 case SOCK_STREAM:
1173 if (default_protocol_stream(protocol))
1174 return SECCLASS_TCP_SOCKET;
1175 else
1176 return SECCLASS_RAWIP_SOCKET;
1177 case SOCK_DGRAM:
1178 if (default_protocol_dgram(protocol))
1179 return SECCLASS_UDP_SOCKET;
1180 else
1181 return SECCLASS_RAWIP_SOCKET;
1182 case SOCK_DCCP:
1183 return SECCLASS_DCCP_SOCKET;
1184 default:
1185 return SECCLASS_RAWIP_SOCKET;
1186 }
1187 break;
1188 case PF_NETLINK:
1189 switch (protocol) {
1190 case NETLINK_ROUTE:
1191 return SECCLASS_NETLINK_ROUTE_SOCKET;
1192 case NETLINK_FIREWALL:
1193 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1194 case NETLINK_SOCK_DIAG:
1195 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1196 case NETLINK_NFLOG:
1197 return SECCLASS_NETLINK_NFLOG_SOCKET;
1198 case NETLINK_XFRM:
1199 return SECCLASS_NETLINK_XFRM_SOCKET;
1200 case NETLINK_SELINUX:
1201 return SECCLASS_NETLINK_SELINUX_SOCKET;
1202 case NETLINK_AUDIT:
1203 return SECCLASS_NETLINK_AUDIT_SOCKET;
1204 case NETLINK_IP6_FW:
1205 return SECCLASS_NETLINK_IP6FW_SOCKET;
1206 case NETLINK_DNRTMSG:
1207 return SECCLASS_NETLINK_DNRT_SOCKET;
1208 case NETLINK_KOBJECT_UEVENT:
1209 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1210 default:
1211 return SECCLASS_NETLINK_SOCKET;
1212 }
1213 case PF_PACKET:
1214 return SECCLASS_PACKET_SOCKET;
1215 case PF_KEY:
1216 return SECCLASS_KEY_SOCKET;
1217 case PF_APPLETALK:
1218 return SECCLASS_APPLETALK_SOCKET;
1219 }
1220
1221 return SECCLASS_SOCKET;
1222 }
1223
1224 #ifdef CONFIG_PROC_FS
selinux_proc_get_sid(struct dentry * dentry,u16 tclass,u32 * sid)1225 static int selinux_proc_get_sid(struct dentry *dentry,
1226 u16 tclass,
1227 u32 *sid)
1228 {
1229 int rc;
1230 char *buffer, *path;
1231
1232 buffer = (char *)__get_free_page(GFP_KERNEL);
1233 if (!buffer)
1234 return -ENOMEM;
1235
1236 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1237 if (IS_ERR(path))
1238 rc = PTR_ERR(path);
1239 else {
1240 /* each process gets a /proc/PID/ entry. Strip off the
1241 * PID part to get a valid selinux labeling.
1242 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1243 while (path[1] >= '0' && path[1] <= '9') {
1244 path[1] = '/';
1245 path++;
1246 }
1247 rc = security_genfs_sid("proc", path, tclass, sid);
1248 }
1249 free_page((unsigned long)buffer);
1250 return rc;
1251 }
1252 #else
selinux_proc_get_sid(struct dentry * dentry,u16 tclass,u32 * sid)1253 static int selinux_proc_get_sid(struct dentry *dentry,
1254 u16 tclass,
1255 u32 *sid)
1256 {
1257 return -EINVAL;
1258 }
1259 #endif
1260
1261 /* The inode's security attributes must be initialized before first use. */
inode_doinit_with_dentry(struct inode * inode,struct dentry * opt_dentry)1262 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1263 {
1264 struct superblock_security_struct *sbsec = NULL;
1265 struct inode_security_struct *isec = inode->i_security;
1266 u32 sid;
1267 struct dentry *dentry;
1268 #define INITCONTEXTLEN 255
1269 char *context = NULL;
1270 unsigned len = 0;
1271 int rc = 0;
1272
1273 if (isec->initialized)
1274 goto out;
1275
1276 mutex_lock(&isec->lock);
1277 if (isec->initialized)
1278 goto out_unlock;
1279
1280 sbsec = inode->i_sb->s_security;
1281 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1282 /* Defer initialization until selinux_complete_init,
1283 after the initial policy is loaded and the security
1284 server is ready to handle calls. */
1285 spin_lock(&sbsec->isec_lock);
1286 if (list_empty(&isec->list))
1287 list_add(&isec->list, &sbsec->isec_head);
1288 spin_unlock(&sbsec->isec_lock);
1289 goto out_unlock;
1290 }
1291
1292 switch (sbsec->behavior) {
1293 case SECURITY_FS_USE_NATIVE:
1294 break;
1295 case SECURITY_FS_USE_XATTR:
1296 if (!inode->i_op->getxattr) {
1297 isec->sid = sbsec->def_sid;
1298 break;
1299 }
1300
1301 /* Need a dentry, since the xattr API requires one.
1302 Life would be simpler if we could just pass the inode. */
1303 if (opt_dentry) {
1304 /* Called from d_instantiate or d_splice_alias. */
1305 dentry = dget(opt_dentry);
1306 } else {
1307 /* Called from selinux_complete_init, try to find a dentry. */
1308 dentry = d_find_alias(inode);
1309 }
1310 if (!dentry) {
1311 /*
1312 * this is can be hit on boot when a file is accessed
1313 * before the policy is loaded. When we load policy we
1314 * may find inodes that have no dentry on the
1315 * sbsec->isec_head list. No reason to complain as these
1316 * will get fixed up the next time we go through
1317 * inode_doinit with a dentry, before these inodes could
1318 * be used again by userspace.
1319 */
1320 goto out_unlock;
1321 }
1322
1323 len = INITCONTEXTLEN;
1324 context = kmalloc(len+1, GFP_NOFS);
1325 if (!context) {
1326 rc = -ENOMEM;
1327 dput(dentry);
1328 goto out_unlock;
1329 }
1330 context[len] = '\0';
1331 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1332 context, len);
1333 if (rc == -ERANGE) {
1334 kfree(context);
1335
1336 /* Need a larger buffer. Query for the right size. */
1337 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1338 NULL, 0);
1339 if (rc < 0) {
1340 dput(dentry);
1341 goto out_unlock;
1342 }
1343 len = rc;
1344 context = kmalloc(len+1, GFP_NOFS);
1345 if (!context) {
1346 rc = -ENOMEM;
1347 dput(dentry);
1348 goto out_unlock;
1349 }
1350 context[len] = '\0';
1351 rc = inode->i_op->getxattr(dentry,
1352 XATTR_NAME_SELINUX,
1353 context, len);
1354 }
1355 dput(dentry);
1356 if (rc < 0) {
1357 if (rc != -ENODATA) {
1358 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1359 "%d for dev=%s ino=%ld\n", __func__,
1360 -rc, inode->i_sb->s_id, inode->i_ino);
1361 kfree(context);
1362 goto out_unlock;
1363 }
1364 /* Map ENODATA to the default file SID */
1365 sid = sbsec->def_sid;
1366 rc = 0;
1367 } else {
1368 rc = security_context_to_sid_default(context, rc, &sid,
1369 sbsec->def_sid,
1370 GFP_NOFS);
1371 if (rc) {
1372 char *dev = inode->i_sb->s_id;
1373 unsigned long ino = inode->i_ino;
1374
1375 if (rc == -EINVAL) {
1376 if (printk_ratelimit())
1377 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1378 "context=%s. This indicates you may need to relabel the inode or the "
1379 "filesystem in question.\n", ino, dev, context);
1380 } else {
1381 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1382 "returned %d for dev=%s ino=%ld\n",
1383 __func__, context, -rc, dev, ino);
1384 }
1385 kfree(context);
1386 /* Leave with the unlabeled SID */
1387 rc = 0;
1388 break;
1389 }
1390 }
1391 kfree(context);
1392 isec->sid = sid;
1393 break;
1394 case SECURITY_FS_USE_TASK:
1395 isec->sid = isec->task_sid;
1396 break;
1397 case SECURITY_FS_USE_TRANS:
1398 /* Default to the fs SID. */
1399 isec->sid = sbsec->sid;
1400
1401 /* Try to obtain a transition SID. */
1402 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1403 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1404 isec->sclass, NULL, &sid);
1405 if (rc)
1406 goto out_unlock;
1407 isec->sid = sid;
1408 break;
1409 case SECURITY_FS_USE_MNTPOINT:
1410 isec->sid = sbsec->mntpoint_sid;
1411 break;
1412 default:
1413 /* Default to the fs superblock SID. */
1414 isec->sid = sbsec->sid;
1415
1416 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1417 /* We must have a dentry to determine the label on
1418 * procfs inodes */
1419 if (opt_dentry)
1420 /* Called from d_instantiate or
1421 * d_splice_alias. */
1422 dentry = dget(opt_dentry);
1423 else
1424 /* Called from selinux_complete_init, try to
1425 * find a dentry. */
1426 dentry = d_find_alias(inode);
1427 /*
1428 * This can be hit on boot when a file is accessed
1429 * before the policy is loaded. When we load policy we
1430 * may find inodes that have no dentry on the
1431 * sbsec->isec_head list. No reason to complain as
1432 * these will get fixed up the next time we go through
1433 * inode_doinit() with a dentry, before these inodes
1434 * could be used again by userspace.
1435 */
1436 if (!dentry)
1437 goto out_unlock;
1438 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1439 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1440 dput(dentry);
1441 if (rc)
1442 goto out_unlock;
1443 isec->sid = sid;
1444 }
1445 break;
1446 }
1447
1448 isec->initialized = 1;
1449
1450 out_unlock:
1451 mutex_unlock(&isec->lock);
1452 out:
1453 if (isec->sclass == SECCLASS_FILE)
1454 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1455 return rc;
1456 }
1457
1458 /* Convert a Linux signal to an access vector. */
signal_to_av(int sig)1459 static inline u32 signal_to_av(int sig)
1460 {
1461 u32 perm = 0;
1462
1463 switch (sig) {
1464 case SIGCHLD:
1465 /* Commonly granted from child to parent. */
1466 perm = PROCESS__SIGCHLD;
1467 break;
1468 case SIGKILL:
1469 /* Cannot be caught or ignored */
1470 perm = PROCESS__SIGKILL;
1471 break;
1472 case SIGSTOP:
1473 /* Cannot be caught or ignored */
1474 perm = PROCESS__SIGSTOP;
1475 break;
1476 default:
1477 /* All other signals. */
1478 perm = PROCESS__SIGNAL;
1479 break;
1480 }
1481
1482 return perm;
1483 }
1484
1485 /*
1486 * Check permission between a pair of credentials
1487 * fork check, ptrace check, etc.
1488 */
cred_has_perm(const struct cred * actor,const struct cred * target,u32 perms)1489 static int cred_has_perm(const struct cred *actor,
1490 const struct cred *target,
1491 u32 perms)
1492 {
1493 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1494
1495 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1496 }
1497
1498 /*
1499 * Check permission between a pair of tasks, e.g. signal checks,
1500 * fork check, ptrace check, etc.
1501 * tsk1 is the actor and tsk2 is the target
1502 * - this uses the default subjective creds of tsk1
1503 */
task_has_perm(const struct task_struct * tsk1,const struct task_struct * tsk2,u32 perms)1504 static int task_has_perm(const struct task_struct *tsk1,
1505 const struct task_struct *tsk2,
1506 u32 perms)
1507 {
1508 const struct task_security_struct *__tsec1, *__tsec2;
1509 u32 sid1, sid2;
1510
1511 rcu_read_lock();
1512 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1513 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1514 rcu_read_unlock();
1515 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1516 }
1517
1518 /*
1519 * Check permission between current and another task, e.g. signal checks,
1520 * fork check, ptrace check, etc.
1521 * current is the actor and tsk2 is the target
1522 * - this uses current's subjective creds
1523 */
current_has_perm(const struct task_struct * tsk,u32 perms)1524 static int current_has_perm(const struct task_struct *tsk,
1525 u32 perms)
1526 {
1527 u32 sid, tsid;
1528
1529 sid = current_sid();
1530 tsid = task_sid(tsk);
1531 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1532 }
1533
1534 #if CAP_LAST_CAP > 63
1535 #error Fix SELinux to handle capabilities > 63.
1536 #endif
1537
1538 /* Check whether a task is allowed to use a capability. */
cred_has_capability(const struct cred * cred,int cap,int audit)1539 static int cred_has_capability(const struct cred *cred,
1540 int cap, int audit)
1541 {
1542 struct common_audit_data ad;
1543 struct av_decision avd;
1544 u16 sclass;
1545 u32 sid = cred_sid(cred);
1546 u32 av = CAP_TO_MASK(cap);
1547 int rc;
1548
1549 ad.type = LSM_AUDIT_DATA_CAP;
1550 ad.u.cap = cap;
1551
1552 switch (CAP_TO_INDEX(cap)) {
1553 case 0:
1554 sclass = SECCLASS_CAPABILITY;
1555 break;
1556 case 1:
1557 sclass = SECCLASS_CAPABILITY2;
1558 break;
1559 default:
1560 printk(KERN_ERR
1561 "SELinux: out of range capability %d\n", cap);
1562 BUG();
1563 return -EINVAL;
1564 }
1565
1566 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1567 if (audit == SECURITY_CAP_AUDIT) {
1568 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1569 if (rc2)
1570 return rc2;
1571 }
1572 return rc;
1573 }
1574
1575 /* Check whether a task is allowed to use a system operation. */
task_has_system(struct task_struct * tsk,u32 perms)1576 static int task_has_system(struct task_struct *tsk,
1577 u32 perms)
1578 {
1579 u32 sid = task_sid(tsk);
1580
1581 return avc_has_perm(sid, SECINITSID_KERNEL,
1582 SECCLASS_SYSTEM, perms, NULL);
1583 }
1584
1585 /* Check whether a task has a particular permission to an inode.
1586 The 'adp' parameter is optional and allows other audit
1587 data to be passed (e.g. the dentry). */
inode_has_perm(const struct cred * cred,struct inode * inode,u32 perms,struct common_audit_data * adp)1588 static int inode_has_perm(const struct cred *cred,
1589 struct inode *inode,
1590 u32 perms,
1591 struct common_audit_data *adp)
1592 {
1593 struct inode_security_struct *isec;
1594 u32 sid;
1595
1596 validate_creds(cred);
1597
1598 if (unlikely(IS_PRIVATE(inode)))
1599 return 0;
1600
1601 sid = cred_sid(cred);
1602 isec = inode->i_security;
1603
1604 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1605 }
1606
1607 /* Same as inode_has_perm, but pass explicit audit data containing
1608 the dentry to help the auditing code to more easily generate the
1609 pathname if needed. */
dentry_has_perm(const struct cred * cred,struct dentry * dentry,u32 av)1610 static inline int dentry_has_perm(const struct cred *cred,
1611 struct dentry *dentry,
1612 u32 av)
1613 {
1614 struct inode *inode = d_backing_inode(dentry);
1615 struct common_audit_data ad;
1616
1617 ad.type = LSM_AUDIT_DATA_DENTRY;
1618 ad.u.dentry = dentry;
1619 return inode_has_perm(cred, inode, av, &ad);
1620 }
1621
1622 /* Same as inode_has_perm, but pass explicit audit data containing
1623 the path to help the auditing code to more easily generate the
1624 pathname if needed. */
path_has_perm(const struct cred * cred,const struct path * path,u32 av)1625 static inline int path_has_perm(const struct cred *cred,
1626 const struct path *path,
1627 u32 av)
1628 {
1629 struct inode *inode = d_backing_inode(path->dentry);
1630 struct common_audit_data ad;
1631
1632 ad.type = LSM_AUDIT_DATA_PATH;
1633 ad.u.path = *path;
1634 return inode_has_perm(cred, inode, av, &ad);
1635 }
1636
1637 /* Same as path_has_perm, but uses the inode from the file struct. */
file_path_has_perm(const struct cred * cred,struct file * file,u32 av)1638 static inline int file_path_has_perm(const struct cred *cred,
1639 struct file *file,
1640 u32 av)
1641 {
1642 struct common_audit_data ad;
1643
1644 ad.type = LSM_AUDIT_DATA_PATH;
1645 ad.u.path = file->f_path;
1646 return inode_has_perm(cred, file_inode(file), av, &ad);
1647 }
1648
1649 /* Check whether a task can use an open file descriptor to
1650 access an inode in a given way. Check access to the
1651 descriptor itself, and then use dentry_has_perm to
1652 check a particular permission to the file.
