1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
stripe_hash(struct r5conf * conf,sector_t sect)87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
stripe_hash_locks_hash(sector_t sect)93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
lock_device_hash_lock(struct r5conf * conf,int hash)98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
unlock_device_hash_lock(struct r5conf * conf,int hash)104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
lock_all_device_hash_locks_irq(struct r5conf * conf)110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
unlock_all_device_hash_locks_irq(struct r5conf * conf)120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
r5_next_bio(struct bio * bio,sector_t sector)138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
raid5_bi_processed_stripes(struct bio * bio)151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
raid5_dec_bi_active_stripes(struct bio * bio)157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
raid5_inc_bi_active_stripes(struct bio * bio)163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
raid5_set_bi_processed_stripes(struct bio * bio,unsigned int cnt)169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
raid5_set_bi_stripes(struct bio * bio,unsigned int cnt)181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
raid6_next_disk(int disk,int raid_disks)199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
return_io(struct bio * return_bi)226 static void return_io(struct bio *return_bi)
227 {
228 	struct bio *bi = return_bi;
229 	while (bi) {
230 
231 		return_bi = bi->bi_next;
232 		bi->bi_next = NULL;
233 		bi->bi_iter.bi_size = 0;
234 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 					 bi, 0);
236 		bio_endio(bi, 0);
237 		bi = return_bi;
238 	}
239 }
240 
241 static void print_raid5_conf (struct r5conf *conf);
242 
stripe_operations_active(struct stripe_head * sh)243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 	return sh->check_state || sh->reconstruct_state ||
246 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249 
raid5_wakeup_stripe_thread(struct stripe_head * sh)250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 	struct r5conf *conf = sh->raid_conf;
253 	struct r5worker_group *group;
254 	int thread_cnt;
255 	int i, cpu = sh->cpu;
256 
257 	if (!cpu_online(cpu)) {
258 		cpu = cpumask_any(cpu_online_mask);
259 		sh->cpu = cpu;
260 	}
261 
262 	if (list_empty(&sh->lru)) {
263 		struct r5worker_group *group;
264 		group = conf->worker_groups + cpu_to_group(cpu);
265 		list_add_tail(&sh->lru, &group->handle_list);
266 		group->stripes_cnt++;
267 		sh->group = group;
268 	}
269 
270 	if (conf->worker_cnt_per_group == 0) {
271 		md_wakeup_thread(conf->mddev->thread);
272 		return;
273 	}
274 
275 	group = conf->worker_groups + cpu_to_group(sh->cpu);
276 
277 	group->workers[0].working = true;
278 	/* at least one worker should run to avoid race */
279 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280 
281 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 	/* wakeup more workers */
283 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 		if (group->workers[i].working == false) {
285 			group->workers[i].working = true;
286 			queue_work_on(sh->cpu, raid5_wq,
287 				      &group->workers[i].work);
288 			thread_cnt--;
289 		}
290 	}
291 }
292 
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 			      struct list_head *temp_inactive_list)
295 {
296 	BUG_ON(!list_empty(&sh->lru));
297 	BUG_ON(atomic_read(&conf->active_stripes)==0);
298 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 			list_add_tail(&sh->lru, &conf->delayed_list);
302 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 			   sh->bm_seq - conf->seq_write > 0)
304 			list_add_tail(&sh->lru, &conf->bitmap_list);
305 		else {
306 			clear_bit(STRIPE_DELAYED, &sh->state);
307 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 			if (conf->worker_cnt_per_group == 0) {
309 				list_add_tail(&sh->lru, &conf->handle_list);
310 			} else {
311 				raid5_wakeup_stripe_thread(sh);
312 				return;
313 			}
314 		}
315 		md_wakeup_thread(conf->mddev->thread);
316 	} else {
317 		BUG_ON(stripe_operations_active(sh));
318 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 			if (atomic_dec_return(&conf->preread_active_stripes)
320 			    < IO_THRESHOLD)
321 				md_wakeup_thread(conf->mddev->thread);
322 		atomic_dec(&conf->active_stripes);
323 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 			list_add_tail(&sh->lru, temp_inactive_list);
325 	}
326 }
327 
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 			     struct list_head *temp_inactive_list)
330 {
331 	if (atomic_dec_and_test(&sh->count))
332 		do_release_stripe(conf, sh, temp_inactive_list);
333 }
334 
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)342 static void release_inactive_stripe_list(struct r5conf *conf,
343 					 struct list_head *temp_inactive_list,
344 					 int hash)
345 {
346 	int size;
347 	bool do_wakeup = false;
348 	unsigned long flags;
349 
350 	if (hash == NR_STRIPE_HASH_LOCKS) {
351 		size = NR_STRIPE_HASH_LOCKS;
352 		hash = NR_STRIPE_HASH_LOCKS - 1;
353 	} else
354 		size = 1;
355 	while (size) {
356 		struct list_head *list = &temp_inactive_list[size - 1];
357 
358 		/*
359 		 * We don't hold any lock here yet, get_active_stripe() might
360 		 * remove stripes from the list
361 		 */
362 		if (!list_empty_careful(list)) {
363 			spin_lock_irqsave(conf->hash_locks + hash, flags);
364 			if (list_empty(conf->inactive_list + hash) &&
365 			    !list_empty(list))
366 				atomic_dec(&conf->empty_inactive_list_nr);
367 			list_splice_tail_init(list, conf->inactive_list + hash);
368 			do_wakeup = true;
369 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 		}
371 		size--;
372 		hash--;
373 	}
374 
375 	if (do_wakeup) {
376 		wake_up(&conf->wait_for_stripe);
377 		if (conf->retry_read_aligned)
378 			md_wakeup_thread(conf->mddev->thread);
379 	}
380 }
381 
382 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)383 static int release_stripe_list(struct r5conf *conf,
384 			       struct list_head *temp_inactive_list)
385 {
386 	struct stripe_head *sh;
387 	int count = 0;
388 	struct llist_node *head;
389 
390 	head = llist_del_all(&conf->released_stripes);
391 	head = llist_reverse_order(head);
392 	while (head) {
393 		int hash;
394 
395 		sh = llist_entry(head, struct stripe_head, release_list);
396 		head = llist_next(head);
397 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 		smp_mb();
399 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 		/*
401 		 * Don't worry the bit is set here, because if the bit is set
402 		 * again, the count is always > 1. This is true for
403 		 * STRIPE_ON_UNPLUG_LIST bit too.
404 		 */
405 		hash = sh->hash_lock_index;
406 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
407 		count++;
408 	}
409 
410 	return count;
411 }
412 
release_stripe(struct stripe_head * sh)413 static void release_stripe(struct stripe_head *sh)
414 {
415 	struct r5conf *conf = sh->raid_conf;
416 	unsigned long flags;
417 	struct list_head list;
418 	int hash;
419 	bool wakeup;
420 
421 	/* Avoid release_list until the last reference.