1653 Access to the descriptor is implicitly granted if it
1654 has the same SID as the process. If av is zero, then
1655 access to the file is not checked, e.g. for cases
1656 where only the descriptor is affected like seek. */
file_has_perm(const struct cred * cred,struct file * file,u32 av)1657 static int file_has_perm(const struct cred *cred,
1658 struct file *file,
1659 u32 av)
1660 {
1661 struct file_security_struct *fsec = file->f_security;
1662 struct inode *inode = file_inode(file);
1663 struct common_audit_data ad;
1664 u32 sid = cred_sid(cred);
1665 int rc;
1666
1667 ad.type = LSM_AUDIT_DATA_PATH;
1668 ad.u.path = file->f_path;
1669
1670 if (sid != fsec->sid) {
1671 rc = avc_has_perm(sid, fsec->sid,
1672 SECCLASS_FD,
1673 FD__USE,
1674 &ad);
1675 if (rc)
1676 goto out;
1677 }
1678
1679 /* av is zero if only checking access to the descriptor. */
1680 rc = 0;
1681 if (av)
1682 rc = inode_has_perm(cred, inode, av, &ad);
1683
1684 out:
1685 return rc;
1686 }
1687
1688 /* Check whether a task can create a file. */
may_create(struct inode * dir,struct dentry * dentry,u16 tclass)1689 static int may_create(struct inode *dir,
1690 struct dentry *dentry,
1691 u16 tclass)
1692 {
1693 const struct task_security_struct *tsec = current_security();
1694 struct inode_security_struct *dsec;
1695 struct superblock_security_struct *sbsec;
1696 u32 sid, newsid;
1697 struct common_audit_data ad;
1698 int rc;
1699
1700 dsec = dir->i_security;
1701 sbsec = dir->i_sb->s_security;
1702
1703 sid = tsec->sid;
1704 newsid = tsec->create_sid;
1705
1706 ad.type = LSM_AUDIT_DATA_DENTRY;
1707 ad.u.dentry = dentry;
1708
1709 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1710 DIR__ADD_NAME | DIR__SEARCH,
1711 &ad);
1712 if (rc)
1713 return rc;
1714
1715 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1716 rc = security_transition_sid(sid, dsec->sid, tclass,
1717 &dentry->d_name, &newsid);
1718 if (rc)
1719 return rc;
1720 }
1721
1722 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1723 if (rc)
1724 return rc;
1725
1726 return avc_has_perm(newsid, sbsec->sid,
1727 SECCLASS_FILESYSTEM,
1728 FILESYSTEM__ASSOCIATE, &ad);
1729 }
1730
1731 /* Check whether a task can create a key. */
may_create_key(u32 ksid,struct task_struct * ctx)1732 static int may_create_key(u32 ksid,
1733 struct task_struct *ctx)
1734 {
1735 u32 sid = task_sid(ctx);
1736
1737 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1738 }
1739
1740 #define MAY_LINK 0
1741 #define MAY_UNLINK 1
1742 #define MAY_RMDIR 2
1743
1744 /* Check whether a task can link, unlink, or rmdir a file/directory. */
may_link(struct inode * dir,struct dentry * dentry,int kind)1745 static int may_link(struct inode *dir,
1746 struct dentry *dentry,
1747 int kind)
1748
1749 {
1750 struct inode_security_struct *dsec, *isec;
1751 struct common_audit_data ad;
1752 u32 sid = current_sid();
1753 u32 av;
1754 int rc;
1755
1756 dsec = dir->i_security;
1757 isec = d_backing_inode(dentry)->i_security;
1758
1759 ad.type = LSM_AUDIT_DATA_DENTRY;
1760 ad.u.dentry = dentry;
1761
1762 av = DIR__SEARCH;
1763 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1764 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1765 if (rc)
1766 return rc;
1767
1768 switch (kind) {
1769 case MAY_LINK:
1770 av = FILE__LINK;
1771 break;
1772 case MAY_UNLINK:
1773 av = FILE__UNLINK;
1774 break;
1775 case MAY_RMDIR:
1776 av = DIR__RMDIR;
1777 break;
1778 default:
1779 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1780 __func__, kind);
1781 return 0;
1782 }
1783
1784 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1785 return rc;
1786 }
1787
may_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1788 static inline int may_rename(struct inode *old_dir,
1789 struct dentry *old_dentry,
1790 struct inode *new_dir,
1791 struct dentry *new_dentry)
1792 {
1793 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1794 struct common_audit_data ad;
1795 u32 sid = current_sid();
1796 u32 av;
1797 int old_is_dir, new_is_dir;
1798 int rc;
1799
1800 old_dsec = old_dir->i_security;
1801 old_isec = d_backing_inode(old_dentry)->i_security;
1802 old_is_dir = d_is_dir(old_dentry);
1803 new_dsec = new_dir->i_security;
1804
1805 ad.type = LSM_AUDIT_DATA_DENTRY;
1806
1807 ad.u.dentry = old_dentry;
1808 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1809 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1810 if (rc)
1811 return rc;
1812 rc = avc_has_perm(sid, old_isec->sid,
1813 old_isec->sclass, FILE__RENAME, &ad);
1814 if (rc)
1815 return rc;
1816 if (old_is_dir && new_dir != old_dir) {
1817 rc = avc_has_perm(sid, old_isec->sid,
1818 old_isec->sclass, DIR__REPARENT, &ad);
1819 if (rc)
1820 return rc;
1821 }
1822
1823 ad.u.dentry = new_dentry;
1824 av = DIR__ADD_NAME | DIR__SEARCH;
1825 if (d_is_positive(new_dentry))
1826 av |= DIR__REMOVE_NAME;
1827 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1828 if (rc)
1829 return rc;
1830 if (d_is_positive(new_dentry)) {
1831 new_isec = d_backing_inode(new_dentry)->i_security;
1832 new_is_dir = d_is_dir(new_dentry);
1833 rc = avc_has_perm(sid, new_isec->sid,
1834 new_isec->sclass,
1835 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1836 if (rc)
1837 return rc;
1838 }
1839
1840 return 0;
1841 }
1842
1843 /* Check whether a task can perform a filesystem operation. */
superblock_has_perm(const struct cred * cred,struct super_block * sb,u32 perms,struct common_audit_data * ad)1844 static int superblock_has_perm(const struct cred *cred,
1845 struct super_block *sb,
1846 u32 perms,
1847 struct common_audit_data *ad)
1848 {
1849 struct superblock_security_struct *sbsec;
1850 u32 sid = cred_sid(cred);
1851
1852 sbsec = sb->s_security;
1853 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1854 }
1855
1856 /* Convert a Linux mode and permission mask to an access vector. */
file_mask_to_av(int mode,int mask)1857 static inline u32 file_mask_to_av(int mode, int mask)
1858 {
1859 u32 av = 0;
1860
1861 if (!S_ISDIR(mode)) {
1862 if (mask & MAY_EXEC)
1863 av |= FILE__EXECUTE;
1864 if (mask & MAY_READ)
1865 av |= FILE__READ;
1866
1867 if (mask & MAY_APPEND)
1868 av |= FILE__APPEND;
1869 else if (mask & MAY_WRITE)
1870 av |= FILE__WRITE;
1871
1872 } else {
1873 if (mask & MAY_EXEC)
1874 av |= DIR__SEARCH;
1875 if (mask & MAY_WRITE)
1876 av |= DIR__WRITE;
1877 if (mask & MAY_READ)
1878 av |= DIR__READ;
1879 }
1880
1881 return av;
1882 }
1883
1884 /* Convert a Linux file to an access vector. */
file_to_av(struct file * file)1885 static inline u32 file_to_av(struct file *file)
1886 {
1887 u32 av = 0;
1888
1889 if (file->f_mode & FMODE_READ)
1890 av |= FILE__READ;
1891 if (file->f_mode & FMODE_WRITE) {
1892 if (file->f_flags & O_APPEND)
1893 av |= FILE__APPEND;
1894 else
1895 av |= FILE__WRITE;
1896 }
1897 if (!av) {
1898 /*
1899 * Special file opened with flags 3 for ioctl-only use.
1900 */
1901 av = FILE__IOCTL;
1902 }
1903
1904 return av;
1905 }
1906
1907 /*
1908 * Convert a file to an access vector and include the correct open
1909 * open permission.
1910 */
open_file_to_av(struct file * file)1911 static inline u32 open_file_to_av(struct file *file)
1912 {
1913 u32 av = file_to_av(file);
1914
1915 if (selinux_policycap_openperm)
1916 av |= FILE__OPEN;
1917
1918 return av;
1919 }
1920
1921 /* Hook functions begin here. */
1922
selinux_binder_set_context_mgr(struct task_struct * mgr)1923 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1924 {
1925 u32 mysid = current_sid();
1926 u32 mgrsid = task_sid(mgr);
1927
1928 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1929 BINDER__SET_CONTEXT_MGR, NULL);
1930 }
1931
selinux_binder_transaction(struct task_struct * from,struct task_struct * to)1932 static int selinux_binder_transaction(struct task_struct *from,
1933 struct task_struct *to)
1934 {
1935 u32 mysid = current_sid();
1936 u32 fromsid = task_sid(from);
1937 u32 tosid = task_sid(to);
1938 int rc;
1939
1940 if (mysid != fromsid) {
1941 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1942 BINDER__IMPERSONATE, NULL);
1943 if (rc)
1944 return rc;
1945 }
1946
1947 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1948 NULL);
1949 }
1950
selinux_binder_transfer_binder(struct task_struct * from,struct task_struct * to)1951 static int selinux_binder_transfer_binder(struct task_struct *from,
1952 struct task_struct *to)
1953 {
1954 u32 fromsid = task_sid(from);
1955 u32 tosid = task_sid(to);
1956
1957 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
1958 NULL);
1959 }
1960
selinux_binder_transfer_file(struct task_struct * from,struct task_struct * to,struct file * file)1961 static int selinux_binder_transfer_file(struct task_struct *from,
1962 struct task_struct *to,
1963 struct file *file)
1964 {
1965 u32 sid = task_sid(to);
1966 struct file_security_struct *fsec = file->f_security;
1967 struct inode *inode = d_backing_inode(file->f_path.dentry);
1968 struct inode_security_struct *isec = inode->i_security;
1969 struct common_audit_data ad;
1970 int rc;
1971
1972 ad.type = LSM_AUDIT_DATA_PATH;
1973 ad.u.path = file->f_path;
1974
1975 if (sid != fsec->sid) {
1976 rc = avc_has_perm(sid, fsec->sid,
1977 SECCLASS_FD,
1978 FD__USE,
1979 &ad);
1980 if (rc)
1981 return rc;
1982 }
1983
1984 if (unlikely(IS_PRIVATE(inode)))
1985 return 0;
1986
1987 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
1988 &ad);
1989 }
1990
selinux_ptrace_access_check(struct task_struct * child,unsigned int mode)1991 static int selinux_ptrace_access_check(struct task_struct *child,
1992 unsigned int mode)
1993 {
1994 int rc;
1995
1996 rc = cap_ptrace_access_check(child, mode);
1997 if (rc)
1998 return rc;
1999
2000 if (mode & PTRACE_MODE_READ) {
2001 u32 sid = current_sid();
2002 u32 csid = task_sid(child);
2003 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2004 }
2005
2006 return current_has_perm(child, PROCESS__PTRACE);
2007 }
2008
selinux_ptrace_traceme(struct task_struct * parent)2009 static int selinux_ptrace_traceme(struct task_struct *parent)
2010 {
2011 int rc;
2012
2013 rc = cap_ptrace_traceme(parent);
2014 if (rc)
2015 return rc;
2016
2017 return task_has_perm(parent, current, PROCESS__PTRACE);
2018 }
2019
selinux_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)2020 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2021 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2022 {
2023 int error;
2024
2025 error = current_has_perm(target, PROCESS__GETCAP);
2026 if (error)
2027 return error;
2028
2029 return cap_capget(target, effective, inheritable, permitted);
2030 }
2031
selinux_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)2032 static int selinux_capset(struct cred *new, const struct cred *old,
2033 const kernel_cap_t *effective,
2034 const kernel_cap_t *inheritable,
2035 const kernel_cap_t *permitted)
2036 {
2037 int error;
2038
2039 error = cap_capset(new, old,
2040 effective, inheritable, permitted);
2041 if (error)
2042 return error;
2043
2044 return cred_has_perm(old, new, PROCESS__SETCAP);
2045 }
2046
2047 /*
2048 * (This comment used to live with the selinux_task_setuid hook,
2049 * which was removed).
2050 *
2051 * Since setuid only affects the current process, and since the SELinux
2052 * controls are not based on the Linux identity attributes, SELinux does not
2053 * need to control this operation. However, SELinux does control the use of
2054 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2055 */
2056
selinux_capable(const struct cred * cred,struct user_namespace * ns,int cap,int audit)2057 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2058 int cap, int audit)
2059 {
2060 int rc;
2061
2062 rc = cap_capable(cred, ns, cap, audit);
2063 if (rc)
2064 return rc;
2065
2066 return cred_has_capability(cred, cap, audit);
2067 }
2068
selinux_quotactl(int cmds,int type,int id,struct super_block * sb)2069 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2070 {
2071 const struct cred *cred = current_cred();
2072 int rc = 0;
2073
2074 if (!sb)
2075 return 0;
2076
2077 switch (cmds) {
2078 case Q_SYNC:
2079 case Q_QUOTAON:
2080 case Q_QUOTAOFF:
2081 case Q_SETINFO:
2082 case Q_SETQUOTA:
2083 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2084 break;
2085 case Q_GETFMT:
2086 case Q_GETINFO:
2087 case Q_GETQUOTA:
2088 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2089 break;
2090 default:
2091 rc = 0; /* let the kernel handle invalid cmds */
2092 break;
2093 }
2094 return rc;
2095 }
2096
selinux_quota_on(struct dentry * dentry)2097 static int selinux_quota_on(struct dentry *dentry)
2098 {
2099 const struct cred *cred = current_cred();
2100
2101 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2102 }
2103
selinux_syslog(int type)2104 static int selinux_syslog(int type)
2105 {
2106 int rc;
2107
2108 switch (type) {
2109 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2110 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2111 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2112 break;
2113 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2114 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2115 /* Set level of messages printed to console */
2116 case SYSLOG_ACTION_CONSOLE_LEVEL:
2117 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2118 break;
2119 case SYSLOG_ACTION_CLOSE: /* Close log */
2120 case SYSLOG_ACTION_OPEN: /* Open log */
2121 case SYSLOG_ACTION_READ: /* Read from log */
2122 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2123 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2124 default:
2125 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2126 break;
2127 }
2128 return rc;
2129 }
2130
2131 /*
2132 * Check that a process has enough memory to allocate a new virtual
2133 * mapping. 0 means there is enough memory for the allocation to
2134 * succeed and -ENOMEM implies there is not.
2135 *
2136 * Do not audit the selinux permission check, as this is applied to all
2137 * processes that allocate mappings.
2138 */
selinux_vm_enough_memory(struct mm_struct * mm,long pages)2139 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2140 {
2141 int rc, cap_sys_admin = 0;
2142
2143 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2144 SECURITY_CAP_NOAUDIT);
2145 if (rc == 0)
2146 cap_sys_admin = 1;
2147
2148 return __vm_enough_memory(mm, pages, cap_sys_admin);
2149 }
2150
2151 /* binprm security operations */
2152
check_nnp_nosuid(const struct linux_binprm * bprm,const struct task_security_struct * old_tsec,const struct task_security_struct * new_tsec)2153 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2154 const struct task_security_struct *old_tsec,
2155 const struct task_security_struct *new_tsec)
2156 {
2157 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2158 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2159 int rc;
2160
2161 if (!nnp && !nosuid)
2162 return 0; /* neither NNP nor nosuid */
2163
2164 if (new_tsec->sid == old_tsec->sid)
2165 return 0; /* No change in credentials */
2166
2167 /*
2168 * The only transitions we permit under NNP or nosuid
2169 * are transitions to bounded SIDs, i.e. SIDs that are
2170 * guaranteed to only be allowed a subset of the permissions
2171 * of the current SID.
2172 */
2173 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2174 if (rc) {
2175 /*
2176 * On failure, preserve the errno values for NNP vs nosuid.
2177 * NNP: Operation not permitted for caller.
2178 * nosuid: Permission denied to file.
2179 */
2180 if (nnp)
2181 return -EPERM;
2182 else
2183 return -EACCES;
2184 }
2185 return 0;
2186 }
2187
selinux_bprm_set_creds(struct linux_binprm * bprm)2188 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2189 {
2190 const struct task_security_struct *old_tsec;
2191 struct task_security_struct *new_tsec;
2192 struct inode_security_struct *isec;
2193 struct common_audit_data ad;
2194 struct inode *inode = file_inode(bprm->file);
2195 int rc;
2196
2197 rc = cap_bprm_set_creds(bprm);
2198 if (rc)
2199 return rc;
2200
2201 /* SELinux context only depends on initial program or script and not
2202 * the script interpreter */
2203 if (bprm->cred_prepared)
2204 return 0;
2205
2206 old_tsec = current_security();
2207 new_tsec = bprm->cred->security;
2208 isec = inode->i_security;
2209
2210 /* Default to the current task SID. */
2211 new_tsec->sid = old_tsec->sid;
2212 new_tsec->osid = old_tsec->sid;
2213
2214 /* Reset fs, key, and sock SIDs on execve. */
2215 new_tsec->create_sid = 0;
2216 new_tsec->keycreate_sid = 0;
2217 new_tsec->sockcreate_sid = 0;
2218
2219 if (old_tsec->exec_sid) {
2220 new_tsec->sid = old_tsec->exec_sid;
2221 /* Reset exec SID on execve. */
2222 new_tsec->exec_sid = 0;
2223
2224 /* Fail on NNP or nosuid if not an allowed transition. */
2225 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2226 if (rc)
2227 return rc;
2228 } else {
2229 /* Check for a default transition on this program. */
2230 rc = security_transition_sid(old_tsec->sid, isec->sid,
2231 SECCLASS_PROCESS, NULL,
2232 &new_tsec->sid);
2233 if (rc)
2234 return rc;
2235
2236 /*
2237 * Fallback to old SID on NNP or nosuid if not an allowed
2238 * transition.
2239 */
2240 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2241 if (rc)
2242 new_tsec->sid = old_tsec->sid;
2243 }
2244
2245 ad.type = LSM_AUDIT_DATA_PATH;
2246 ad.u.path = bprm->file->f_path;
2247
2248 if (new_tsec->sid == old_tsec->sid) {
2249 rc = avc_has_perm(old_tsec->sid, isec->sid,
2250 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2251 if (rc)
2252 return rc;
2253 } else {
2254 /* Check permissions for the transition. */
2255 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2256 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2257 if (rc)
2258 return rc;
2259
2260 rc = avc_has_perm(new_tsec->sid, isec->sid,
2261 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2262 if (rc)
2263 return rc;
2264
2265 /* Check for shared state */
2266 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 SECCLASS_PROCESS, PROCESS__SHARE,
2269 NULL);
2270 if (rc)
2271 return -EPERM;
2272 }
2273
2274 /* Make sure that anyone attempting to ptrace over a task that
2275 * changes its SID has the appropriate permit */
2276 if (bprm->unsafe &
2277 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2278 struct task_struct *tracer;
2279 struct task_security_struct *sec;
2280 u32 ptsid = 0;
2281
2282 rcu_read_lock();
2283 tracer = ptrace_parent(current);
2284 if (likely(tracer != NULL)) {
2285 sec = __task_cred(tracer)->security;
2286 ptsid = sec->sid;
2287 }
2288 rcu_read_unlock();
2289
2290 if (ptsid != 0) {
2291 rc = avc_has_perm(ptsid, new_tsec->sid,
2292 SECCLASS_PROCESS,
2293 PROCESS__PTRACE, NULL);
2294 if (rc)
2295 return -EPERM;
2296 }
2297 }
2298
2299 /* Clear any possibly unsafe personality bits on exec: */
2300 bprm->per_clear |= PER_CLEAR_ON_SETID;
2301 }
2302
2303 return 0;
2304 }
2305
selinux_bprm_secureexec(struct linux_binprm * bprm)2306 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2307 {
2308 const struct task_security_struct *tsec = current_security();
2309 u32 sid, osid;
2310 int atsecure = 0;
2311
2312 sid = tsec->sid;
2313 osid = tsec->osid;
2314
2315 if (osid != sid) {
2316 /* Enable secure mode for SIDs transitions unless
2317 the noatsecure permission is granted between
2318 the two SIDs, i.e. ahp returns 0. */
2319 atsecure = avc_has_perm(osid, sid,
2320 SECCLASS_PROCESS,
2321 PROCESS__NOATSECURE, NULL);
2322 }
2323
2324 return (atsecure || cap_bprm_secureexec(bprm));
2325 }
2326
match_file(const void * p,struct file * file,unsigned fd)2327 static int match_file(const void *p, struct file *file, unsigned fd)
2328 {
2329 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2330 }
2331
2332 /* Derived from fs/exec.c:flush_old_files. */
flush_unauthorized_files(const struct cred * cred,struct files_struct * files)2333 static inline void flush_unauthorized_files(const struct cred *cred,
2334 struct files_struct *files)
2335 {
2336 struct file *file, *devnull = NULL;
2337 struct tty_struct *tty;
2338 int drop_tty = 0;
2339 unsigned n;
2340
2341 tty = get_current_tty();
2342 if (tty) {
2343 spin_lock(&tty_files_lock);
2344 if (!list_empty(&tty->tty_files)) {
2345 struct tty_file_private *file_priv;
2346
2347 /* Revalidate access to controlling tty.
2348 Use file_path_has_perm on the tty path directly
2349 rather than using file_has_perm, as this particular
2350 open file may belong to another process and we are
2351 only interested in the inode-based check here. */
2352 file_priv = list_first_entry(&tty->tty_files,
2353 struct tty_file_private, list);
2354 file = file_priv->file;
2355 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2356 drop_tty = 1;
2357 }
2358 spin_unlock(&tty_files_lock);
2359 tty_kref_put(tty);
2360 }
2361 /* Reset controlling tty. */
2362 if (drop_tty)
2363 no_tty();
2364
2365 /* Revalidate access to inherited open files. */
2366 n = iterate_fd(files, 0, match_file, cred);
2367 if (!n) /* none found? */
2368 return;
2369
2370 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2371 if (IS_ERR(devnull))
2372 devnull = NULL;
2373 /* replace all the matching ones with this */
2374 do {
2375 replace_fd(n - 1, devnull, 0);
2376 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2377 if (devnull)
2378 fput(devnull);
2379 }
2380
2381 /*
2382 * Prepare a process for imminent new credential changes due to exec
2383 */
selinux_bprm_committing_creds(struct linux_binprm * bprm)2384 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2385 {
2386 struct task_security_struct *new_tsec;
2387 struct rlimit *rlim, *initrlim;
2388 int rc, i;
2389
2390 new_tsec = bprm->cred->security;
2391 if (new_tsec->sid == new_tsec->osid)
2392 return;
2393
2394 /* Close files for which the new task SID is not authorized. */
2395 flush_unauthorized_files(bprm->cred, current->files);
2396
2397 /* Always clear parent death signal on SID transitions. */
2398 current->pdeath_signal = 0;
2399
2400 /* Check whether the new SID can inherit resource limits from the old
2401 * SID. If not, reset all soft limits to the lower of the current
2402 * task's hard limit and the init task's soft limit.
2403 *
2404 * Note that the setting of hard limits (even to lower them) can be
2405 * controlled by the setrlimit check. The inclusion of the init task's
2406 * soft limit into the computation is to avoid resetting soft limits
2407 * higher than the default soft limit for cases where the default is
2408 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2409 */
2410 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2411 PROCESS__RLIMITINH, NULL);
2412 if (rc) {
2413 /* protect against do_prlimit() */
2414 task_lock(current);
2415 for (i = 0; i < RLIM_NLIMITS; i++) {
2416 rlim = current->signal->rlim + i;
2417 initrlim = init_task.signal->rlim + i;
2418 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2419 }
2420 task_unlock(current);
2421 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2422 }
2423 }
2424
2425 /*
2426 * Clean up the process immediately after the installation of new credentials
2427 * due to exec
2428 */
selinux_bprm_committed_creds(struct linux_binprm * bprm)2429 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2430 {
2431 const struct task_security_struct *tsec = current_security();
2432 struct itimerval itimer;
2433 u32 osid, sid;
2434 int rc, i;
2435
2436 osid = tsec->osid;
2437 sid = tsec->sid;
2438
2439 if (sid == osid)
2440 return;
2441
2442 /* Check whether the new SID can inherit signal state from the old SID.
2443 * If not, clear itimers to avoid subsequent signal generation and
2444 * flush and unblock signals.
2445 *
2446 * This must occur _after_ the task SID has been updated so that any
2447 * kill done after the flush will be checked against the new SID.
2448 */
2449 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2450 if (rc) {
2451 memset(&itimer, 0, sizeof itimer);
2452 for (i = 0; i < 3; i++)
2453 do_setitimer(i, &itimer, NULL);
2454 spin_lock_irq(¤t->sighand->siglock);
2455 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2456 __flush_signals(current);
2457 flush_signal_handlers(current, 1);
2458 sigemptyset(¤t->blocked);
2459 }
2460 spin_unlock_irq(¤t->sighand->siglock);
2461 }
2462
2463 /* Wake up the parent if it is waiting so that it can recheck
2464 * wait permission to the new task SID. */
2465 read_lock(&tasklist_lock);
2466 __wake_up_parent(current, current->real_parent);
2467 read_unlock(&tasklist_lock);
2468 }
2469
2470 /* superblock security operations */
2471
selinux_sb_alloc_security(struct super_block * sb)2472 static int selinux_sb_alloc_security(struct super_block *sb)
2473 {
2474 return superblock_alloc_security(sb);
2475 }
2476
selinux_sb_free_security(struct super_block * sb)2477 static void selinux_sb_free_security(struct super_block *sb)
2478 {
2479 superblock_free_security(sb);
2480 }
2481
match_prefix(char * prefix,int plen,char * option,int olen)2482 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2483 {
2484 if (plen > olen)
2485 return 0;
2486
2487 return !memcmp(prefix, option, plen);
2488 }
2489
selinux_option(char * option,int len)2490 static inline int selinux_option(char *option, int len)
2491 {
2492 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2493 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2494 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2495 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2496 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2497 }
2498
take_option(char ** to,char * from,int * first,int len)2499 static inline void take_option(char **to, char *from, int *first, int len)
2500 {
2501 if (!*first) {
2502 **to = ',';
2503 *to += 1;
2504 } else
2505 *first = 0;
2506 memcpy(*to, from, len);
2507 *to += len;
2508 }
2509
take_selinux_option(char ** to,char * from,int * first,int len)2510 static inline void take_selinux_option(char **to, char *from, int *first,
2511 int len)
2512 {
2513 int current_size = 0;
2514
2515 if (!*first) {
2516 **to = '|';
2517 *to += 1;
2518 } else
2519 *first = 0;
2520
2521 while (current_size < len) {
2522 if (*from != '"') {
2523 **to = *from;
2524 *to += 1;
2525 }
2526 from += 1;
2527 current_size += 1;
2528 }
2529 }
2530
selinux_sb_copy_data(char * orig,char * copy)2531 static int selinux_sb_copy_data(char *orig, char *copy)
2532 {
2533 int fnosec, fsec, rc = 0;
2534 char *in_save, *in_curr, *in_end;
2535 char *sec_curr, *nosec_save, *nosec;
2536 int open_quote = 0;
2537
2538 in_curr = orig;
2539 sec_curr = copy;
2540
2541 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2542 if (!nosec) {
2543 rc = -ENOMEM;
2544 goto out;
2545 }
2546
2547 nosec_save = nosec;
2548 fnosec = fsec = 1;
2549 in_save = in_end = orig;
2550
2551 do {
2552 if (*in_end == '"')
2553 open_quote = !open_quote;
2554 if ((*in_end == ',' && open_quote == 0) ||
2555 *in_end == '\0') {
2556 int len = in_end - in_curr;
2557
2558 if (selinux_option(in_curr, len))
2559 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2560 else
2561 take_option(&nosec, in_curr, &fnosec, len);
2562
2563 in_curr = in_end + 1;
2564 }
2565 } while (*in_end++);
2566
2567 strcpy(in_save, nosec_save);
2568 free_page((unsigned long)nosec_save);
2569 out:
2570 return rc;
2571 }
2572
selinux_sb_remount(struct super_block * sb,void * data)2573 static int selinux_sb_remount(struct super_block *sb, void *data)
2574 {
2575 int rc, i, *flags;
2576 struct security_mnt_opts opts;
2577 char *secdata, **mount_options;
2578 struct superblock_security_struct *sbsec = sb->s_security;
2579
2580 if (!(sbsec->flags & SE_SBINITIALIZED))
2581 return 0;
2582
2583 if (!data)
2584 return 0;
2585
2586 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2587 return 0;
2588
2589 security_init_mnt_opts(&opts);
2590 secdata = alloc_secdata();
2591 if (!secdata)
2592 return -ENOMEM;
2593 rc = selinux_sb_copy_data(data, secdata);
2594 if (rc)
2595 goto out_free_secdata;
2596
2597 rc = selinux_parse_opts_str(secdata, &opts);
2598 if (rc)
2599 goto out_free_secdata;
2600
2601 mount_options = opts.mnt_opts;
2602 flags = opts.mnt_opts_flags;
2603
2604 for (i = 0; i < opts.num_mnt_opts; i++) {
2605 u32 sid;
2606 size_t len;
2607
2608 if (flags[i] == SBLABEL_MNT)
2609 continue;
2610 len = strlen(mount_options[i]);
2611 rc = security_context_to_sid(mount_options[i], len, &sid,
2612 GFP_KERNEL);
2613 if (rc) {
2614 printk(KERN_WARNING "SELinux: security_context_to_sid"
2615 "(%s) failed for (dev %s, type %s) errno=%d\n",
2616 mount_options[i], sb->s_id, sb->s_type->name, rc);
2617 goto out_free_opts;
2618 }
2619 rc = -EINVAL;
2620 switch (flags[i]) {
2621 case FSCONTEXT_MNT:
2622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2623 goto out_bad_option;
2624 break;
2625 case CONTEXT_MNT:
2626 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2627 goto out_bad_option;
2628 break;
2629 case ROOTCONTEXT_MNT: {
2630 struct inode_security_struct *root_isec;
2631 root_isec = d_backing_inode(sb->s_root)->i_security;
2632
2633 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2634 goto out_bad_option;
2635 break;
2636 }
2637 case DEFCONTEXT_MNT:
2638 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2639 goto out_bad_option;
2640 break;
2641 default:
2642 goto out_free_opts;
2643 }
2644 }
2645
2646 rc = 0;
2647 out_free_opts:
2648 security_free_mnt_opts(&opts);
2649 out_free_secdata:
2650 free_secdata(secdata);
2651 return rc;
2652 out_bad_option:
2653 printk(KERN_WARNING "SELinux: unable to change security options "
2654 "during remount (dev %s, type=%s)\n", sb->s_id,
2655 sb->s_type->name);
2656 goto out_free_opts;
2657 }
2658
selinux_sb_kern_mount(struct super_block * sb,int flags,void * data)2659 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2660 {
2661 const struct cred *cred = current_cred();
2662 struct common_audit_data ad;
2663 int rc;
2664
2665 rc = superblock_doinit(sb, data);
2666 if (rc)
2667 return rc;
2668
2669 /* Allow all mounts performed by the kernel */
2670 if (flags & MS_KERNMOUNT)
2671 return 0;
2672
2673 ad.type = LSM_AUDIT_DATA_DENTRY;
2674 ad.u.dentry = sb->s_root;
2675 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2676 }
2677
selinux_sb_statfs(struct dentry * dentry)2678 static int selinux_sb_statfs(struct dentry *dentry)
2679 {
2680 const struct cred *cred = current_cred();
2681 struct common_audit_data ad;
2682
2683 ad.type = LSM_AUDIT_DATA_DENTRY;
2684 ad.u.dentry = dentry->d_sb->s_root;
2685 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2686 }
2687
selinux_mount(const char * dev_name,struct path * path,const char * type,unsigned long flags,void * data)2688 static int selinux_mount(const char *dev_name,
2689 struct path *path,
2690 const char *type,
2691 unsigned long flags,
2692 void *data)
2693 {
2694 const struct cred *cred = current_cred();
2695
2696 if (flags & MS_REMOUNT)
2697 return superblock_has_perm(cred, path->dentry->d_sb,
2698 FILESYSTEM__REMOUNT, NULL);
2699 else
2700 return path_has_perm(cred, path, FILE__MOUNTON);
2701 }
2702
selinux_umount(struct vfsmount * mnt,int flags)2703 static int selinux_umount(struct vfsmount *mnt, int flags)
2704 {
2705 const struct cred *cred = current_cred();
2706
2707 return superblock_has_perm(cred, mnt->mnt_sb,
2708 FILESYSTEM__UNMOUNT, NULL);
2709 }
2710
2711 /* inode security operations */
2712
selinux_inode_alloc_security(struct inode * inode)2713 static int selinux_inode_alloc_security(struct inode *inode)
2714 {
2715 return inode_alloc_security(inode);
2716 }
2717
selinux_inode_free_security(struct inode * inode)2718 static void selinux_inode_free_security(struct inode *inode)
2719 {
2720 inode_free_security(inode);
2721 }
2722
selinux_dentry_init_security(struct dentry * dentry,int mode,struct qstr * name,void ** ctx,u32 * ctxlen)2723 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2724 struct qstr *name, void **ctx,
2725 u32 *ctxlen)
2726 {
2727 const struct cred *cred = current_cred();
2728 struct task_security_struct *tsec;
2729 struct inode_security_struct *dsec;
2730 struct superblock_security_struct *sbsec;
2731 struct inode *dir = d_backing_inode(dentry->d_parent);
2732 u32 newsid;
2733 int rc;
2734
2735 tsec = cred->security;
2736 dsec = dir->i_security;
2737 sbsec = dir->i_sb->s_security;
2738
2739 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2740 newsid = tsec->create_sid;
2741 } else {
2742 rc = security_transition_sid(tsec->sid, dsec->sid,
2743 inode_mode_to_security_class(mode),
2744 name,
2745 &newsid);
2746 if (rc) {
2747 printk(KERN_WARNING
2748 "%s: security_transition_sid failed, rc=%d\n",
2749 __func__, -rc);
2750 return rc;
2751 }
2752 }
2753
2754 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2755 }
2756
selinux_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)2757 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2758 const struct qstr *qstr,
2759 const char **name,
2760 void **value, size_t *len)
2761 {
2762 const struct task_security_struct *tsec = current_security();
2763 struct inode_security_struct *dsec;
2764 struct superblock_security_struct *sbsec;
2765 u32 sid, newsid, clen;
2766 int rc;
2767 char *context;
2768
2769 dsec = dir->i_security;
2770 sbsec = dir->i_sb->s_security;
2771
2772 sid = tsec->sid;
2773 newsid = tsec->create_sid;
2774
2775 if ((sbsec->flags & SE_SBINITIALIZED) &&
2776 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2777 newsid = sbsec->mntpoint_sid;
2778 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2779 rc = security_transition_sid(sid, dsec->sid,
2780 inode_mode_to_security_class(inode->i_mode),
2781 qstr, &newsid);
2782 if (rc) {
2783 printk(KERN_WARNING "%s: "
2784 "security_transition_sid failed, rc=%d (dev=%s "
2785 "ino=%ld)\n",
2786 __func__,
2787 -rc, inode->i_sb->s_id, inode->i_ino);
2788 return rc;
2789 }
2790 }
2791
2792 /* Possibly defer initialization to selinux_complete_init. */
2793 if (sbsec->flags & SE_SBINITIALIZED) {
2794 struct inode_security_struct *isec = inode->i_security;
2795 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2796 isec->sid = newsid;
2797 isec->initialized = 1;
2798 }
2799
2800 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2801 return -EOPNOTSUPP;
2802
2803 if (name)
2804 *name = XATTR_SELINUX_SUFFIX;
2805
2806 if (value && len) {
2807 rc = security_sid_to_context_force(newsid, &context, &clen);
2808 if (rc)
2809 return rc;
2810 *value = context;
2811 *len = clen;
2812 }
2813
2814 return 0;
2815 }
2816
selinux_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)2817 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2818 {
2819 return may_create(dir, dentry, SECCLASS_FILE);
2820 }
2821
selinux_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2822 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2823 {
2824 return may_link(dir, old_dentry, MAY_LINK);
2825 }
2826
selinux_inode_unlink(struct inode * dir,struct dentry * dentry)2827 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2828 {
2829 return may_link(dir, dentry, MAY_UNLINK);
2830 }
2831
selinux_inode_symlink(struct inode * dir,struct dentry * dentry,const char * name)2832 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2833 {
2834 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2835 }
2836
selinux_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mask)2837 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2838 {
2839 return may_create(dir, dentry, SECCLASS_DIR);
2840 }
2841
selinux_inode_rmdir(struct inode * dir,struct dentry * dentry)2842 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2843 {
2844 return may_link(dir, dentry, MAY_RMDIR);
2845 }
2846
selinux_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2847 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2848 {
2849 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2850 }
2851
selinux_inode_rename(struct inode * old_inode,struct dentry * old_dentry,struct inode * new_inode,struct dentry * new_dentry)2852 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2853 struct inode *new_inode, struct dentry *new_dentry)
2854 {
2855 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2856 }
2857
selinux_inode_readlink(struct dentry * dentry)2858 static int selinux_inode_readlink(struct dentry *dentry)
2859 {
2860 const struct cred *cred = current_cred();
2861
2862 return dentry_has_perm(cred, dentry, FILE__READ);
2863 }
2864
selinux_inode_follow_link(struct dentry * dentry,struct nameidata * nameidata)2865 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2866 {
2867 const struct cred *cred = current_cred();
2868
2869 return dentry_has_perm(cred, dentry, FILE__READ);
2870 }
2871
audit_inode_permission(struct inode * inode,u32 perms,u32 audited,u32 denied,int result,unsigned flags)2872 static noinline int audit_inode_permission(struct inode *inode,
2873 u32 perms, u32 audited, u32 denied,
2874 int result,
2875 unsigned flags)
2876 {
2877 struct common_audit_data ad;
2878 struct inode_security_struct *isec = inode->i_security;
2879 int rc;
2880
2881 ad.type = LSM_AUDIT_DATA_INODE;
2882 ad.u.inode = inode;
2883
2884 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2885 audited, denied, result, &ad, flags);
2886 if (rc)
2887 return rc;
2888 return 0;
2889 }
2890
selinux_inode_permission(struct inode * inode,int mask)2891 static int selinux_inode_permission(struct inode *inode, int mask)
2892 {
2893 const struct cred *cred = current_cred();
2894 u32 perms;
2895 bool from_access;
2896 unsigned flags = mask & MAY_NOT_BLOCK;
2897 struct inode_security_struct *isec;
2898 u32 sid;
2899 struct av_decision avd;
2900 int rc, rc2;
2901 u32 audited, denied;
2902
2903 from_access = mask & MAY_ACCESS;
2904 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2905
2906 /* No permission to check. Existence test. */
2907 if (!mask)
2908 return 0;
2909
2910 validate_creds(cred);
2911
2912 if (unlikely(IS_PRIVATE(inode)))
2913 return 0;
2914
2915 perms = file_mask_to_av(inode->i_mode, mask);
2916
2917 sid = cred_sid(cred);
2918 isec = inode->i_security;
2919
2920 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2921 audited = avc_audit_required(perms, &avd, rc,
2922 from_access ? FILE__AUDIT_ACCESS : 0,
2923 &denied);
2924 if (likely(!audited))
2925 return rc;
2926
2927 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2928 if (rc2)
2929 return rc2;
2930 return rc;
2931 }
2932
selinux_inode_setattr(struct dentry * dentry,struct iattr * iattr)2933 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2934 {
2935 const struct cred *cred = current_cred();
2936 unsigned int ia_valid = iattr->ia_valid;
2937 __u32 av = FILE__WRITE;
2938
2939 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2940 if (ia_valid & ATTR_FORCE) {
2941 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2942 ATTR_FORCE);
2943 if (!ia_valid)
2944 return 0;
2945 }
2946
2947 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2948 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2949 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2950
2951 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2952 av |= FILE__OPEN;
2953
2954 return dentry_has_perm(cred, dentry, av);
2955 }
2956
selinux_inode_getattr(const struct path * path)2957 static int selinux_inode_getattr(const struct path *path)
2958 {
2959 return path_has_perm(current_cred(), path, FILE__GETATTR);
2960 }
2961
selinux_inode_setotherxattr(struct dentry * dentry,const char * name)2962 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2963 {
2964 const struct cred *cred = current_cred();
2965
2966 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2967 sizeof XATTR_SECURITY_PREFIX - 1)) {
2968 if (!strcmp(name, XATTR_NAME_CAPS)) {
2969 if (!capable(CAP_SETFCAP))
2970 return -EPERM;
2971 } else if (!capable(CAP_SYS_ADMIN)) {
2972 /* A different attribute in the security namespace.
2973 Restrict to administrator. */
2974 return -EPERM;
2975 }
2976 }
2977
2978 /* Not an attribute we recognize, so just check the
2979 ordinary setattr permission. */
2980 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2981 }
2982
selinux_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2983 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2984 const void *value, size_t size, int flags)
2985 {
2986 struct inode *inode = d_backing_inode(dentry);
2987 struct inode_security_struct *isec = inode->i_security;
2988 struct superblock_security_struct *sbsec;
2989 struct common_audit_data ad;
2990 u32 newsid, sid = current_sid();
2991 int rc = 0;
2992
2993 if (strcmp(name, XATTR_NAME_SELINUX))
2994 return selinux_inode_setotherxattr(dentry, name);
2995
2996 sbsec = inode->i_sb->s_security;
2997 if (!(sbsec->flags & SBLABEL_MNT))
2998 return -EOPNOTSUPP;
2999
3000 if (!inode_owner_or_capable(inode))
3001 return -EPERM;
3002
3003 ad.type = LSM_AUDIT_DATA_DENTRY;
3004 ad.u.dentry = dentry;
3005
3006 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3007 FILE__RELABELFROM, &ad);
3008 if (rc)
3009 return rc;
3010
3011 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3012 if (rc == -EINVAL) {
3013 if (!capable(CAP_MAC_ADMIN)) {
3014 struct audit_buffer *ab;
3015 size_t audit_size;
3016 const char *str;
3017
3018 /* We strip a nul only if it is at the end, otherwise the
3019 * context contains a nul and we should audit that */
3020 if (value) {
3021 str = value;
3022 if (str[size - 1] == '\0')
3023 audit_size = size - 1;
3024 else
3025 audit_size = size;
3026 } else {
3027 str = "";
3028 audit_size = 0;
3029 }
3030 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3031 audit_log_format(ab, "op=setxattr invalid_context=");
3032 audit_log_n_untrustedstring(ab, value, audit_size);
3033 audit_log_end(ab);
3034
3035 return rc;
3036 }
3037 rc = security_context_to_sid_force(value, size, &newsid);
3038 }
3039 if (rc)
3040 return rc;
3041
3042 rc = avc_has_perm(sid, newsid, isec->sclass,
3043 FILE__RELABELTO, &ad);
3044 if (rc)
3045 return rc;
3046
3047 rc = security_validate_transition(isec->sid, newsid, sid,
3048 isec->sclass);
3049 if (rc)
3050 return rc;
3051
3052 return avc_has_perm(newsid,
3053 sbsec->sid,
3054 SECCLASS_FILESYSTEM,
3055 FILESYSTEM__ASSOCIATE,
3056 &ad);
3057 }
3058
selinux_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)3059 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3060 const void *value, size_t size,
3061 int flags)
3062 {
3063 struct inode *inode = d_backing_inode(dentry);
3064 struct inode_security_struct *isec = inode->i_security;
3065 u32 newsid;
3066 int rc;
3067
3068 if (strcmp(name, XATTR_NAME_SELINUX)) {
3069 /* Not an attribute we recognize, so nothing to do. */
3070 return;
3071 }
3072
3073 rc = security_context_to_sid_force(value, size, &newsid);
3074 if (rc) {
3075 printk(KERN_ERR "SELinux: unable to map context to SID"
3076 "for (%s, %lu), rc=%d\n",
3077 inode->i_sb->s_id, inode->i_ino, -rc);
3078 return;
3079 }
3080
3081 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3082 isec->sid = newsid;
3083 isec->initialized = 1;
3084
3085 return;
3086 }
3087
selinux_inode_getxattr(struct dentry * dentry,const char * name)3088 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3089 {
3090 const struct cred *cred = current_cred();
3091
3092 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3093 }
3094
selinux_inode_listxattr(struct dentry * dentry)3095 static int selinux_inode_listxattr(struct dentry *dentry)
3096 {
3097 const struct cred *cred = current_cred();
3098
3099 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3100 }
3101
selinux_inode_removexattr(struct dentry * dentry,const char * name)3102 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3103 {
3104 if (strcmp(name, XATTR_NAME_SELINUX))
3105 return selinux_inode_setotherxattr(dentry, name);
3106
3107 /* No one is allowed to remove a SELinux security label.