422 	 */
423 	if (atomic_add_unless(&sh->count, -1, 1))
424 		return;
425 
426 	if (unlikely(!conf->mddev->thread) ||
427 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 		goto slow_path;
429 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 	if (wakeup)
431 		md_wakeup_thread(conf->mddev->thread);
432 	return;
433 slow_path:
434 	local_irq_save(flags);
435 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 		INIT_LIST_HEAD(&list);
438 		hash = sh->hash_lock_index;
439 		do_release_stripe(conf, sh, &list);
440 		spin_unlock(&conf->device_lock);
441 		release_inactive_stripe_list(conf, &list, hash);
442 	}
443 	local_irq_restore(flags);
444 }
445 
remove_hash(struct stripe_head * sh)446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 	pr_debug("remove_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_del_init(&sh->hash);
452 }
453 
insert_hash(struct r5conf * conf,struct stripe_head * sh)454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
457 
458 	pr_debug("insert_hash(), stripe %llu\n",
459 		(unsigned long long)sh->sector);
460 
461 	hlist_add_head(&sh->hash, hp);
462 }
463 
464 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 	struct stripe_head *sh = NULL;
468 	struct list_head *first;
469 
470 	if (list_empty(conf->inactive_list + hash))
471 		goto out;
472 	first = (conf->inactive_list + hash)->next;
473 	sh = list_entry(first, struct stripe_head, lru);
474 	list_del_init(first);
475 	remove_hash(sh);
476 	atomic_inc(&conf->active_stripes);
477 	BUG_ON(hash != sh->hash_lock_index);
478 	if (list_empty(conf->inactive_list + hash))
479 		atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 	return sh;
482 }
483 
shrink_buffers(struct stripe_head * sh)484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 	struct page *p;
487 	int i;
488 	int num = sh->raid_conf->pool_size;
489 
490 	for (i = 0; i < num ; i++) {
491 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 		p = sh->dev[i].page;
493 		if (!p)
494 			continue;
495 		sh->dev[i].page = NULL;
496 		put_page(p);
497 	}
498 }
499 
grow_buffers(struct stripe_head * sh,gfp_t gfp)500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502 	int i;
503 	int num = sh->raid_conf->pool_size;
504 
505 	for (i = 0; i < num; i++) {
506 		struct page *page;
507 
508 		if (!(page = alloc_page(gfp))) {
509 			return 1;
510 		}
511 		sh->dev[i].page = page;
512 		sh->dev[i].orig_page = page;
513 	}
514 	return 0;
515 }
516 
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 			    struct stripe_head *sh);
520 
init_stripe(struct stripe_head * sh,sector_t sector,int previous)521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 	struct r5conf *conf = sh->raid_conf;
524 	int i, seq;
525 
526 	BUG_ON(atomic_read(&sh->count) != 0);
527 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 	BUG_ON(stripe_operations_active(sh));
529 	BUG_ON(sh->batch_head);
530 
531 	pr_debug("init_stripe called, stripe %llu\n",
532 		(unsigned long long)sector);
533 retry:
534 	seq = read_seqcount_begin(&conf->gen_lock);
535 	sh->generation = conf->generation - previous;
536 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 	sh->sector = sector;
538 	stripe_set_idx(sector, conf, previous, sh);
539 	sh->state = 0;
540 
541 	for (i = sh->disks; i--; ) {
542 		struct r5dev *dev = &sh->dev[i];
543 
544 		if (dev->toread || dev->read || dev->towrite || dev->written ||
545 		    test_bit(R5_LOCKED, &dev->flags)) {
546 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 			       (unsigned long long)sh->sector, i, dev->toread,
548 			       dev->read, dev->towrite, dev->written,
549 			       test_bit(R5_LOCKED, &dev->flags));
550 			WARN_ON(1);
551 		}
552 		dev->flags = 0;
553 		raid5_build_block(sh, i, previous);
554 	}
555 	if (read_seqcount_retry(&conf->gen_lock, seq))
556 		goto retry;
557 	sh->overwrite_disks = 0;
558 	insert_hash(conf, sh);
559 	sh->cpu = smp_processor_id();
560 	set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562 
__find_stripe(struct r5conf * conf,sector_t sector,short generation)563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 					 short generation)
565 {
566 	struct stripe_head *sh;
567 
568 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 		if (sh->sector == sector && sh->generation == generation)
571 			return sh;
572 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 	return NULL;
574 }
575 
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
calc_degraded(struct r5conf * conf)589 static int calc_degraded(struct r5conf *conf)
590 {
591 	int degraded, degraded2;
592 	int i;
593 
594 	rcu_read_lock();
595 	degraded = 0;
596 	for (i = 0; i < conf->previous_raid_disks; i++) {
597 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = rcu_dereference(conf->disks[i].replacement);
600 		if (!rdev || test_bit(Faulty, &rdev->flags))
601 			degraded++;
602 		else if (test_bit(In_sync, &rdev->flags))
603 			;
604 		else
605 			/* not in-sync or faulty.