3108 You can change the label, but all data must be labeled. */
3109 return -EACCES;
3110 }
3111
3112 /*
3113 * Copy the inode security context value to the user.
3114 *
3115 * Permission check is handled by selinux_inode_getxattr hook.
3116 */
selinux_inode_getsecurity(const struct inode * inode,const char * name,void ** buffer,bool alloc)3117 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3118 {
3119 u32 size;
3120 int error;
3121 char *context = NULL;
3122 struct inode_security_struct *isec = inode->i_security;
3123
3124 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3125 return -EOPNOTSUPP;
3126
3127 /*
3128 * If the caller has CAP_MAC_ADMIN, then get the raw context
3129 * value even if it is not defined by current policy; otherwise,
3130 * use the in-core value under current policy.
3131 * Use the non-auditing forms of the permission checks since
3132 * getxattr may be called by unprivileged processes commonly
3133 * and lack of permission just means that we fall back to the
3134 * in-core context value, not a denial.
3135 */
3136 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3137 SECURITY_CAP_NOAUDIT);
3138 if (!error)
3139 error = security_sid_to_context_force(isec->sid, &context,
3140 &size);
3141 else
3142 error = security_sid_to_context(isec->sid, &context, &size);
3143 if (error)
3144 return error;
3145 error = size;
3146 if (alloc) {
3147 *buffer = context;
3148 goto out_nofree;
3149 }
3150 kfree(context);
3151 out_nofree:
3152 return error;
3153 }
3154
selinux_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)3155 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3156 const void *value, size_t size, int flags)
3157 {
3158 struct inode_security_struct *isec = inode->i_security;
3159 u32 newsid;
3160 int rc;
3161
3162 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3163 return -EOPNOTSUPP;
3164
3165 if (!value || !size)
3166 return -EACCES;
3167
3168 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3169 if (rc)
3170 return rc;
3171
3172 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3173 isec->sid = newsid;
3174 isec->initialized = 1;
3175 return 0;
3176 }
3177
selinux_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)3178 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3179 {
3180 const int len = sizeof(XATTR_NAME_SELINUX);
3181 if (buffer && len <= buffer_size)
3182 memcpy(buffer, XATTR_NAME_SELINUX, len);
3183 return len;
3184 }
3185
selinux_inode_getsecid(const struct inode * inode,u32 * secid)3186 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3187 {
3188 struct inode_security_struct *isec = inode->i_security;
3189 *secid = isec->sid;
3190 }
3191
3192 /* file security operations */
3193
selinux_revalidate_file_permission(struct file * file,int mask)3194 static int selinux_revalidate_file_permission(struct file *file, int mask)
3195 {
3196 const struct cred *cred = current_cred();
3197 struct inode *inode = file_inode(file);
3198
3199 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3200 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3201 mask |= MAY_APPEND;
3202
3203 return file_has_perm(cred, file,
3204 file_mask_to_av(inode->i_mode, mask));
3205 }
3206
selinux_file_permission(struct file * file,int mask)3207 static int selinux_file_permission(struct file *file, int mask)
3208 {
3209 struct inode *inode = file_inode(file);
3210 struct file_security_struct *fsec = file->f_security;
3211 struct inode_security_struct *isec = inode->i_security;
3212 u32 sid = current_sid();
3213
3214 if (!mask)
3215 /* No permission to check. Existence test. */
3216 return 0;
3217
3218 if (sid == fsec->sid && fsec->isid == isec->sid &&
3219 fsec->pseqno == avc_policy_seqno())
3220 /* No change since file_open check. */
3221 return 0;
3222
3223 return selinux_revalidate_file_permission(file, mask);
3224 }
3225
selinux_file_alloc_security(struct file * file)3226 static int selinux_file_alloc_security(struct file *file)
3227 {
3228 return file_alloc_security(file);
3229 }
3230
selinux_file_free_security(struct file * file)3231 static void selinux_file_free_security(struct file *file)
3232 {
3233 file_free_security(file);
3234 }
3235
selinux_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3236 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3237 unsigned long arg)
3238 {
3239 const struct cred *cred = current_cred();
3240 int error = 0;
3241
3242 switch (cmd) {
3243 case FIONREAD:
3244 /* fall through */
3245 case FIBMAP:
3246 /* fall through */
3247 case FIGETBSZ:
3248 /* fall through */
3249 case FS_IOC_GETFLAGS:
3250 /* fall through */
3251 case FS_IOC_GETVERSION:
3252 error = file_has_perm(cred, file, FILE__GETATTR);
3253 break;
3254
3255 case FS_IOC_SETFLAGS:
3256 /* fall through */
3257 case FS_IOC_SETVERSION:
3258 error = file_has_perm(cred, file, FILE__SETATTR);
3259 break;
3260
3261 /* sys_ioctl() checks */
3262 case FIONBIO:
3263 /* fall through */
3264 case FIOASYNC:
3265 error = file_has_perm(cred, file, 0);
3266 break;
3267
3268 case KDSKBENT:
3269 case KDSKBSENT:
3270 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3271 SECURITY_CAP_AUDIT);
3272 break;
3273
3274 /* default case assumes that the command will go
3275 * to the file's ioctl() function.
3276 */
3277 default:
3278 error = file_has_perm(cred, file, FILE__IOCTL);
3279 }
3280 return error;
3281 }
3282
3283 static int default_noexec;
3284
file_map_prot_check(struct file * file,unsigned long prot,int shared)3285 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3286 {
3287 const struct cred *cred = current_cred();
3288 int rc = 0;
3289
3290 if (default_noexec &&
3291 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3292 (!shared && (prot & PROT_WRITE)))) {
3293 /*
3294 * We are making executable an anonymous mapping or a
3295 * private file mapping that will also be writable.
3296 * This has an additional check.
3297 */
3298 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3299 if (rc)
3300 goto error;
3301 }
3302
3303 if (file) {
3304 /* read access is always possible with a mapping */
3305 u32 av = FILE__READ;
3306
3307 /* write access only matters if the mapping is shared */
3308 if (shared && (prot & PROT_WRITE))
3309 av |= FILE__WRITE;
3310
3311 if (prot & PROT_EXEC)
3312 av |= FILE__EXECUTE;
3313
3314 return file_has_perm(cred, file, av);
3315 }
3316
3317 error:
3318 return rc;
3319 }
3320
selinux_mmap_addr(unsigned long addr)3321 static int selinux_mmap_addr(unsigned long addr)
3322 {
3323 int rc;
3324
3325 /* do DAC check on address space usage */
3326 rc = cap_mmap_addr(addr);
3327 if (rc)
3328 return rc;
3329
3330 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3331 u32 sid = current_sid();
3332 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3333 MEMPROTECT__MMAP_ZERO, NULL);
3334 }
3335
3336 return rc;
3337 }
3338
selinux_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)3339 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3340 unsigned long prot, unsigned long flags)
3341 {
3342 if (selinux_checkreqprot)
3343 prot = reqprot;
3344
3345 return file_map_prot_check(file, prot,
3346 (flags & MAP_TYPE) == MAP_SHARED);
3347 }
3348
selinux_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)3349 static int selinux_file_mprotect(struct vm_area_struct *vma,
3350 unsigned long reqprot,
3351 unsigned long prot)
3352 {
3353 const struct cred *cred = current_cred();
3354
3355 if (selinux_checkreqprot)
3356 prot = reqprot;
3357
3358 if (default_noexec &&
3359 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3360 int rc = 0;
3361 if (vma->vm_start >= vma->vm_mm->start_brk &&
3362 vma->vm_end <= vma->vm_mm->brk) {
3363 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3364 } else if (!vma->vm_file &&
3365 vma->vm_start <= vma->vm_mm->start_stack &&
3366 vma->vm_end >= vma->vm_mm->start_stack) {
3367 rc = current_has_perm(current, PROCESS__EXECSTACK);
3368 } else if (vma->vm_file && vma->anon_vma) {
3369 /*
3370 * We are making executable a file mapping that has
3371 * had some COW done. Since pages might have been
3372 * written, check ability to execute the possibly
3373 * modified content. This typically should only
3374 * occur for text relocations.
3375 */
3376 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3377 }
3378 if (rc)
3379 return rc;
3380 }
3381
3382 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3383 }
3384
selinux_file_lock(struct file * file,unsigned int cmd)3385 static int selinux_file_lock(struct file *file, unsigned int cmd)
3386 {
3387 const struct cred *cred = current_cred();
3388
3389 return file_has_perm(cred, file, FILE__LOCK);
3390 }
3391
selinux_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3392 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3393 unsigned long arg)
3394 {
3395 const struct cred *cred = current_cred();
3396 int err = 0;
3397
3398 switch (cmd) {
3399 case F_SETFL:
3400 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3401 err = file_has_perm(cred, file, FILE__WRITE);
3402 break;
3403 }
3404 /* fall through */
3405 case F_SETOWN:
3406 case F_SETSIG:
3407 case F_GETFL:
3408 case F_GETOWN:
3409 case F_GETSIG:
3410 case F_GETOWNER_UIDS:
3411 /* Just check FD__USE permission */
3412 err = file_has_perm(cred, file, 0);
3413 break;
3414 case F_GETLK:
3415 case F_SETLK:
3416 case F_SETLKW:
3417 case F_OFD_GETLK:
3418 case F_OFD_SETLK:
3419 case F_OFD_SETLKW:
3420 #if BITS_PER_LONG == 32
3421 case F_GETLK64:
3422 case F_SETLK64:
3423 case F_SETLKW64:
3424 #endif
3425 err = file_has_perm(cred, file, FILE__LOCK);
3426 break;
3427 }
3428
3429 return err;
3430 }
3431
selinux_file_set_fowner(struct file * file)3432 static void selinux_file_set_fowner(struct file *file)
3433 {
3434 struct file_security_struct *fsec;
3435
3436 fsec = file->f_security;
3437 fsec->fown_sid = current_sid();
3438 }
3439
selinux_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int signum)3440 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3441 struct fown_struct *fown, int signum)
3442 {
3443 struct file *file;
3444 u32 sid = task_sid(tsk);
3445 u32 perm;
3446 struct file_security_struct *fsec;
3447
3448 /* struct fown_struct is never outside the context of a struct file */
3449 file = container_of(fown, struct file, f_owner);
3450
3451 fsec = file->f_security;
3452
3453 if (!signum)
3454 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3455 else
3456 perm = signal_to_av(signum);
3457
3458 return avc_has_perm(fsec->fown_sid, sid,
3459 SECCLASS_PROCESS, perm, NULL);
3460 }
3461
selinux_file_receive(struct file * file)3462 static int selinux_file_receive(struct file *file)
3463 {
3464 const struct cred *cred = current_cred();
3465
3466 return file_has_perm(cred, file, file_to_av(file));
3467 }
3468
selinux_file_open(struct file * file,const struct cred * cred)3469 static int selinux_file_open(struct file *file, const struct cred *cred)
3470 {
3471 struct file_security_struct *fsec;
3472 struct inode_security_struct *isec;
3473
3474 fsec = file->f_security;
3475 isec = file_inode(file)->i_security;
3476 /*
3477 * Save inode label and policy sequence number
3478 * at open-time so that selinux_file_permission
3479 * can determine whether revalidation is necessary.
3480 * Task label is already saved in the file security
3481 * struct as its SID.
3482 */
3483 fsec->isid = isec->sid;
3484 fsec->pseqno = avc_policy_seqno();
3485 /*
3486 * Since the inode label or policy seqno may have changed
3487 * between the selinux_inode_permission check and the saving
3488 * of state above, recheck that access is still permitted.
3489 * Otherwise, access might never be revalidated against the
3490 * new inode label or new policy.
3491 * This check is not redundant - do not remove.
3492 */
3493 return file_path_has_perm(cred, file, open_file_to_av(file));
3494 }
3495
3496 /* task security operations */
3497
selinux_task_create(unsigned long clone_flags)3498 static int selinux_task_create(unsigned long clone_flags)
3499 {
3500 return current_has_perm(current, PROCESS__FORK);
3501 }
3502
3503 /*
3504 * allocate the SELinux part of blank credentials
3505 */
selinux_cred_alloc_blank(struct cred * cred,gfp_t gfp)3506 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3507 {
3508 struct task_security_struct *tsec;
3509
3510 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3511 if (!tsec)
3512 return -ENOMEM;
3513
3514 cred->security = tsec;
3515 return 0;
3516 }
3517
3518 /*
3519 * detach and free the LSM part of a set of credentials
3520 */
selinux_cred_free(struct cred * cred)3521 static void selinux_cred_free(struct cred *cred)
3522 {
3523 struct task_security_struct *tsec = cred->security;
3524
3525 /*
3526 * cred->security == NULL if security_cred_alloc_blank() or
3527 * security_prepare_creds() returned an error.
3528 */
3529 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3530 cred->security = (void *) 0x7UL;
3531 kfree(tsec);
3532 }
3533
3534 /*
3535 * prepare a new set of credentials for modification
3536 */
selinux_cred_prepare(struct cred * new,const struct cred * old,gfp_t gfp)3537 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3538 gfp_t gfp)
3539 {
3540 const struct task_security_struct *old_tsec;
3541 struct task_security_struct *tsec;
3542
3543 old_tsec = old->security;
3544
3545 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3546 if (!tsec)
3547 return -ENOMEM;
3548
3549 new->security = tsec;
3550 return 0;
3551 }
3552
3553 /*
3554 * transfer the SELinux data to a blank set of creds
3555 */
selinux_cred_transfer(struct cred * new,const struct cred * old)3556 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3557 {
3558 const struct task_security_struct *old_tsec = old->security;
3559 struct task_security_struct *tsec = new->security;
3560
3561 *tsec = *old_tsec;
3562 }
3563
3564 /*
3565 * set the security data for a kernel service
3566 * - all the creation contexts are set to unlabelled
3567 */
selinux_kernel_act_as(struct cred * new,u32 secid)3568 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3569 {
3570 struct task_security_struct *tsec = new->security;
3571 u32 sid = current_sid();
3572 int ret;
3573
3574 ret = avc_has_perm(sid, secid,
3575 SECCLASS_KERNEL_SERVICE,
3576 KERNEL_SERVICE__USE_AS_OVERRIDE,
3577 NULL);
3578 if (ret == 0) {
3579 tsec->sid = secid;
3580 tsec->create_sid = 0;
3581 tsec->keycreate_sid = 0;
3582 tsec->sockcreate_sid = 0;
3583 }
3584 return ret;
3585 }
3586
3587 /*
3588 * set the file creation context in a security record to the same as the
3589 * objective context of the specified inode
3590 */
selinux_kernel_create_files_as(struct cred * new,struct inode * inode)3591 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3592 {
3593 struct inode_security_struct *isec = inode->i_security;
3594 struct task_security_struct *tsec = new->security;
3595 u32 sid = current_sid();
3596 int ret;
3597
3598 ret = avc_has_perm(sid, isec->sid,
3599 SECCLASS_KERNEL_SERVICE,
3600 KERNEL_SERVICE__CREATE_FILES_AS,
3601 NULL);
3602
3603 if (ret == 0)
3604 tsec->create_sid = isec->sid;
3605 return ret;
3606 }
3607
selinux_kernel_module_request(char * kmod_name)3608 static int selinux_kernel_module_request(char *kmod_name)
3609 {
3610 u32 sid;
3611 struct common_audit_data ad;
3612
3613 sid = task_sid(current);
3614
3615 ad.type = LSM_AUDIT_DATA_KMOD;
3616 ad.u.kmod_name = kmod_name;
3617
3618 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3619 SYSTEM__MODULE_REQUEST, &ad);
3620 }
3621
selinux_task_setpgid(struct task_struct * p,pid_t pgid)3622 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3623 {
3624 return current_has_perm(p, PROCESS__SETPGID);
3625 }
3626
selinux_task_getpgid(struct task_struct * p)3627 static int selinux_task_getpgid(struct task_struct *p)
3628 {
3629 return current_has_perm(p, PROCESS__GETPGID);
3630 }
3631
selinux_task_getsid(struct task_struct * p)3632 static int selinux_task_getsid(struct task_struct *p)
3633 {
3634 return current_has_perm(p, PROCESS__GETSESSION);
3635 }
3636
selinux_task_getsecid(struct task_struct * p,u32 * secid)3637 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3638 {
3639 *secid = task_sid(p);
3640 }
3641
selinux_task_setnice(struct task_struct * p,int nice)3642 static int selinux_task_setnice(struct task_struct *p, int nice)
3643 {
3644 int rc;
3645
3646 rc = cap_task_setnice(p, nice);
3647 if (rc)
3648 return rc;
3649
3650 return current_has_perm(p, PROCESS__SETSCHED);
3651 }
3652
selinux_task_setioprio(struct task_struct * p,int ioprio)3653 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3654 {
3655 int rc;
3656
3657 rc = cap_task_setioprio(p, ioprio);
3658 if (rc)
3659 return rc;
3660
3661 return current_has_perm(p, PROCESS__SETSCHED);
3662 }
3663
selinux_task_getioprio(struct task_struct * p)3664 static int selinux_task_getioprio(struct task_struct *p)
3665 {
3666 return current_has_perm(p, PROCESS__GETSCHED);
3667 }
3668
selinux_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)3669 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3670 struct rlimit *new_rlim)
3671 {
3672 struct rlimit *old_rlim = p->signal->rlim + resource;
3673
3674 /* Control the ability to change the hard limit (whether
3675 lowering or raising it), so that the hard limit can
3676 later be used as a safe reset point for the soft limit
3677 upon context transitions. See selinux_bprm_committing_creds. */
3678 if (old_rlim->rlim_max != new_rlim->rlim_max)
3679 return current_has_perm(p, PROCESS__SETRLIMIT);
3680
3681 return 0;
3682 }
3683
selinux_task_setscheduler(struct task_struct * p)3684 static int selinux_task_setscheduler(struct task_struct *p)
3685 {
3686 int rc;
3687
3688 rc = cap_task_setscheduler(p);
3689 if (rc)
3690 return rc;
3691
3692 return current_has_perm(p, PROCESS__SETSCHED);
3693 }
3694
selinux_task_getscheduler(struct task_struct * p)3695 static int selinux_task_getscheduler(struct task_struct *p)
3696 {
3697 return current_has_perm(p, PROCESS__GETSCHED);
3698 }
3699
selinux_task_movememory(struct task_struct * p)3700 static int selinux_task_movememory(struct task_struct *p)
3701 {
3702 return current_has_perm(p, PROCESS__SETSCHED);
3703 }
3704
selinux_task_kill(struct task_struct * p,struct siginfo * info,int sig,u32 secid)3705 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3706 int sig, u32 secid)
3707 {
3708 u32 perm;
3709 int rc;
3710
3711 if (!sig)
3712 perm = PROCESS__SIGNULL; /* null signal; existence test */
3713 else
3714 perm = signal_to_av(sig);
3715 if (secid)
3716 rc = avc_has_perm(secid, task_sid(p),
3717 SECCLASS_PROCESS, perm, NULL);
3718 else
3719 rc = current_has_perm(p, perm);
3720 return rc;
3721 }
3722
selinux_task_wait(struct task_struct * p)3723 static int selinux_task_wait(struct task_struct *p)
3724 {
3725 return task_has_perm(p, current, PROCESS__SIGCHLD);
3726 }
3727
selinux_task_to_inode(struct task_struct * p,struct inode * inode)3728 static void selinux_task_to_inode(struct task_struct *p,
3729 struct inode *inode)
3730 {
3731 struct inode_security_struct *isec = inode->i_security;
3732 u32 sid = task_sid(p);
3733
3734 isec->sid = sid;
3735 isec->initialized = 1;
3736 }
3737
3738 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv4(struct sk_buff * skb,struct common_audit_data * ad,u8 * proto)3739 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3740 struct common_audit_data *ad, u8 *proto)
3741 {
3742 int offset, ihlen, ret = -EINVAL;
3743 struct iphdr _iph, *ih;
3744
3745 offset = skb_network_offset(skb);
3746 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3747 if (ih == NULL)
3748 goto out;
3749
3750 ihlen = ih->ihl * 4;
3751 if (ihlen < sizeof(_iph))
3752 goto out;
3753
3754 ad->u.net->v4info.saddr = ih->saddr;
3755 ad->u.net->v4info.daddr = ih->daddr;
3756 ret = 0;
3757
3758 if (proto)
3759 *proto = ih->protocol;
3760
3761 switch (ih->protocol) {
3762 case IPPROTO_TCP: {
3763 struct tcphdr _tcph, *th;
3764
3765 if (ntohs(ih->frag_off) & IP_OFFSET)
3766 break;
3767
3768 offset += ihlen;
3769 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3770 if (th == NULL)
3771 break;
3772
3773 ad->u.net->sport = th->source;
3774 ad->u.net->dport = th->dest;
3775 break;
3776 }
3777
3778 case IPPROTO_UDP: {
3779 struct udphdr _udph, *uh;
3780
3781 if (ntohs(ih->frag_off) & IP_OFFSET)
3782 break;
3783
3784 offset += ihlen;
3785 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3786 if (uh == NULL)
3787 break;
3788
3789 ad->u.net->sport = uh->source;
3790 ad->u.net->dport = uh->dest;
3791 break;
3792 }
3793
3794 case IPPROTO_DCCP: {
3795 struct dccp_hdr _dccph, *dh;
3796
3797 if (ntohs(ih->frag_off) & IP_OFFSET)
3798 break;
3799
3800 offset += ihlen;
3801 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3802 if (dh == NULL)
3803 break;
3804
3805 ad->u.net->sport = dh->dccph_sport;
3806 ad->u.net->dport = dh->dccph_dport;
3807 break;
3808 }
3809
3810 default:
3811 break;
3812 }
3813 out:
3814 return ret;
3815 }
3816
3817 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3818
3819 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv6(struct sk_buff * skb,struct common_audit_data * ad,u8 * proto)3820 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3821 struct common_audit_data *ad, u8 *proto)
3822 {
3823 u8 nexthdr;
3824 int ret = -EINVAL, offset;
3825 struct ipv6hdr _ipv6h, *ip6;
3826 __be16 frag_off;
3827
3828 offset = skb_network_offset(skb);
3829 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3830 if (ip6 == NULL)
3831 goto out;
3832
3833 ad->u.net->v6info.saddr = ip6->saddr;
3834 ad->u.net->v6info.daddr = ip6->daddr;
3835 ret = 0;
3836
3837 nexthdr = ip6->nexthdr;
3838 offset += sizeof(_ipv6h);
3839 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3840 if (offset < 0)
3841 goto out;
3842
3843 if (proto)
3844 *proto = nexthdr;
3845
3846 switch (nexthdr) {
3847 case IPPROTO_TCP: {
3848 struct tcphdr _tcph, *th;
3849
3850 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3851 if (th == NULL)
3852 break;
3853
3854 ad->u.net->sport = th->source;
3855 ad->u.net->dport = th->dest;
3856 break;
3857 }
3858
3859 case IPPROTO_UDP: {
3860 struct udphdr _udph, *uh;
3861
3862 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3863 if (uh == NULL)
3864 break;
3865
3866 ad->u.net->sport = uh->source;
3867 ad->u.net->dport = uh->dest;
3868 break;
3869 }
3870
3871 case IPPROTO_DCCP: {
3872 struct dccp_hdr _dccph, *dh;
3873
3874 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3875 if (dh == NULL)
3876 break;
3877
3878 ad->u.net->sport = dh->dccph_sport;
3879 ad->u.net->dport = dh->dccph_dport;
3880 break;
3881 }
3882
3883 /* includes fragments */
3884 default:
3885 break;
3886 }
3887 out:
3888 return ret;
3889 }
3890
3891 #endif /* IPV6 */
3892
selinux_parse_skb(struct sk_buff * skb,struct common_audit_data * ad,char ** _addrp,int src,u8 * proto)3893 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3894 char **_addrp, int src, u8 *proto)
3895 {
3896 char *addrp;
3897 int ret;
3898
3899 switch (ad->u.net->family) {
3900 case PF_INET:
3901 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3902 if (ret)
3903 goto parse_error;
3904 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3905 &ad->u.net->v4info.daddr);
3906 goto okay;
3907
3908 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3909 case PF_INET6:
3910 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3911 if (ret)
3912 goto parse_error;
3913 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3914 &ad->u.net->v6info.daddr);
3915 goto okay;
3916 #endif /* IPV6 */
3917 default:
3918 addrp = NULL;
3919 goto okay;
3920 }
3921
3922 parse_error:
3923 printk(KERN_WARNING
3924 "SELinux: failure in selinux_parse_skb(),"
3925 " unable to parse packet\n");
3926 return ret;
3927
3928 okay:
3929 if (_addrp)
3930 *_addrp = addrp;
3931 return 0;
3932 }
3933
3934 /**
3935 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3936 * @skb: the packet
3937 * @family: protocol family
3938 * @sid: the packet's peer label SID
3939 *
3940 * Description:
3941 * Check the various different forms of network peer labeling and determine
3942 * the peer label/SID for the packet; most of the magic actually occurs in
3943 * the security server function security_net_peersid_cmp(). The function
3944 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3945 * or -EACCES if @sid is invalid due to inconsistencies with the different
3946 * peer labels.
3947 *
3948 */
selinux_skb_peerlbl_sid(struct sk_buff * skb,u16 family,u32 * sid)3949 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3950 {
3951 int err;
3952 u32 xfrm_sid;
3953 u32 nlbl_sid;
3954 u32 nlbl_type;
3955
3956 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3957 if (unlikely(err))
3958 return -EACCES;
3959 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3960 if (unlikely(err))
3961 return -EACCES;
3962
3963 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3964 if (unlikely(err)) {
3965 printk(KERN_WARNING
3966 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3967 " unable to determine packet's peer label\n");
3968 return -EACCES;
3969 }
3970
3971 return 0;
3972 }
3973
3974 /**
3975 * selinux_conn_sid - Determine the child socket label for a connection
3976 * @sk_sid: the parent socket's SID
3977 * @skb_sid: the packet's SID
3978 * @conn_sid: the resulting connection SID
3979 *
3980 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3981 * combined with the MLS information from @skb_sid in order to create
3982 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3983 * of @sk_sid. Returns zero on success, negative values on failure.
3984 *
3985 */
selinux_conn_sid(u32 sk_sid,u32 skb_sid,u32 * conn_sid)3986 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3987 {
3988 int err = 0;
3989
3990 if (skb_sid != SECSID_NULL)
3991 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3992 else
3993 *conn_sid = sk_sid;
3994
3995 return err;
3996 }
3997
3998 /* socket security operations */
3999
socket_sockcreate_sid(const struct task_security_struct * tsec,u16 secclass,u32 * socksid)4000 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4001 u16 secclass, u32 *socksid)
4002 {
4003 if (tsec->sockcreate_sid > SECSID_NULL) {
4004 *socksid = tsec->sockcreate_sid;
4005 return 0;
4006 }
4007
4008 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4009 socksid);
4010 }
4011
sock_has_perm(struct task_struct * task,struct sock * sk,u32 perms)4012 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4013 {
4014 struct sk_security_struct *sksec = sk->sk_security;
4015 struct common_audit_data ad;
4016 struct lsm_network_audit net = {0,};
4017 u32 tsid = task_sid(task);
4018
4019 if (sksec->sid == SECINITSID_KERNEL)
4020 return 0;
4021
4022 ad.type = LSM_AUDIT_DATA_NET;
4023 ad.u.net = &net;
4024 ad.u.net->sk = sk;
4025
4026 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4027 }
4028
selinux_socket_create(int family,int type,int protocol,int kern)4029 static int selinux_socket_create(int family, int type,
4030 int protocol, int kern)
4031 {
4032 const struct task_security_struct *tsec = current_security();
4033 u32 newsid;
4034 u16 secclass;
4035 int rc;
4036
4037 if (kern)
4038 return 0;
4039
4040 secclass = socket_type_to_security_class(family, type, protocol);
4041 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4042 if (rc)
4043 return rc;
4044
4045 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4046 }
4047
selinux_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4048 static int selinux_socket_post_create(struct socket *sock, int family,
4049 int type, int protocol, int kern)
4050 {
4051 const struct task_security_struct *tsec = current_security();
4052 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4053 struct sk_security_struct *sksec;
4054 int err = 0;
4055
4056 isec->sclass = socket_type_to_security_class(family, type, protocol);
4057
4058 if (kern)
4059 isec->sid = SECINITSID_KERNEL;
4060 else {
4061 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4062 if (err)
4063 return err;
4064 }
4065
4066 isec->initialized = 1;
4067
4068 if (sock->sk) {
4069 sksec = sock->sk->sk_security;
4070 sksec->sid = isec->sid;
4071 sksec->sclass = isec->sclass;
4072 err = selinux_netlbl_socket_post_create(sock->sk, family);
4073 }
4074
4075 return err;
4076 }
4077
4078 /* Range of port numbers used to automatically bind.
4079 Need to determine whether we should perform a name_bind
4080 permission check between the socket and the port number. */
4081
selinux_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4082 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4083 {
4084 struct sock *sk = sock->sk;
4085 u16 family;
4086 int err;
4087
4088 err = sock_has_perm(current, sk, SOCKET__BIND);
4089 if (err)
4090 goto out;
4091
4092 /*
4093 * If PF_INET or PF_INET6, check name_bind permission for the port.
4094 * Multiple address binding for SCTP is not supported yet: we just
4095 * check the first address now.
4096 */
4097 family = sk->sk_family;
4098 if (family == PF_INET || family == PF_INET6) {
4099 char *addrp;
4100 struct sk_security_struct *sksec = sk->sk_security;
4101 struct common_audit_data ad;
4102 struct lsm_network_audit net = {0,};
4103 struct sockaddr_in *addr4 = NULL;
4104 struct sockaddr_in6 *addr6 = NULL;
4105 unsigned short snum;
4106 u32 sid, node_perm;
4107
4108 if (family == PF_INET) {
4109 addr4 = (struct sockaddr_in *)address;
4110 snum = ntohs(addr4->sin_port);
4111 addrp = (char *)&addr4->sin_addr.s_addr;
4112 } else {
4113 addr6 = (struct sockaddr_in6 *)address;
4114 snum = ntohs(addr6->sin6_port);
4115 addrp = (char *)&addr6->sin6_addr.s6_addr;
4116 }
4117
4118 if (snum) {
4119 int low, high;
4120
4121 inet_get_local_port_range(sock_net(sk), &low, &high);
4122
4123 if (snum < max(PROT_SOCK, low) || snum > high) {
4124 err = sel_netport_sid(sk->sk_protocol,
4125 snum, &sid);
4126 if (err)
4127 goto out;
4128 ad.type = LSM_AUDIT_DATA_NET;
4129 ad.u.net = &net;
4130 ad.u.net->sport = htons(snum);
4131 ad.u.net->family = family;
4132 err = avc_has_perm(sksec->sid, sid,
4133 sksec->sclass,
4134 SOCKET__NAME_BIND, &ad);
4135 if (err)
4136 goto out;
4137 }
4138 }
4139
4140 switch (sksec->sclass) {
4141 case SECCLASS_TCP_SOCKET:
4142 node_perm = TCP_SOCKET__NODE_BIND;
4143 break;
4144
4145 case SECCLASS_UDP_SOCKET:
4146 node_perm = UDP_SOCKET__NODE_BIND;
4147 break;
4148
4149 case SECCLASS_DCCP_SOCKET:
4150 node_perm = DCCP_SOCKET__NODE_BIND;
4151 break;
4152
4153 default:
4154 node_perm = RAWIP_SOCKET__NODE_BIND;
4155 break;
4156 }
4157
4158 err = sel_netnode_sid(addrp, family, &sid);
4159 if (err)
4160 goto out;
4161
4162 ad.type = LSM_AUDIT_DATA_NET;
4163 ad.u.net = &net;
4164 ad.u.net->sport = htons(snum);
4165 ad.u.net->family = family;
4166
4167 if (family == PF_INET)
4168 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4169 else
4170 ad.u.net->v6info.saddr = addr6->sin6_addr;
4171
4172 err = avc_has_perm(sksec->sid, sid,
4173 sksec->sclass, node_perm, &ad);
4174 if (err)
4175 goto out;
4176 }
4177 out:
4178 return err;
4179 }
4180
selinux_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4181 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4182 {
4183 struct sock *sk = sock->sk;
4184 struct sk_security_struct *sksec = sk->sk_security;
4185 int err;
4186
4187 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4188 if (err)
4189 return err;
4190
4191 /*
4192 * If a TCP or DCCP socket, check name_connect permission for the port.
4193 */
4194 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4195 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4196 struct common_audit_data ad;
4197 struct lsm_network_audit net = {0,};
4198 struct sockaddr_in *addr4 = NULL;
4199 struct sockaddr_in6 *addr6 = NULL;
4200 unsigned short snum;
4201 u32 sid, perm;
4202
4203 if (sk->sk_family == PF_INET) {
4204 addr4 = (struct sockaddr_in *)address;
4205 if (addrlen < sizeof(struct sockaddr_in))
4206 return -EINVAL;
4207 snum = ntohs(addr4->sin_port);
4208 } else {
4209 addr6 = (struct sockaddr_in6 *)address;
4210 if (addrlen < SIN6_LEN_RFC2133)
4211 return -EINVAL;
4212 snum = ntohs(addr6->sin6_port);
4213 }
4214
4215 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4216 if (err)
4217 goto out;
4218
4219 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4220 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4221
4222 ad.type = LSM_AUDIT_DATA_NET;
4223 ad.u.net = &net;
4224 ad.u.net->dport = htons(snum);
4225 ad.u.net->family = sk->sk_family;
4226 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4227 if (err)
4228 goto out;
4229 }
4230
4231 err = selinux_netlbl_socket_connect(sk, address);
4232
4233 out:
4234 return err;
4235 }
4236
selinux_socket_listen(struct socket * sock,int backlog)4237 static int selinux_socket_listen(struct socket *sock, int backlog)
4238 {
4239 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4240 }
4241
selinux_socket_accept(struct socket * sock,struct socket * newsock)4242 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4243 {
4244 int err;
4245 struct inode_security_struct *isec;
4246 struct inode_security_struct *newisec;
4247
4248 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4249 if (err)
4250 return err;
4251
4252 newisec = SOCK_INODE(newsock)->i_security;
4253
4254 isec = SOCK_INODE(sock)->i_security;
4255 newisec->sclass = isec->sclass;
4256 newisec->sid = isec->sid;
4257 newisec->initialized = 1;
4258
4259 return 0;
4260 }
4261
selinux_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4262 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4263 int size)
4264 {
4265 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4266 }
4267
selinux_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4268 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4269 int size, int flags)
4270 {
4271 return sock_has_perm(current, sock->sk, SOCKET__READ);
4272 }
4273
selinux_socket_getsockname(struct socket * sock)4274 static int selinux_socket_getsockname(struct socket *sock)
4275 {
4276 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4277 }
4278
selinux_socket_getpeername(struct socket * sock)4279 static int selinux_socket_getpeername(struct socket *sock)
4280 {
4281 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4282 }
4283
selinux_socket_setsockopt(struct socket * sock,int level,int optname)4284 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4285 {
4286 int err;
4287
4288 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4289 if (err)
4290 return err;
4291
4292 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4293 }
4294
selinux_socket_getsockopt(struct socket * sock,int level,int optname)4295 static int selinux_socket_getsockopt(struct socket *sock, int level,