606 			 * If the reshape increases the number of devices,
607 			 * this is being recovered by the reshape, so
608 			 * this 'previous' section is not in_sync.
609 			 * If the number of devices is being reduced however,
610 			 * the device can only be part of the array if
611 			 * we are reverting a reshape, so this section will
612 			 * be in-sync.
613 			 */
614 			if (conf->raid_disks >= conf->previous_raid_disks)
615 				degraded++;
616 	}
617 	rcu_read_unlock();
618 	if (conf->raid_disks == conf->previous_raid_disks)
619 		return degraded;
620 	rcu_read_lock();
621 	degraded2 = 0;
622 	for (i = 0; i < conf->raid_disks; i++) {
623 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 		if (rdev && test_bit(Faulty, &rdev->flags))
625 			rdev = rcu_dereference(conf->disks[i].replacement);
626 		if (!rdev || test_bit(Faulty, &rdev->flags))
627 			degraded2++;
628 		else if (test_bit(In_sync, &rdev->flags))
629 			;
630 		else
631 			/* not in-sync or faulty.
632 			 * If reshape increases the number of devices, this
633 			 * section has already been recovered, else it
634 			 * almost certainly hasn't.
635 			 */
636 			if (conf->raid_disks <= conf->previous_raid_disks)
637 				degraded2++;
638 	}
639 	rcu_read_unlock();
640 	if (degraded2 > degraded)
641 		return degraded2;
642 	return degraded;
643 }
644 
has_failed(struct r5conf * conf)645 static int has_failed(struct r5conf *conf)
646 {
647 	int degraded;
648 
649 	if (conf->mddev->reshape_position == MaxSector)
650 		return conf->mddev->degraded > conf->max_degraded;
651 
652 	degraded = calc_degraded(conf);
653 	if (degraded > conf->max_degraded)
654 		return 1;
655 	return 0;
656 }
657 
658 static struct stripe_head *
get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 		  int previous, int noblock, int noquiesce)
661 {
662 	struct stripe_head *sh;
663 	int hash = stripe_hash_locks_hash(sector);
664 
665 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666 
667 	spin_lock_irq(conf->hash_locks + hash);
668 
669 	do {
670 		wait_event_lock_irq(conf->wait_for_stripe,
671 				    conf->quiesce == 0 || noquiesce,
672 				    *(conf->hash_locks + hash));
673 		sh = __find_stripe(conf, sector, conf->generation - previous);
674 		if (!sh) {
675 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676 				sh = get_free_stripe(conf, hash);
677 				if (!sh && llist_empty(&conf->released_stripes) &&
678 				    !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 					set_bit(R5_ALLOC_MORE,
680 						&conf->cache_state);
681 			}
682 			if (noblock && sh == NULL)
683 				break;
684 			if (!sh) {
685 				set_bit(R5_INACTIVE_BLOCKED,
686 					&conf->cache_state);
687 				wait_event_lock_irq(
688 					conf->wait_for_stripe,
689 					!list_empty(conf->inactive_list + hash) &&
690 					(atomic_read(&conf->active_stripes)
691 					 < (conf->max_nr_stripes * 3 / 4)
692 					 || !test_bit(R5_INACTIVE_BLOCKED,
693 						      &conf->cache_state)),
694 					*(conf->hash_locks + hash));
695 				clear_bit(R5_INACTIVE_BLOCKED,
696 					  &conf->cache_state);
697 			} else {
698 				init_stripe(sh, sector, previous);
699 				atomic_inc(&sh->count);
700 			}
701 		} else if (!atomic_inc_not_zero(&sh->count)) {
702 			spin_lock(&conf->device_lock);
703 			if (!atomic_read(&sh->count)) {
704 				if (!test_bit(STRIPE_HANDLE, &sh->state))
705 					atomic_inc(&conf->active_stripes);
706 				BUG_ON(list_empty(&sh->lru) &&
707 				       !test_bit(STRIPE_EXPANDING, &sh->state));
708 				list_del_init(&sh->lru);
709 				if (sh->group) {
710 					sh->group->stripes_cnt--;
711 					sh->group = NULL;
712 				}
713 			}
714 			atomic_inc(&sh->count);
715 			spin_unlock(&conf->device_lock);
716 		}
717 	} while (sh == NULL);
718 
719 	spin_unlock_irq(conf->hash_locks + hash);
720 	return sh;
721 }
722 
is_full_stripe_write(struct stripe_head * sh)723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728 