4296 int optname)
4297 {
4298 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4299 }
4300
selinux_socket_shutdown(struct socket * sock,int how)4301 static int selinux_socket_shutdown(struct socket *sock, int how)
4302 {
4303 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4304 }
4305
selinux_socket_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4306 static int selinux_socket_unix_stream_connect(struct sock *sock,
4307 struct sock *other,
4308 struct sock *newsk)
4309 {
4310 struct sk_security_struct *sksec_sock = sock->sk_security;
4311 struct sk_security_struct *sksec_other = other->sk_security;
4312 struct sk_security_struct *sksec_new = newsk->sk_security;
4313 struct common_audit_data ad;
4314 struct lsm_network_audit net = {0,};
4315 int err;
4316
4317 ad.type = LSM_AUDIT_DATA_NET;
4318 ad.u.net = &net;
4319 ad.u.net->sk = other;
4320
4321 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4322 sksec_other->sclass,
4323 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4324 if (err)
4325 return err;
4326
4327 /* server child socket */
4328 sksec_new->peer_sid = sksec_sock->sid;
4329 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4330 &sksec_new->sid);
4331 if (err)
4332 return err;
4333
4334 /* connecting socket */
4335 sksec_sock->peer_sid = sksec_new->sid;
4336
4337 return 0;
4338 }
4339
selinux_socket_unix_may_send(struct socket * sock,struct socket * other)4340 static int selinux_socket_unix_may_send(struct socket *sock,
4341 struct socket *other)
4342 {
4343 struct sk_security_struct *ssec = sock->sk->sk_security;
4344 struct sk_security_struct *osec = other->sk->sk_security;
4345 struct common_audit_data ad;
4346 struct lsm_network_audit net = {0,};
4347
4348 ad.type = LSM_AUDIT_DATA_NET;
4349 ad.u.net = &net;
4350 ad.u.net->sk = other->sk;
4351
4352 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4353 &ad);
4354 }
4355
selinux_inet_sys_rcv_skb(struct net * ns,int ifindex,char * addrp,u16 family,u32 peer_sid,struct common_audit_data * ad)4356 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4357 char *addrp, u16 family, u32 peer_sid,
4358 struct common_audit_data *ad)
4359 {
4360 int err;
4361 u32 if_sid;
4362 u32 node_sid;
4363
4364 err = sel_netif_sid(ns, ifindex, &if_sid);
4365 if (err)
4366 return err;
4367 err = avc_has_perm(peer_sid, if_sid,
4368 SECCLASS_NETIF, NETIF__INGRESS, ad);
4369 if (err)
4370 return err;
4371
4372 err = sel_netnode_sid(addrp, family, &node_sid);
4373 if (err)
4374 return err;
4375 return avc_has_perm(peer_sid, node_sid,
4376 SECCLASS_NODE, NODE__RECVFROM, ad);
4377 }
4378
selinux_sock_rcv_skb_compat(struct sock * sk,struct sk_buff * skb,u16 family)4379 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4380 u16 family)
4381 {
4382 int err = 0;
4383 struct sk_security_struct *sksec = sk->sk_security;
4384 u32 sk_sid = sksec->sid;
4385 struct common_audit_data ad;
4386 struct lsm_network_audit net = {0,};
4387 char *addrp;
4388
4389 ad.type = LSM_AUDIT_DATA_NET;
4390 ad.u.net = &net;
4391 ad.u.net->netif = skb->skb_iif;
4392 ad.u.net->family = family;
4393 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4394 if (err)
4395 return err;
4396
4397 if (selinux_secmark_enabled()) {
4398 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4399 PACKET__RECV, &ad);
4400 if (err)
4401 return err;
4402 }
4403
4404 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4405 if (err)
4406 return err;
4407 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4408
4409 return err;
4410 }
4411
selinux_socket_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4412 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4413 {
4414 int err;
4415 struct sk_security_struct *sksec = sk->sk_security;
4416 u16 family = sk->sk_family;
4417 u32 sk_sid = sksec->sid;
4418 struct common_audit_data ad;
4419 struct lsm_network_audit net = {0,};
4420 char *addrp;
4421 u8 secmark_active;
4422 u8 peerlbl_active;
4423
4424 if (family != PF_INET && family != PF_INET6)
4425 return 0;
4426
4427 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4428 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4429 family = PF_INET;
4430
4431 /* If any sort of compatibility mode is enabled then handoff processing
4432 * to the selinux_sock_rcv_skb_compat() function to deal with the
4433 * special handling. We do this in an attempt to keep this function
4434 * as fast and as clean as possible. */
4435 if (!selinux_policycap_netpeer)
4436 return selinux_sock_rcv_skb_compat(sk, skb, family);
4437
4438 secmark_active = selinux_secmark_enabled();
4439 peerlbl_active = selinux_peerlbl_enabled();
4440 if (!secmark_active && !peerlbl_active)
4441 return 0;
4442
4443 ad.type = LSM_AUDIT_DATA_NET;
4444 ad.u.net = &net;
4445 ad.u.net->netif = skb->skb_iif;
4446 ad.u.net->family = family;
4447 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4448 if (err)
4449 return err;
4450
4451 if (peerlbl_active) {
4452 u32 peer_sid;
4453
4454 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4455 if (err)
4456 return err;
4457 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4458 addrp, family, peer_sid, &ad);
4459 if (err) {
4460 selinux_netlbl_err(skb, err, 0);
4461 return err;
4462 }
4463 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4464 PEER__RECV, &ad);
4465 if (err) {
4466 selinux_netlbl_err(skb, err, 0);
4467 return err;
4468 }
4469 }
4470
4471 if (secmark_active) {
4472 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4473 PACKET__RECV, &ad);
4474 if (err)
4475 return err;
4476 }
4477
4478 return err;
4479 }
4480
selinux_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)4481 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4482 int __user *optlen, unsigned len)
4483 {
4484 int err = 0;
4485 char *scontext;
4486 u32 scontext_len;
4487 struct sk_security_struct *sksec = sock->sk->sk_security;
4488 u32 peer_sid = SECSID_NULL;
4489
4490 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4491 sksec->sclass == SECCLASS_TCP_SOCKET)
4492 peer_sid = sksec->peer_sid;
4493 if (peer_sid == SECSID_NULL)
4494 return -ENOPROTOOPT;
4495
4496 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4497 if (err)
4498 return err;
4499
4500 if (scontext_len > len) {
4501 err = -ERANGE;
4502 goto out_len;
4503 }
4504
4505 if (copy_to_user(optval, scontext, scontext_len))
4506 err = -EFAULT;
4507
4508 out_len:
4509 if (put_user(scontext_len, optlen))
4510 err = -EFAULT;
4511 kfree(scontext);
4512 return err;
4513 }
4514
selinux_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4515 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4516 {
4517 u32 peer_secid = SECSID_NULL;
4518 u16 family;
4519
4520 if (skb && skb->protocol == htons(ETH_P_IP))
4521 family = PF_INET;
4522 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4523 family = PF_INET6;
4524 else if (sock)
4525 family = sock->sk->sk_family;
4526 else
4527 goto out;
4528
4529 if (sock && family == PF_UNIX)
4530 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4531 else if (skb)
4532 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4533
4534 out:
4535 *secid = peer_secid;
4536 if (peer_secid == SECSID_NULL)
4537 return -EINVAL;
4538 return 0;
4539 }
4540
selinux_sk_alloc_security(struct sock * sk,int family,gfp_t priority)4541 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4542 {
4543 struct sk_security_struct *sksec;
4544
4545 sksec = kzalloc(sizeof(*sksec), priority);
4546 if (!sksec)
4547 return -ENOMEM;
4548
4549 sksec->peer_sid = SECINITSID_UNLABELED;
4550 sksec->sid = SECINITSID_UNLABELED;
4551 selinux_netlbl_sk_security_reset(sksec);
4552 sk->sk_security = sksec;
4553
4554 return 0;
4555 }
4556
selinux_sk_free_security(struct sock * sk)4557 static void selinux_sk_free_security(struct sock *sk)
4558 {
4559 struct sk_security_struct *sksec = sk->sk_security;
4560
4561 sk->sk_security = NULL;
4562 selinux_netlbl_sk_security_free(sksec);
4563 kfree(sksec);
4564 }
4565
selinux_sk_clone_security(const struct sock * sk,struct sock * newsk)4566 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4567 {
4568 struct sk_security_struct *sksec = sk->sk_security;
4569 struct sk_security_struct *newsksec = newsk->sk_security;
4570
4571 newsksec->sid = sksec->sid;
4572 newsksec->peer_sid = sksec->peer_sid;
4573 newsksec->sclass = sksec->sclass;
4574
4575 selinux_netlbl_sk_security_reset(newsksec);
4576 }
4577
selinux_sk_getsecid(struct sock * sk,u32 * secid)4578 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4579 {
4580 if (!sk)
4581 *secid = SECINITSID_ANY_SOCKET;
4582 else {
4583 struct sk_security_struct *sksec = sk->sk_security;
4584
4585 *secid = sksec->sid;
4586 }
4587 }
4588
selinux_sock_graft(struct sock * sk,struct socket * parent)4589 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4590 {
4591 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4592 struct sk_security_struct *sksec = sk->sk_security;
4593
4594 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4595 sk->sk_family == PF_UNIX)
4596 isec->sid = sksec->sid;
4597 sksec->sclass = isec->sclass;
4598 }
4599
selinux_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)4600 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4601 struct request_sock *req)
4602 {
4603 struct sk_security_struct *sksec = sk->sk_security;
4604 int err;
4605 u16 family = req->rsk_ops->family;
4606 u32 connsid;
4607 u32 peersid;
4608
4609 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4610 if (err)
4611 return err;
4612 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4613 if (err)
4614 return err;
4615 req->secid = connsid;
4616 req->peer_secid = peersid;
4617
4618 return selinux_netlbl_inet_conn_request(req, family);
4619 }
4620
selinux_inet_csk_clone(struct sock * newsk,const struct request_sock * req)4621 static void selinux_inet_csk_clone(struct sock *newsk,
4622 const struct request_sock *req)
4623 {
4624 struct sk_security_struct *newsksec = newsk->sk_security;
4625
4626 newsksec->sid = req->secid;
4627 newsksec->peer_sid = req->peer_secid;
4628 /* NOTE: Ideally, we should also get the isec->sid for the
4629 new socket in sync, but we don't have the isec available yet.
4630 So we will wait until sock_graft to do it, by which
4631 time it will have been created and available. */
4632
4633 /* We don't need to take any sort of lock here as we are the only
4634 * thread with access to newsksec */
4635 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4636 }
4637
selinux_inet_conn_established(struct sock * sk,struct sk_buff * skb)4638 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4639 {
4640 u16 family = sk->sk_family;
4641 struct sk_security_struct *sksec = sk->sk_security;
4642
4643 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4644 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4645 family = PF_INET;
4646
4647 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4648 }
4649
selinux_secmark_relabel_packet(u32 sid)4650 static int selinux_secmark_relabel_packet(u32 sid)
4651 {
4652 const struct task_security_struct *__tsec;
4653 u32 tsid;
4654
4655 __tsec = current_security();
4656 tsid = __tsec->sid;
4657
4658 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4659 }
4660
selinux_secmark_refcount_inc(void)4661 static void selinux_secmark_refcount_inc(void)
4662 {
4663 atomic_inc(&selinux_secmark_refcount);
4664 }
4665
selinux_secmark_refcount_dec(void)4666 static void selinux_secmark_refcount_dec(void)
4667 {
4668 atomic_dec(&selinux_secmark_refcount);
4669 }
4670
selinux_req_classify_flow(const struct request_sock * req,struct flowi * fl)4671 static void selinux_req_classify_flow(const struct request_sock *req,
4672 struct flowi *fl)
4673 {
4674 fl->flowi_secid = req->secid;
4675 }
4676
selinux_tun_dev_alloc_security(void ** security)4677 static int selinux_tun_dev_alloc_security(void **security)
4678 {
4679 struct tun_security_struct *tunsec;
4680
4681 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4682 if (!tunsec)
4683 return -ENOMEM;
4684 tunsec->sid = current_sid();
4685
4686 *security = tunsec;
4687 return 0;
4688 }
4689
selinux_tun_dev_free_security(void * security)4690 static void selinux_tun_dev_free_security(void *security)
4691 {
4692 kfree(security);
4693 }
4694
selinux_tun_dev_create(void)4695 static int selinux_tun_dev_create(void)
4696 {
4697 u32 sid = current_sid();
4698
4699 /* we aren't taking into account the "sockcreate" SID since the socket
4700 * that is being created here is not a socket in the traditional sense,
4701 * instead it is a private sock, accessible only to the kernel, and
4702 * representing a wide range of network traffic spanning multiple
4703 * connections unlike traditional sockets - check the TUN driver to
4704 * get a better understanding of why this socket is special */
4705
4706 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4707 NULL);
4708 }
4709
selinux_tun_dev_attach_queue(void * security)4710 static int selinux_tun_dev_attach_queue(void *security)
4711 {
4712 struct tun_security_struct *tunsec = security;
4713
4714 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4715 TUN_SOCKET__ATTACH_QUEUE, NULL);
4716 }
4717
selinux_tun_dev_attach(struct sock * sk,void * security)4718 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4719 {
4720 struct tun_security_struct *tunsec = security;
4721 struct sk_security_struct *sksec = sk->sk_security;
4722
4723 /* we don't currently perform any NetLabel based labeling here and it
4724 * isn't clear that we would want to do so anyway; while we could apply
4725 * labeling without the support of the TUN user the resulting labeled
4726 * traffic from the other end of the connection would almost certainly
4727 * cause confusion to the TUN user that had no idea network labeling
4728 * protocols were being used */
4729
4730 sksec->sid = tunsec->sid;
4731 sksec->sclass = SECCLASS_TUN_SOCKET;
4732
4733 return 0;
4734 }
4735
selinux_tun_dev_open(void * security)4736 static int selinux_tun_dev_open(void *security)
4737 {
4738 struct tun_security_struct *tunsec = security;
4739 u32 sid = current_sid();
4740 int err;
4741
4742 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4743 TUN_SOCKET__RELABELFROM, NULL);
4744 if (err)
4745 return err;
4746 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4747 TUN_SOCKET__RELABELTO, NULL);
4748 if (err)
4749 return err;
4750 tunsec->sid = sid;
4751
4752 return 0;
4753 }
4754
selinux_nlmsg_perm(struct sock * sk,struct sk_buff * skb)4755 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4756 {
4757 int err = 0;
4758 u32 perm;
4759 struct nlmsghdr *nlh;
4760 struct sk_security_struct *sksec = sk->sk_security;
4761
4762 if (skb->len < NLMSG_HDRLEN) {
4763 err = -EINVAL;
4764 goto out;
4765 }
4766 nlh = nlmsg_hdr(skb);
4767
4768 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4769 if (err) {
4770 if (err == -EINVAL) {
4771 printk(KERN_WARNING
4772 "SELinux: unrecognized netlink message:"
4773 " protocol=%hu nlmsg_type=%hu sclass=%hu\n",
4774 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass);
4775 if (!selinux_enforcing || security_get_allow_unknown())
4776 err = 0;
4777 }
4778
4779 /* Ignore */
4780 if (err == -ENOENT)
4781 err = 0;
4782 goto out;
4783 }
4784
4785 err = sock_has_perm(current, sk, perm);
4786 out:
4787 return err;
4788 }
4789
4790 #ifdef CONFIG_NETFILTER
4791
selinux_ip_forward(struct sk_buff * skb,const struct net_device * indev,u16 family)4792 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4793 const struct net_device *indev,
4794 u16 family)
4795 {
4796 int err;
4797 char *addrp;
4798 u32 peer_sid;
4799 struct common_audit_data ad;
4800 struct lsm_network_audit net = {0,};
4801 u8 secmark_active;
4802 u8 netlbl_active;
4803 u8 peerlbl_active;
4804
4805 if (!selinux_policycap_netpeer)
4806 return NF_ACCEPT;
4807
4808 secmark_active = selinux_secmark_enabled();
4809 netlbl_active = netlbl_enabled();
4810 peerlbl_active = selinux_peerlbl_enabled();
4811 if (!secmark_active && !peerlbl_active)
4812 return NF_ACCEPT;
4813
4814 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4815 return NF_DROP;
4816
4817 ad.type = LSM_AUDIT_DATA_NET;
4818 ad.u.net = &net;
4819 ad.u.net->netif = indev->ifindex;
4820 ad.u.net->family = family;
4821 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4822 return NF_DROP;
4823
4824 if (peerlbl_active) {
4825 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4826 addrp, family, peer_sid, &ad);
4827 if (err) {
4828 selinux_netlbl_err(skb, err, 1);
4829 return NF_DROP;
4830 }
4831 }
4832
4833 if (secmark_active)
4834 if (avc_has_perm(peer_sid, skb->secmark,
4835 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4836 return NF_DROP;
4837
4838 if (netlbl_active)
4839 /* we do this in the FORWARD path and not the POST_ROUTING
4840 * path because we want to make sure we apply the necessary
4841 * labeling before IPsec is applied so we can leverage AH
4842 * protection */
4843 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4844 return NF_DROP;
4845
4846 return NF_ACCEPT;
4847 }
4848
selinux_ipv4_forward(const struct nf_hook_ops * ops,struct sk_buff * skb,const struct nf_hook_state * state)4849 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4850 struct sk_buff *skb,
4851 const struct nf_hook_state *state)
4852 {
4853 return selinux_ip_forward(skb, state->in, PF_INET);
4854 }
4855
4856 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
selinux_ipv6_forward(const struct nf_hook_ops * ops,struct sk_buff * skb,const struct nf_hook_state * state)4857 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4858 struct sk_buff *skb,
4859 const struct nf_hook_state *state)
4860 {
4861 return selinux_ip_forward(skb, state->in, PF_INET6);
4862 }
4863 #endif /* IPV6 */
4864
selinux_ip_output(struct sk_buff * skb,u16 family)4865 static unsigned int selinux_ip_output(struct sk_buff *skb,
4866 u16 family)
4867 {
4868 struct sock *sk;
4869 u32 sid;
4870
4871 if (!netlbl_enabled())
4872 return NF_ACCEPT;
4873
4874 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4875 * because we want to make sure we apply the necessary labeling
4876 * before IPsec is applied so we can leverage AH protection */
4877 sk = skb->sk;
4878 if (sk) {
4879 struct sk_security_struct *sksec;
4880
4881 if (sk->sk_state == TCP_LISTEN)
4882 /* if the socket is the listening state then this
4883 * packet is a SYN-ACK packet which means it needs to
4884 * be labeled based on the connection/request_sock and
4885 * not the parent socket. unfortunately, we can't
4886 * lookup the request_sock yet as it isn't queued on
4887 * the parent socket until after the SYN-ACK is sent.
4888 * the "solution" is to simply pass the packet as-is
4889 * as any IP option based labeling should be copied
4890 * from the initial connection request (in the IP
4891 * layer). it is far from ideal, but until we get a
4892 * security label in the packet itself this is the
4893 * best we can do. */
4894 return NF_ACCEPT;
4895
4896 /* standard practice, label using the parent socket */
4897 sksec = sk->sk_security;
4898 sid = sksec->sid;
4899 } else
4900 sid = SECINITSID_KERNEL;
4901 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4902 return NF_DROP;
4903
4904 return NF_ACCEPT;
4905 }
4906
selinux_ipv4_output(const struct nf_hook_ops * ops,struct sk_buff * skb,const struct nf_hook_state * state)4907 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4908 struct sk_buff *skb,
4909 const struct nf_hook_state *state)
4910 {
4911 return selinux_ip_output(skb, PF_INET);
4912 }
4913
selinux_ip_postroute_compat(struct sk_buff * skb,int ifindex,u16 family)4914 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4915 int ifindex,
4916 u16 family)
4917 {
4918 struct sock *sk = skb->sk;
4919 struct sk_security_struct *sksec;
4920 struct common_audit_data ad;
4921 struct lsm_network_audit net = {0,};
4922 char *addrp;
4923 u8 proto;
4924
4925 if (sk == NULL)
4926 return NF_ACCEPT;
4927 sksec = sk->sk_security;
4928
4929 ad.type = LSM_AUDIT_DATA_NET;
4930 ad.u.net = &net;
4931 ad.u.net->netif = ifindex;
4932 ad.u.net->family = family;
4933 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4934 return NF_DROP;
4935
4936 if (selinux_secmark_enabled())
4937 if (avc_has_perm(sksec->sid, skb->secmark,
4938 SECCLASS_PACKET, PACKET__SEND, &ad))
4939 return NF_DROP_ERR(-ECONNREFUSED);
4940
4941 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4942 return NF_DROP_ERR(-ECONNREFUSED);
4943
4944 return NF_ACCEPT;
4945 }
4946
selinux_ip_postroute(struct sk_buff * skb,const struct net_device * outdev,u16 family)4947 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4948 const struct net_device *outdev,
4949 u16 family)
4950 {
4951 u32 secmark_perm;
4952 u32 peer_sid;
4953 int ifindex = outdev->ifindex;
4954 struct sock *sk;
4955 struct common_audit_data ad;
4956 struct lsm_network_audit net = {0,};
4957 char *addrp;
4958 u8 secmark_active;
4959 u8 peerlbl_active;
4960
4961 /* If any sort of compatibility mode is enabled then handoff processing
4962 * to the selinux_ip_postroute_compat() function to deal with the
4963 * special handling. We do this in an attempt to keep this function
4964 * as fast and as clean as possible. */
4965 if (!selinux_policycap_netpeer)
4966 return selinux_ip_postroute_compat(skb, ifindex, family);
4967
4968 secmark_active = selinux_secmark_enabled();
4969 peerlbl_active = selinux_peerlbl_enabled();
4970 if (!secmark_active && !peerlbl_active)
4971 return NF_ACCEPT;
4972
4973 sk = skb->sk;
4974
4975 #ifdef CONFIG_XFRM
4976 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4977 * packet transformation so allow the packet to pass without any checks
4978 * since we'll have another chance to perform access control checks
4979 * when the packet is on it's final way out.
4980 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4981 * is NULL, in this case go ahead and apply access control.