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 	local_irq_disable();
732 	if (sh1 > sh2) {
733 		spin_lock(&sh2->stripe_lock);
734 		spin_lock_nested(&sh1->stripe_lock, 1);
735 	} else {
736 		spin_lock(&sh1->stripe_lock);
737 		spin_lock_nested(&sh2->stripe_lock, 1);
738 	}
739 }
740 
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743 	spin_unlock(&sh1->stripe_lock);
744 	spin_unlock(&sh2->stripe_lock);
745 	local_irq_enable();
746 }
747 
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
753 		is_full_stripe_write(sh);
754 }
755 
756 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh)757 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
758 {
759 	struct stripe_head *head;
760 	sector_t head_sector, tmp_sec;
761 	int hash;
762 	int dd_idx;
763 
764 	if (!stripe_can_batch(sh))
765 		return;
766 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 	tmp_sec = sh->sector;
768 	if (!sector_div(tmp_sec, conf->chunk_sectors))
769 		return;
770 	head_sector = sh->sector - STRIPE_SECTORS;
771 
772 	hash = stripe_hash_locks_hash(head_sector);
773 	spin_lock_irq(conf->hash_locks + hash);
774 	head = __find_stripe(conf, head_sector, conf->generation);
775 	if (head && !atomic_inc_not_zero(&head->count)) {
776 		spin_lock(&conf->device_lock);
777 		if (!atomic_read(&head->count)) {
778 			if (!test_bit(STRIPE_HANDLE, &head->state))
779 				atomic_inc(&conf->active_stripes);
780 			BUG_ON(list_empty(&head->lru) &&
781 			       !test_bit(STRIPE_EXPANDING, &head->state));
782 			list_del_init(&head->lru);
783 			if (head->group) {
784 				head->group->stripes_cnt--;
785 				head->group = NULL;
786 			}
787 		}
788 		atomic_inc(&head->count);
789 		spin_unlock(&conf->device_lock);
790 	}
791 	spin_unlock_irq(conf->hash_locks + hash);
792 
793 	if (!head)
794 		return;
795 	if (!stripe_can_batch(head))
796 		goto out;
797 
798 	lock_two_stripes(head, sh);
799 	/* clear_batch_ready clear the flag */
800 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 		goto unlock_out;
802 
803 	if (sh->batch_head)
804 		goto unlock_out;
805 
806 	dd_idx = 0;
807 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 		dd_idx++;
809 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 		goto unlock_out;
811 
812 	if (head->batch_head) {
813 		spin_lock(&head->batch_head->batch_lock);
814 		/* This batch list is already running */
815 		if (!stripe_can_batch(head)) {
816 			spin_unlock(&head->batch_head->batch_lock);
817 			goto unlock_out;
818 		}
819 
820 		/*
821 		 * at this point, head's BATCH_READY could be cleared, but we
822 		 * can still add the stripe to batch list
823 		 */
824 		list_add(&sh->batch_list, &head->batch_list);
825 		spin_unlock(&head->batch_head->batch_lock);
826 
827 		sh->batch_head = head->batch_head;
828 	} else {
829 		head->batch_head = head;
830 		sh->batch_head = head->batch_head;
831 		spin_lock(&head->batch_lock);
832 		list_add_tail(&sh->batch_list, &head->batch_list);
833 		spin_unlock(&head->batch_lock);
834 	}
835 
836 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 		if (atomic_dec_return(&conf->preread_active_stripes)
838 		    < IO_THRESHOLD)
839 			md_wakeup_thread(conf->mddev->thread);
840 
841 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 		int seq = sh->bm_seq;
843 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 		    sh->batch_head->bm_seq > seq)
845 			seq = sh->batch_head->bm_seq;
846 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 		sh->batch_head->bm_seq = seq;
848 	}
849 
850 	atomic_inc(&sh->count);
851 unlock_out:
852 	unlock_two_stripes(head, sh);
853 out:
854 	release_stripe(head);
855 }
856 
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 	sector_t progress = conf->reshape_progress;
863 	/* Need a memory barrier to make sure we see the value
864 	 * of conf->generation, or ->data_offset that was set before
865 	 * reshape_progress was updated.
866 	 */
867 	smp_rmb();
868 	if (progress == MaxSector)
869 		return 0;
870 	if (sh->generation == conf->generation - 1)
871 		return 0;
872 	/* We are in a reshape, and this is a new-generation stripe,
873 	 * so use new_data_offset.
874 	 */
875 	return 1;
876 }
877 
878 static void
879 raid5_end_read_request(struct bio *bi, int error);
880 static void
881 raid5_end_write_request(struct bio *bi, int error);
882 
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885 	struct r5conf *conf = sh->raid_conf;
886 	int i, disks = sh->disks;
887 	struct stripe_head *head_sh = sh;
888 
889 	might_sleep();
890 
891 	for (i = disks; i--; ) {
892 		int rw;
893 		int replace_only = 0;
894 		struct bio *bi, *rbi;
895 		struct md_rdev *rdev, *rrdev = NULL;
896 
897 		sh = head_sh;
898 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900 				rw = WRITE_FUA;
901 			else
902 				rw = WRITE;
903 			if (test_bit(R5_Discard, &sh->dev[i].flags))
904 				rw |= REQ_DISCARD;
905 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906 			rw = READ;
907 		else if (test_and_clear_bit(R5_WantReplace,
908 					    &sh->dev[i].flags)) {
909 			rw = WRITE;
910 			replace_only = 1;
911 		} else
912 			continue;
913 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 			rw |= REQ_SYNC;
915 
916 again:
917 		bi = &sh->dev[i].req;
918 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
919 
920 		rcu_read_lock();
921 		rrdev = rcu_dereference(conf->disks[i].replacement);
922 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 		rdev = rcu_dereference(conf->disks[i].rdev);
924 		if (!rdev) {
925 			rdev = rrdev;
926 			rrdev = NULL;
927 		}
928 		if (rw & WRITE) {
929 			if (replace_only)
930 				rdev = NULL;
931 			if (rdev == rrdev)
932 				/* We raced and saw duplicates */
933 				rrdev = NULL;
934 		} else {
935 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936 				rdev = rrdev;
937 			rrdev = NULL;
938 		}
939 
940 		if (rdev && test_bit(Faulty, &rdev->flags))
941 			rdev = NULL;
942 		if (rdev)
943 			atomic_inc(&rdev->nr_pending);
944 		if (rrdev && test_bit(Faulty, &rrdev->flags))
945 			rrdev = NULL;
946 		if (rrdev)
947 			atomic_inc(&rrdev->nr_pending);
948 		rcu_read_unlock();
949 
950 		/* We have already checked bad blocks for reads.  Now
951 		 * need to check for writes.  We never accept write errors
952 		 * on the replacement, so we don't to check rrdev.