4982 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4983 * TCP listening state we cannot wait until the XFRM processing
4984 * is done as we will miss out on the SA label if we do;
4985 * unfortunately, this means more work, but it is only once per
4986 * connection. */
4987 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4988 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4989 return NF_ACCEPT;
4990 #endif
4991
4992 if (sk == NULL) {
4993 /* Without an associated socket the packet is either coming
4994 * from the kernel or it is being forwarded; check the packet
4995 * to determine which and if the packet is being forwarded
4996 * query the packet directly to determine the security label. */
4997 if (skb->skb_iif) {
4998 secmark_perm = PACKET__FORWARD_OUT;
4999 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5000 return NF_DROP;
5001 } else {
5002 secmark_perm = PACKET__SEND;
5003 peer_sid = SECINITSID_KERNEL;
5004 }
5005 } else if (sk->sk_state == TCP_LISTEN) {
5006 /* Locally generated packet but the associated socket is in the
5007 * listening state which means this is a SYN-ACK packet. In
5008 * this particular case the correct security label is assigned
5009 * to the connection/request_sock but unfortunately we can't
5010 * query the request_sock as it isn't queued on the parent
5011 * socket until after the SYN-ACK packet is sent; the only
5012 * viable choice is to regenerate the label like we do in
5013 * selinux_inet_conn_request(). See also selinux_ip_output()
5014 * for similar problems. */
5015 u32 skb_sid;
5016 struct sk_security_struct *sksec = sk->sk_security;
5017 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5018 return NF_DROP;
5019 /* At this point, if the returned skb peerlbl is SECSID_NULL
5020 * and the packet has been through at least one XFRM
5021 * transformation then we must be dealing with the "final"
5022 * form of labeled IPsec packet; since we've already applied
5023 * all of our access controls on this packet we can safely
5024 * pass the packet. */
5025 if (skb_sid == SECSID_NULL) {
5026 switch (family) {
5027 case PF_INET:
5028 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5029 return NF_ACCEPT;
5030 break;
5031 case PF_INET6:
5032 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5033 return NF_ACCEPT;
5034 break;
5035 default:
5036 return NF_DROP_ERR(-ECONNREFUSED);
5037 }
5038 }
5039 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5040 return NF_DROP;
5041 secmark_perm = PACKET__SEND;
5042 } else {
5043 /* Locally generated packet, fetch the security label from the
5044 * associated socket. */
5045 struct sk_security_struct *sksec = sk->sk_security;
5046 peer_sid = sksec->sid;
5047 secmark_perm = PACKET__SEND;
5048 }
5049
5050 ad.type = LSM_AUDIT_DATA_NET;
5051 ad.u.net = &net;
5052 ad.u.net->netif = ifindex;
5053 ad.u.net->family = family;
5054 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5055 return NF_DROP;
5056
5057 if (secmark_active)
5058 if (avc_has_perm(peer_sid, skb->secmark,
5059 SECCLASS_PACKET, secmark_perm, &ad))
5060 return NF_DROP_ERR(-ECONNREFUSED);
5061
5062 if (peerlbl_active) {
5063 u32 if_sid;
5064 u32 node_sid;
5065
5066 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5067 return NF_DROP;
5068 if (avc_has_perm(peer_sid, if_sid,
5069 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5070 return NF_DROP_ERR(-ECONNREFUSED);
5071
5072 if (sel_netnode_sid(addrp, family, &node_sid))
5073 return NF_DROP;
5074 if (avc_has_perm(peer_sid, node_sid,
5075 SECCLASS_NODE, NODE__SENDTO, &ad))
5076 return NF_DROP_ERR(-ECONNREFUSED);
5077 }
5078
5079 return NF_ACCEPT;
5080 }
5081
selinux_ipv4_postroute(const struct nf_hook_ops * ops,struct sk_buff * skb,const struct nf_hook_state * state)5082 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5083 struct sk_buff *skb,
5084 const struct nf_hook_state *state)
5085 {
5086 return selinux_ip_postroute(skb, state->out, PF_INET);
5087 }
5088
5089 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
selinux_ipv6_postroute(const struct nf_hook_ops * ops,struct sk_buff * skb,const struct nf_hook_state * state)5090 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5091 struct sk_buff *skb,
5092 const struct nf_hook_state *state)
5093 {
5094 return selinux_ip_postroute(skb, state->out, PF_INET6);
5095 }
5096 #endif /* IPV6 */
5097
5098 #endif /* CONFIG_NETFILTER */
5099
selinux_netlink_send(struct sock * sk,struct sk_buff * skb)5100 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5101 {
5102 int err;
5103
5104 err = cap_netlink_send(sk, skb);
5105 if (err)
5106 return err;
5107
5108 return selinux_nlmsg_perm(sk, skb);
5109 }
5110
ipc_alloc_security(struct task_struct * task,struct kern_ipc_perm * perm,u16 sclass)5111 static int ipc_alloc_security(struct task_struct *task,
5112 struct kern_ipc_perm *perm,
5113 u16 sclass)
5114 {
5115 struct ipc_security_struct *isec;
5116 u32 sid;
5117
5118 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5119 if (!isec)
5120 return -ENOMEM;
5121
5122 sid = task_sid(task);
5123 isec->sclass = sclass;
5124 isec->sid = sid;
5125 perm->security = isec;
5126
5127 return 0;
5128 }
5129
ipc_free_security(struct kern_ipc_perm * perm)5130 static void ipc_free_security(struct kern_ipc_perm *perm)
5131 {
5132 struct ipc_security_struct *isec = perm->security;
5133 perm->security = NULL;
5134 kfree(isec);
5135 }
5136
msg_msg_alloc_security(struct msg_msg * msg)5137 static int msg_msg_alloc_security(struct msg_msg *msg)
5138 {
5139 struct msg_security_struct *msec;
5140
5141 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5142 if (!msec)
5143 return -ENOMEM;
5144
5145 msec->sid = SECINITSID_UNLABELED;
5146 msg->security = msec;
5147
5148 return 0;
5149 }
5150
msg_msg_free_security(struct msg_msg * msg)5151 static void msg_msg_free_security(struct msg_msg *msg)
5152 {
5153 struct msg_security_struct *msec = msg->security;
5154
5155 msg->security = NULL;
5156 kfree(msec);
5157 }
5158
ipc_has_perm(struct kern_ipc_perm * ipc_perms,u32 perms)5159 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5160 u32 perms)
5161 {
5162 struct ipc_security_struct *isec;
5163 struct common_audit_data ad;
5164 u32 sid = current_sid();
5165
5166 isec = ipc_perms->security;
5167
5168 ad.type = LSM_AUDIT_DATA_IPC;
5169 ad.u.ipc_id = ipc_perms->key;
5170
5171 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5172 }
5173
selinux_msg_msg_alloc_security(struct msg_msg * msg)5174 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5175 {
5176 return msg_msg_alloc_security(msg);
5177 }
5178
selinux_msg_msg_free_security(struct msg_msg * msg)5179 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5180 {
5181 msg_msg_free_security(msg);
5182 }
5183
5184 /* message queue security operations */
selinux_msg_queue_alloc_security(struct msg_queue * msq)5185 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5186 {
5187 struct ipc_security_struct *isec;
5188 struct common_audit_data ad;
5189 u32 sid = current_sid();
5190 int rc;
5191
5192 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5193 if (rc)
5194 return rc;
5195
5196 isec = msq->q_perm.security;
5197
5198 ad.type = LSM_AUDIT_DATA_IPC;
5199 ad.u.ipc_id = msq->q_perm.key;
5200
5201 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5202 MSGQ__CREATE, &ad);
5203 if (rc) {
5204 ipc_free_security(&msq->q_perm);
5205 return rc;
5206 }
5207 return 0;
5208 }
5209
selinux_msg_queue_free_security(struct msg_queue * msq)5210 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5211 {
5212 ipc_free_security(&msq->q_perm);
5213 }
5214
selinux_msg_queue_associate(struct msg_queue * msq,int msqflg)5215 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5216 {
5217 struct ipc_security_struct *isec;
5218 struct common_audit_data ad;
5219 u32 sid = current_sid();
5220
5221 isec = msq->q_perm.security;
5222
5223 ad.type = LSM_AUDIT_DATA_IPC;
5224 ad.u.ipc_id = msq->q_perm.key;
5225
5226 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5227 MSGQ__ASSOCIATE, &ad);
5228 }
5229
selinux_msg_queue_msgctl(struct msg_queue * msq,int cmd)5230 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5231 {
5232 int err;
5233 int perms;
5234
5235 switch (cmd) {
5236 case IPC_INFO:
5237 case MSG_INFO:
5238 /* No specific object, just general system-wide information. */
5239 return task_has_system(current, SYSTEM__IPC_INFO);
5240 case IPC_STAT:
5241 case MSG_STAT:
5242 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5243 break;
5244 case IPC_SET:
5245 perms = MSGQ__SETATTR;
5246 break;
5247 case IPC_RMID:
5248 perms = MSGQ__DESTROY;
5249 break;
5250 default:
5251 return 0;
5252 }
5253
5254 err = ipc_has_perm(&msq->q_perm, perms);
5255 return err;
5256 }
5257
selinux_msg_queue_msgsnd(struct msg_queue * msq,struct msg_msg * msg,int msqflg)5258 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5259 {
5260 struct ipc_security_struct *isec;
5261 struct msg_security_struct *msec;
5262 struct common_audit_data ad;
5263 u32 sid = current_sid();
5264 int rc;
5265
5266 isec = msq->q_perm.security;
5267 msec = msg->security;
5268
5269 /*
5270 * First time through, need to assign label to the message
5271 */
5272 if (msec->sid == SECINITSID_UNLABELED) {
5273 /*
5274 * Compute new sid based on current process and
5275 * message queue this message will be stored in
5276 */
5277 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5278 NULL, &msec->sid);
5279 if (rc)
5280 return rc;
5281 }
5282
5283 ad.type = LSM_AUDIT_DATA_IPC;
5284 ad.u.ipc_id = msq->q_perm.key;
5285
5286 /* Can this process write to the queue? */
5287 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5288 MSGQ__WRITE, &ad);
5289 if (!rc)
5290 /* Can this process send the message */
5291 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5292 MSG__SEND, &ad);
5293 if (!rc)
5294 /* Can the message be put in the queue? */
5295 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5296 MSGQ__ENQUEUE, &ad);
5297
5298 return rc;
5299 }
5300
selinux_msg_queue_msgrcv(struct msg_queue * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)5301 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5302 struct task_struct *target,
5303 long type, int mode)
5304 {
5305 struct ipc_security_struct *isec;
5306 struct msg_security_struct *msec;
5307 struct common_audit_data ad;
5308 u32 sid = task_sid(target);
5309 int rc;
5310
5311 isec = msq->q_perm.security;
5312 msec = msg->security;
5313
5314 ad.type = LSM_AUDIT_DATA_IPC;
5315 ad.u.ipc_id = msq->q_perm.key;
5316
5317 rc = avc_has_perm(sid, isec->sid,
5318 SECCLASS_MSGQ, MSGQ__READ, &ad);
5319 if (!rc)
5320 rc = avc_has_perm(sid, msec->sid,
5321 SECCLASS_MSG, MSG__RECEIVE, &ad);
5322 return rc;
5323 }
5324
5325 /* Shared Memory security operations */
selinux_shm_alloc_security(struct shmid_kernel * shp)5326 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5327 {
5328 struct ipc_security_struct *isec;
5329 struct common_audit_data ad;
5330 u32 sid = current_sid();
5331 int rc;
5332
5333 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5334 if (rc)
5335 return rc;
5336
5337 isec = shp->shm_perm.security;
5338
5339 ad.type = LSM_AUDIT_DATA_IPC;
5340 ad.u.ipc_id = shp->shm_perm.key;
5341
5342 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5343 SHM__CREATE, &ad);
5344 if (rc) {
5345 ipc_free_security(&shp->shm_perm);
5346 return rc;
5347 }
5348 return 0;
5349 }
5350
selinux_shm_free_security(struct shmid_kernel * shp)5351 static void selinux_shm_free_security(struct shmid_kernel *shp)
5352 {
5353 ipc_free_security(&shp->shm_perm);
5354 }
5355
selinux_shm_associate(struct shmid_kernel * shp,int shmflg)5356 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5357 {
5358 struct ipc_security_struct *isec;
5359 struct common_audit_data ad;
5360 u32 sid = current_sid();
5361
5362 isec = shp->shm_perm.security;
5363
5364 ad.type = LSM_AUDIT_DATA_IPC;
5365 ad.u.ipc_id = shp->shm_perm.key;
5366
5367 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5368 SHM__ASSOCIATE, &ad);
5369 }
5370
5371 /* Note, at this point, shp is locked down */
selinux_shm_shmctl(struct shmid_kernel * shp,int cmd)5372 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5373 {
5374 int perms;
5375 int err;
5376
5377 switch (cmd) {
5378 case IPC_INFO:
5379 case SHM_INFO:
5380 /* No specific object, just general system-wide information. */
5381 return task_has_system(current, SYSTEM__IPC_INFO);
5382 case IPC_STAT:
5383 case SHM_STAT:
5384 perms = SHM__GETATTR | SHM__ASSOCIATE;
5385 break;
5386 case IPC_SET:
5387 perms = SHM__SETATTR;
5388 break;
5389 case SHM_LOCK:
5390 case SHM_UNLOCK:
5391 perms = SHM__LOCK;
5392 break;
5393 case IPC_RMID:
5394 perms = SHM__DESTROY;
5395 break;
5396 default:
5397 return 0;
5398 }
5399
5400 err = ipc_has_perm(&shp->shm_perm, perms);
5401 return err;
5402 }
5403
selinux_shm_shmat(struct shmid_kernel * shp,char __user * shmaddr,int shmflg)5404 static int selinux_shm_shmat(struct shmid_kernel *shp,
5405 char __user *shmaddr, int shmflg)
5406 {
5407 u32 perms;
5408
5409 if (shmflg & SHM_RDONLY)
5410 perms = SHM__READ;
5411 else
5412 perms = SHM__READ | SHM__WRITE;
5413
5414 return ipc_has_perm(&shp->shm_perm, perms);
5415 }
5416
5417 /* Semaphore security operations */
selinux_sem_alloc_security(struct sem_array * sma)5418 static int selinux_sem_alloc_security(struct sem_array *sma)
5419 {
5420 struct ipc_security_struct *isec;
5421 struct common_audit_data ad;
5422 u32 sid = current_sid();
5423 int rc;
5424
5425 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5426 if (rc)
5427 return rc;
5428
5429 isec = sma->sem_perm.security;
5430
5431 ad.type = LSM_AUDIT_DATA_IPC;
5432 ad.u.ipc_id = sma->sem_perm.key;
5433
5434 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5435 SEM__CREATE, &ad);
5436 if (rc) {
5437 ipc_free_security(&sma->sem_perm);
5438 return rc;
5439 }
5440 return 0;
5441 }
5442
selinux_sem_free_security(struct sem_array * sma)5443 static void selinux_sem_free_security(struct sem_array *sma)
5444 {
5445 ipc_free_security(&sma->sem_perm);
5446 }
5447
selinux_sem_associate(struct sem_array * sma,int semflg)5448 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5449 {
5450 struct ipc_security_struct *isec;
5451 struct common_audit_data ad;
5452 u32 sid = current_sid();
5453
5454 isec = sma->sem_perm.security;
5455
5456 ad.type = LSM_AUDIT_DATA_IPC;
5457 ad.u.ipc_id = sma->sem_perm.key;
5458
5459 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5460 SEM__ASSOCIATE, &ad);
5461 }
5462
5463 /* Note, at this point, sma is locked down */
selinux_sem_semctl(struct sem_array * sma,int cmd)5464 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5465 {
5466 int err;
5467 u32 perms;
5468
5469 switch (cmd) {
5470 case IPC_INFO:
5471 case SEM_INFO:
5472 /* No specific object, just general system-wide information. */
5473 return task_has_system(current, SYSTEM__IPC_INFO);
5474 case GETPID:
5475 case GETNCNT:
5476 case GETZCNT:
5477 perms = SEM__GETATTR;
5478 break;
5479 case GETVAL:
5480 case GETALL:
5481 perms = SEM__READ;
5482 break;
5483 case SETVAL:
5484 case SETALL:
5485 perms = SEM__WRITE;
5486 break;
5487 case IPC_RMID:
5488 perms = SEM__DESTROY;
5489 break;
5490 case IPC_SET:
5491 perms = SEM__SETATTR;
5492 break;
5493 case IPC_STAT:
5494 case SEM_STAT:
5495 perms = SEM__GETATTR | SEM__ASSOCIATE;
5496 break;
5497 default:
5498 return 0;
5499 }
5500
5501 err = ipc_has_perm(&sma->sem_perm, perms);
5502 return err;
5503 }
5504
selinux_sem_semop(struct sem_array * sma,struct sembuf * sops,unsigned nsops,int alter)5505 static int selinux_sem_semop(struct sem_array *sma,
5506 struct sembuf *sops, unsigned nsops, int alter)
5507 {
5508 u32 perms;
5509
5510 if (alter)
5511 perms = SEM__READ | SEM__WRITE;
5512 else
5513 perms = SEM__READ;
5514
5515 return ipc_has_perm(&sma->sem_perm, perms);
5516 }
5517
selinux_ipc_permission(struct kern_ipc_perm * ipcp,short flag)5518 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5519 {
5520 u32 av = 0;
5521
5522 av = 0;
5523 if (flag & S_IRUGO)
5524 av |= IPC__UNIX_READ;
5525 if (flag & S_IWUGO)
5526 av |= IPC__UNIX_WRITE;
5527
5528 if (av == 0)
5529 return 0;
5530
5531 return ipc_has_perm(ipcp, av);
5532 }
5533
selinux_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)5534 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5535 {
5536 struct ipc_security_struct *isec = ipcp->security;
5537 *secid = isec->sid;
5538 }
5539
selinux_d_instantiate(struct dentry * dentry,struct inode * inode)5540 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5541 {
5542 if (inode)
5543 inode_doinit_with_dentry(inode, dentry);
5544 }
5545
selinux_getprocattr(struct task_struct * p,char * name,char ** value)5546 static int selinux_getprocattr(struct task_struct *p,
5547 char *name, char **value)
5548 {
5549 const struct task_security_struct *__tsec;
5550 u32 sid;
5551 int error;
5552 unsigned len;
5553
5554 if (current != p) {
5555 error = current_has_perm(p, PROCESS__GETATTR);
5556 if (error)
5557 return error;
5558 }
5559
5560 rcu_read_lock();
5561 __tsec = __task_cred(p)->security;
5562
5563 if (!strcmp(name, "current"))
5564 sid = __tsec->sid;
5565 else if (!strcmp(name, "prev"))
5566 sid = __tsec->osid;
5567 else if (!strcmp(name, "exec"))
5568 sid = __tsec->exec_sid;
5569 else if (!strcmp(name, "fscreate"))
5570 sid = __tsec->create_sid;
5571 else if (!strcmp(name, "keycreate"))
5572 sid = __tsec->keycreate_sid;
5573 else if (!strcmp(name, "sockcreate"))
5574 sid = __tsec->sockcreate_sid;
5575 else
5576 goto invalid;
5577 rcu_read_unlock();
5578
5579 if (!sid)
5580 return 0;
5581
5582 error = security_sid_to_context(sid, value, &len);
5583 if (error)
5584 return error;
5585 return len;
5586
5587 invalid:
5588 rcu_read_unlock();
5589 return -EINVAL;
5590 }
5591
selinux_setprocattr(struct task_struct * p,char * name,void * value,size_t size)5592 static int selinux_setprocattr(struct task_struct *p,
5593 char *name, void *value, size_t size)
5594 {
5595 struct task_security_struct *tsec;
5596 struct task_struct *tracer;
5597 struct cred *new;
5598 u32 sid = 0, ptsid;
5599 int error;
5600 char *str = value;
5601
5602 if (current != p) {
5603 /* SELinux only allows a process to change its own
5604 security attributes. */
5605 return -EACCES;
5606 }
5607
5608 /*
5609 * Basic control over ability to set these attributes at all.
5610 * current == p, but we'll pass them separately in case the
5611 * above restriction is ever removed.
5612 */
5613 if (!strcmp(name, "exec"))
5614 error = current_has_perm(p, PROCESS__SETEXEC);
5615 else if (!strcmp(name, "fscreate"))
5616 error = current_has_perm(p, PROCESS__SETFSCREATE);
5617 else if (!strcmp(name, "keycreate"))
5618 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5619 else if (!strcmp(name, "sockcreate"))
5620 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5621 else if (!strcmp(name, "current"))
5622 error = current_has_perm(p, PROCESS__SETCURRENT);
5623 else
5624 error = -EINVAL;
5625 if (error)
5626 return error;
5627
5628 /* Obtain a SID for the context, if one was specified. */
5629 if (size && str[1] && str[1] != '\n') {
5630 if (str[size-1] == '\n') {
5631 str[size-1] = 0;
5632 size--;
5633 }
5634 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5635 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5636 if (!capable(CAP_MAC_ADMIN)) {
5637 struct audit_buffer *ab;
5638 size_t audit_size;
5639
5640 /* We strip a nul only if it is at the end, otherwise the
5641 * context contains a nul and we should audit that */
5642 if (str[size - 1] == '\0')
5643 audit_size = size - 1;
5644 else
5645 audit_size = size;
5646 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5647 audit_log_format(ab, "op=fscreate invalid_context=");
5648 audit_log_n_untrustedstring(ab, value, audit_size);
5649 audit_log_end(ab);
5650
5651 return error;
5652 }
5653 error = security_context_to_sid_force(value, size,
5654 &sid);
5655 }
5656 if (error)
5657 return error;
5658 }
5659
5660 new = prepare_creds();
5661 if (!new)
5662 return -ENOMEM;
5663
5664 /* Permission checking based on the specified context is
5665 performed during the actual operation (execve,
5666 open/mkdir/...), when we know the full context of the
5667 operation. See selinux_bprm_set_creds for the execve
5668 checks and may_create for the file creation checks. The
5669 operation will then fail if the context is not permitted. */
5670 tsec = new->security;
5671 if (!strcmp(name, "exec")) {
5672 tsec->exec_sid = sid;
5673 } else if (!strcmp(name, "fscreate")) {
5674 tsec->create_sid = sid;
5675 } else if (!strcmp(name, "keycreate")) {
5676 error = may_create_key(sid, p);
5677 if (error)
5678 goto abort_change;
5679 tsec->keycreate_sid = sid;
5680 } else if (!strcmp(name, "sockcreate")) {
5681 tsec->sockcreate_sid = sid;
5682 } else if (!strcmp(name, "current")) {
5683 error = -EINVAL;
5684 if (sid == 0)
5685 goto abort_change;
5686
5687 /* Only allow single threaded processes to change context */
5688 error = -EPERM;
5689 if (!current_is_single_threaded()) {
5690 error = security_bounded_transition(tsec->sid, sid);
5691 if (error)
5692 goto abort_change;
5693 }
5694
5695 /* Check permissions for the transition. */
5696 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5697 PROCESS__DYNTRANSITION, NULL);
5698 if (error)
5699 goto abort_change;
5700
5701 /* Check for ptracing, and update the task SID if ok.
5702 Otherwise, leave SID unchanged and fail. */
5703 ptsid = 0;
5704 rcu_read_lock();
5705 tracer = ptrace_parent(p);
5706 if (tracer)
5707 ptsid = task_sid(tracer);
5708 rcu_read_unlock();
5709
5710 if (tracer) {
5711 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5712 PROCESS__PTRACE, NULL);
5713 if (error)
5714 goto abort_change;
5715 }
5716
5717 tsec->sid = sid;
5718 } else {
5719 error = -EINVAL;
5720 goto abort_change;
5721 }
5722
5723 commit_creds(new);
5724 return size;
5725
5726 abort_change:
5727 abort_creds(new);
5728 return error;
5729 }
5730
selinux_ismaclabel(const char * name)5731 static int selinux_ismaclabel(const char *name)
5732 {
5733 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5734 }
5735
selinux_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)5736 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5737 {
5738 return security_sid_to_context(secid, secdata, seclen);
5739 }
5740
selinux_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)5741 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5742 {
5743 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5744 }
5745
selinux_release_secctx(char * secdata,u32 seclen)5746 static void selinux_release_secctx(char *secdata, u32 seclen)
5747 {
5748 kfree(secdata);
5749 }
5750
5751 /*
5752 * called with inode->i_mutex locked
5753 */
selinux_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)5754 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5755 {
5756 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5757 }
5758
5759 /*
5760 * called with inode->i_mutex locked
5761 */
selinux_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)5762 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5763 {
5764 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5765 }
5766
selinux_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)5767 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5768 {
5769 int len = 0;
5770 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5771 ctx, true);
5772 if (len < 0)
5773 return len;
5774 *ctxlen = len;
5775 return 0;
5776 }
5777 #ifdef CONFIG_KEYS
5778
selinux_key_alloc(struct key * k,const struct cred * cred,unsigned long flags)5779 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5780 unsigned long flags)
5781 {
5782 const struct task_security_struct *tsec;
5783 struct key_security_struct *ksec;
5784
5785 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5786 if (!ksec)
5787 return -ENOMEM;
5788
5789 tsec = cred->security;
5790 if (tsec->keycreate_sid)
5791 ksec->sid = tsec->keycreate_sid;
5792 else
5793 ksec->sid = tsec->sid;
5794
5795 k->security = ksec;
5796 return 0;
5797 }
5798
selinux_key_free(struct key * k)5799 static void selinux_key_free(struct key *k)
5800 {
5801 struct key_security_struct *ksec = k->security;
5802
5803 k->security = NULL;
5804 kfree(ksec);
5805 }
5806
selinux_key_permission(key_ref_t key_ref,const struct cred * cred,unsigned perm)5807 static int selinux_key_permission(key_ref_t key_ref,
5808 const struct cred *cred,
5809 unsigned perm)
5810 {
5811 struct key *key;
5812 struct key_security_struct *ksec;
5813 u32 sid;
5814
5815 /* if no specific permissions are requested, we skip the
5816 permission check. No serious, additional covert channels
5817 appear to be created. */
5818 if (perm == 0)
5819 return 0;
5820
5821 sid = cred_sid(cred);
5822
5823 key = key_ref_to_ptr(key_ref);
5824 ksec = key->security;
5825
5826 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5827 }
5828
selinux_key_getsecurity(struct key * key,char ** _buffer)5829 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5830 {
5831 struct key_security_struct *ksec = key->security;
5832 char *context = NULL;
5833 unsigned len;
5834 int rc;
5835
5836 rc = security_sid_to_context(ksec->sid, &context, &len);
5837 if (!rc)
5838 rc = len;
5839 *_buffer = context;
5840 return rc;
5841 }
5842
5843 #endif
5844
5845 static struct security_operations selinux_ops = {
5846 .name = "selinux",
5847
5848 .binder_set_context_mgr = selinux_binder_set_context_mgr,
5849 .binder_transaction = selinux_binder_transaction,
5850 .binder_transfer_binder = selinux_binder_transfer_binder,
5851 .binder_transfer_file = selinux_binder_transfer_file,
5852
5853 .ptrace_access_check = selinux_ptrace_access_check,
5854 .ptrace_traceme = selinux_ptrace_traceme,
5855 .capget = selinux_capget,
5856 .capset = selinux_capset,
5857 .capable = selinux_capable,
5858 .quotactl = selinux_quotactl,
5859 .quota_on = selinux_quota_on,
5860 .syslog = selinux_syslog,
5861 .vm_enough_memory = selinux_vm_enough_memory,
5862
5863 .netlink_send = selinux_netlink_send,
5864
5865 .bprm_set_creds = selinux_bprm_set_creds,
5866 .bprm_committing_creds = selinux_bprm_committing_creds,
5867 .bprm_committed_creds = selinux_bprm_committed_creds,
5868 .bprm_secureexec = selinux_bprm_secureexec,
5869
5870 .sb_alloc_security = selinux_sb_alloc_security,
5871 .sb_free_security = selinux_sb_free_security,
5872 .sb_copy_data = selinux_sb_copy_data,
5873 .sb_remount = selinux_sb_remount,
5874 .sb_kern_mount = selinux_sb_kern_mount,
5875 .sb_show_options = selinux_sb_show_options,
5876 .sb_statfs = selinux_sb_statfs,
5877 .sb_mount = selinux_mount,
5878 .sb_umount = selinux_umount,
5879 .sb_set_mnt_opts = selinux_set_mnt_opts,
5880 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5881 .sb_parse_opts_str = selinux_parse_opts_str,
5882
5883 .dentry_init_security = selinux_dentry_init_security,
5884
5885 .inode_alloc_security = selinux_inode_alloc_security,
5886 .inode_free_security = selinux_inode_free_security,
5887 .inode_init_security = selinux_inode_init_security,
5888 .inode_create = selinux_inode_create,
5889 .inode_link = selinux_inode_link,
5890 .inode_unlink = selinux_inode_unlink,
5891 .inode_symlink = selinux_inode_symlink,
5892 .inode_mkdir = selinux_inode_mkdir,
5893 .inode_rmdir = selinux_inode_rmdir,
5894 .inode_mknod = selinux_inode_mknod,
5895 .inode_rename = selinux_inode_rename,
5896 .inode_readlink = selinux_inode_readlink,
5897 .inode_follow_link = selinux_inode_follow_link,
5898 .inode_permission = selinux_inode_permission,
5899 .inode_setattr = selinux_inode_setattr,
5900 .inode_getattr = selinux_inode_getattr,
5901 .inode_setxattr = selinux_inode_setxattr,
5902 .inode_post_setxattr = selinux_inode_post_setxattr,
5903 .inode_getxattr = selinux_inode_getxattr,
5904 .inode_listxattr = selinux_inode_listxattr,
5905 .inode_removexattr = selinux_inode_removexattr,
5906 .inode_getsecurity = selinux_inode_getsecurity,
5907 .inode_setsecurity = selinux_inode_setsecurity,
5908 .inode_listsecurity = selinux_inode_listsecurity,
5909 .inode_getsecid = selinux_inode_getsecid,
5910
5911 .file_permission = selinux_file_permission,
5912 .file_alloc_security = selinux_file_alloc_security,
5913 .file_free_security = selinux_file_free_security,
5914 .file_ioctl = selinux_file_ioctl,
5915 .mmap_file = selinux_mmap_file,
5916 .mmap_addr = selinux_mmap_addr,
5917 .file_mprotect = selinux_file_mprotect,
5918 .file_lock = selinux_file_lock,
5919 .file_fcntl = selinux_file_fcntl,
5920 .file_set_fowner = selinux_file_set_fowner,
5921 .file_send_sigiotask = selinux_file_send_sigiotask,
5922 .file_receive = selinux_file_receive,
5923
5924 .file_open = selinux_file_open,
5925
5926 .task_create = selinux_task_create,
5927 .cred_alloc_blank = selinux_cred_alloc_blank,
5928 .cred_free = selinux_cred_free,
5929 .cred_prepare = selinux_cred_prepare,
5930 .cred_transfer = selinux_cred_transfer,
5931 .kernel_act_as = selinux_kernel_act_as,
5932 .kernel_create_files_as = selinux_kernel_create_files_as,
5933 .kernel_module_request = selinux_kernel_module_request,
5934 .task_setpgid = selinux_task_setpgid,
5935 .task_getpgid = selinux_task_getpgid,
5936 .task_getsid = selinux_task_getsid,
5937 .task_getsecid = selinux_task_getsecid,
5938 .task_setnice = selinux_task_setnice,
5939 .task_setioprio = selinux_task_setioprio,
5940 .task_getioprio = selinux_task_getioprio,
5941 .task_setrlimit = selinux_task_setrlimit,
5942 .task_setscheduler = selinux_task_setscheduler,
5943 .task_getscheduler = selinux_task_getscheduler,
5944 .task_movememory = selinux_task_movememory,
5945 .task_kill = selinux_task_kill,
5946 .task_wait = selinux_task_wait,
5947 .task_to_inode = selinux_task_to_inode,
5948
5949 .ipc_permission = selinux_ipc_permission,
5950 .ipc_getsecid = selinux_ipc_getsecid,
5951
5952 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5953 .msg_msg_free_security = selinux_msg_msg_free_security,
5954
5955 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5956 .msg_queue_free_security = selinux_msg_queue_free_security,
5957 .msg_queue_associate = selinux_msg_queue_associate,
5958 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5959 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5960 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5961
5962 .shm_alloc_security = selinux_shm_alloc_security,
5963 .shm_free_security = selinux_shm_free_security,
5964 .shm_associate = selinux_shm_associate,
5965 .shm_shmctl = selinux_shm_shmctl,
5966 .shm_shmat = selinux_shm_shmat,
5967
5968 .sem_alloc_security = selinux_sem_alloc_security,
5969 .sem_free_security = selinux_sem_free_security,
5970 .sem_associate = selinux_sem_associate,
5971 .sem_semctl = selinux_sem_semctl,
5972 .sem_semop = selinux_sem_semop,
5973
5974 .d_instantiate = selinux_d_instantiate,
5975
5976 .getprocattr = selinux_getprocattr,
5977 .setprocattr = selinux_setprocattr,
5978
5979 .ismaclabel = selinux_ismaclabel,
5980 .secid_to_secctx = selinux_secid_to_secctx,
5981 .secctx_to_secid = selinux_secctx_to_secid,
5982 .release_secctx = selinux_release_secctx,
5983 .inode_notifysecctx = selinux_inode_notifysecctx,
5984 .inode_setsecctx = selinux_inode_setsecctx,
5985 .inode_getsecctx = selinux_inode_getsecctx,
5986
5987 .unix_stream_connect = selinux_socket_unix_stream_connect,
5988 .unix_may_send = selinux_socket_unix_may_send,
5989
5990 .socket_create = selinux_socket_create,
5991 .socket_post_create = selinux_socket_post_create,
5992 .socket_bind = selinux_socket_bind,
5993 .socket_connect = selinux_socket_connect,
5994 .socket_listen = selinux_socket_listen,
5995 .socket_accept = selinux_socket_accept,
5996 .socket_sendmsg = selinux_socket_sendmsg,
5997 .socket_recvmsg = selinux_socket_recvmsg,
5998 .socket_getsockname = selinux_socket_getsockname,
5999 .socket_getpeername = selinux_socket_getpeername,
6000 .socket_getsockopt = selinux_socket_getsockopt,
6001 .socket_setsockopt = selinux_socket_setsockopt,
6002 .socket_shutdown = selinux_socket_shutdown,
6003 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
6004 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
6005 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
6006 .sk_alloc_security = selinux_sk_alloc_security,
6007 .sk_free_security = selinux_sk_free_security,
6008 .sk_clone_security = selinux_sk_clone_security,
6009 .sk_getsecid = selinux_sk_getsecid,
6010 .sock_graft = selinux_sock_graft,
6011 .inet_conn_request = selinux_inet_conn_request,
6012 .inet_csk_clone = selinux_inet_csk_clone,
6013 .inet_conn_established = selinux_inet_conn_established,
6014 .secmark_relabel_packet = selinux_secmark_relabel_packet,
6015 .secmark_refcount_inc = selinux_secmark_refcount_inc,
6016 .secmark_refcount_dec = selinux_secmark_refcount_dec,
6017 .req_classify_flow = selinux_req_classify_flow,
6018 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
6019 .tun_dev_free_security = selinux_tun_dev_free_security,
6020 .tun_dev_create = selinux_tun_dev_create,
6021 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
6022 .tun_dev_attach = selinux_tun_dev_attach,
6023 .tun_dev_open = selinux_tun_dev_open,
6024
6025 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6026 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
6027 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
6028 .xfrm_policy_free_security = selinux_xfrm_policy_free,
6029 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
6030 .xfrm_state_alloc = selinux_xfrm_state_alloc,
6031 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
6032 .xfrm_state_free_security = selinux_xfrm_state_free,
6033 .xfrm_state_delete_security = selinux_xfrm_state_delete,
6034 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
6035 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
6036 .xfrm_decode_session = selinux_xfrm_decode_session,
6037 #endif
6038
6039 #ifdef CONFIG_KEYS
6040 .key_alloc = selinux_key_alloc,
6041 .key_free = selinux_key_free,
6042 .key_permission = selinux_key_permission,
6043 .key_getsecurity = selinux_key_getsecurity,
6044 #endif
6045
6046 #ifdef CONFIG_AUDIT
6047 .audit_rule_init = selinux_audit_rule_init,
6048 .audit_rule_known = selinux_audit_rule_known,
6049 .audit_rule_match = selinux_audit_rule_match,
6050 .audit_rule_free = selinux_audit_rule_free,
6051 #endif
6052 };
6053
selinux_init(void)6054 static __init int selinux_init(void)
6055 {
6056 if (!security_module_enable(&selinux_ops)) {
6057 selinux_enabled = 0;
6058 return 0;
6059 }
6060
6061 if (!selinux_enabled) {
6062 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6063 return 0;
6064 }
6065
6066 printk(KERN_INFO "SELinux: Initializing.\n");
6067
6068 /* Set the security state for the initial task. */
6069 cred_init_security();
6070
6071 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6072
6073 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6074 sizeof(struct inode_security_struct),
6075 0, SLAB_PANIC, NULL);
6076 avc_init();
6077
6078 if (register_security(&selinux_ops))
6079 panic("SELinux: Unable to register with kernel.\n");
6080
6081 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6082 panic("SELinux: Unable to register AVC netcache callback\n");
6083
6084 if (selinux_enforcing)
6085 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6086 else
6087 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6088
6089 return 0;
6090 }
6091
delayed_superblock_init(struct super_block * sb,void * unused)6092 static void delayed_superblock_init(struct super_block *sb, void *unused)
6093 {
6094 superblock_doinit(sb, NULL);
6095 }
6096
selinux_complete_init(void)6097 void selinux_complete_init(void)
6098 {
6099 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6100
6101 /* Set up any superblocks initialized prior to the policy load. */
6102 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6103 iterate_supers(delayed_superblock_init, NULL);
6104 }
6105
6106 /* SELinux requires early initialization in order to label
6107 all processes and objects when they are created. */
6108 security_initcall(selinux_init);
6109
6110 #if defined(CONFIG_NETFILTER)
6111
6112 static struct nf_hook_ops selinux_nf_ops[] = {
6113 {
6114 .hook = selinux_ipv4_postroute,
6115 .owner = THIS_MODULE,
6116 .pf = NFPROTO_IPV4,
6117 .hooknum = NF_INET_POST_ROUTING,
6118 .priority = NF_IP_PRI_SELINUX_LAST,
6119 },
6120 {
6121 .hook = selinux_ipv4_forward,
6122 .owner = THIS_MODULE,
6123 .pf = NFPROTO_IPV4,
6124 .hooknum = NF_INET_FORWARD,
6125 .priority = NF_IP_PRI_SELINUX_FIRST,
6126 },
6127 {
6128 .hook = selinux_ipv4_output,
6129 .owner = THIS_MODULE,
6130 .pf = NFPROTO_IPV4,
6131 .hooknum = NF_INET_LOCAL_OUT,
6132 .priority = NF_IP_PRI_SELINUX_FIRST,
6133 },
6134 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6135 {
6136 .hook = selinux_ipv6_postroute,
6137 .owner = THIS_MODULE,
6138 .pf = NFPROTO_IPV6,
6139 .hooknum = NF_INET_POST_ROUTING,
6140 .priority = NF_IP6_PRI_SELINUX_LAST,
6141 },
6142 {
6143 .hook = selinux_ipv6_forward,
6144 .owner = THIS_MODULE,
6145 .pf = NFPROTO_IPV6,
6146 .hooknum = NF_INET_FORWARD,
6147 .priority = NF_IP6_PRI_SELINUX_FIRST,
6148 },
6149 #endif /* IPV6 */
6150 };
6151
selinux_nf_ip_init(void)6152 static int __init selinux_nf_ip_init(void)
6153 {
6154 int err;
6155
6156 if (!selinux_enabled)
6157 return 0;
6158
6159 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6160
6161 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6162 if (err)
6163 panic("SELinux: nf_register_hooks: error %d\n", err);
6164
6165 return 0;
6166 }
6167
6168 __initcall(selinux_nf_ip_init);
6169
6170 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
selinux_nf_ip_exit(void)6171 static void selinux_nf_ip_exit(void)
6172 {
6173 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6174
6175 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6176 }
6177 #endif
6178
6179 #else /* CONFIG_NETFILTER */
6180
6181 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6182 #define selinux_nf_ip_exit()
6183 #endif
6184
6185 #endif /* CONFIG_NETFILTER */
6186
6187 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6188 static int selinux_disabled;
6189
selinux_disable(void)6190 int selinux_disable(void)
6191 {
6192 if (ss_initialized) {
6193 /* Not permitted after initial policy load. */
6194 return -EINVAL;
6195 }
6196
6197 if (selinux_disabled) {
6198 /* Only do this once. */
6199 return -EINVAL;
6200 }
6201
6202 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6203
6204 selinux_disabled = 1;
6205 selinux_enabled = 0;
6206
6207 reset_security_ops();
6208
6209 /* Try to destroy the avc node cache */
6210 avc_disable();
6211
6212 /* Unregister netfilter hooks. */
6213 selinux_nf_ip_exit();
6214
6215 /* Unregister selinuxfs. */
6216 exit_sel_fs();
6217
6218 return 0;
6219 }
6220 #endif
6221