953 		 */
954 		while ((rw & WRITE) && rdev &&
955 		       test_bit(WriteErrorSeen, &rdev->flags)) {
956 			sector_t first_bad;
957 			int bad_sectors;
958 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 					      &first_bad, &bad_sectors);
960 			if (!bad)
961 				break;
962 
963 			if (bad < 0) {
964 				set_bit(BlockedBadBlocks, &rdev->flags);
965 				if (!conf->mddev->external &&
966 				    conf->mddev->flags) {
967 					/* It is very unlikely, but we might
968 					 * still need to write out the
969 					 * bad block log - better give it
970 					 * a chance*/
971 					md_check_recovery(conf->mddev);
972 				}
973 				/*
974 				 * Because md_wait_for_blocked_rdev
975 				 * will dec nr_pending, we must
976 				 * increment it first.
977 				 */
978 				atomic_inc(&rdev->nr_pending);
979 				md_wait_for_blocked_rdev(rdev, conf->mddev);
980 			} else {
981 				/* Acknowledged bad block - skip the write */
982 				rdev_dec_pending(rdev, conf->mddev);
983 				rdev = NULL;
984 			}
985 		}
986 
987 		if (rdev) {
988 			if (s->syncing || s->expanding || s->expanded
989 			    || s->replacing)
990 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991 
992 			set_bit(STRIPE_IO_STARTED, &sh->state);
993 
994 			bio_reset(bi);
995 			bi->bi_bdev = rdev->bdev;
996 			bi->bi_rw = rw;
997 			bi->bi_end_io = (rw & WRITE)
998 				? raid5_end_write_request
999 				: raid5_end_read_request;
1000 			bi->bi_private = sh;
1001 
1002 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003 				__func__, (unsigned long long)sh->sector,
1004 				bi->bi_rw, i);
1005 			atomic_inc(&sh->count);
1006 			if (sh != head_sh)
1007 				atomic_inc(&head_sh->count);
1008 			if (use_new_offset(conf, sh))
1009 				bi->bi_iter.bi_sector = (sh->sector
1010 						 + rdev->new_data_offset);
1011 			else
1012 				bi->bi_iter.bi_sector = (sh->sector
1013 						 + rdev->data_offset);
1014 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1015 				bi->bi_rw |= REQ_NOMERGE;
1016 
1017 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1020 			bi->bi_vcnt = 1;
1021 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022 			bi->bi_io_vec[0].bv_offset = 0;
1023 			bi->bi_iter.bi_size = STRIPE_SIZE;
1024 			/*
1025 			 * If this is discard request, set bi_vcnt 0. We don't
1026 			 * want to confuse SCSI because SCSI will replace payload
1027 			 */
1028 			if (rw & REQ_DISCARD)
1029 				bi->bi_vcnt = 0;
1030 			if (rrdev)
1031 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1032 
1033 			if (conf->mddev->gendisk)
1034 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035 						      bi, disk_devt(conf->mddev->gendisk),
1036 						      sh->dev[i].sector);
1037 			generic_make_request(bi);
1038 		}
1039 		if (rrdev) {
1040 			if (s->syncing || s->expanding || s->expanded
1041 			    || s->replacing)
1042 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1043 
1044 			set_bit(STRIPE_IO_STARTED, &sh->state);
1045 
1046 			bio_reset(rbi);
1047 			rbi->bi_bdev = rrdev->bdev;
1048 			rbi->bi_rw = rw;
1049 			BUG_ON(!(rw & WRITE));
1050 			rbi->bi_end_io = raid5_end_write_request;
1051 			rbi->bi_private = sh;
1052 
1053 			pr_debug("%s: for %llu schedule op %ld on "
1054 				 "replacement disc %d\n",
1055 				__func__, (unsigned long long)sh->sector,
1056 				rbi->bi_rw, i);
1057 			atomic_inc(&sh->count);
1058 			if (sh != head_sh)
1059 				atomic_inc(&head_sh->count);
1060 			if (use_new_offset(conf, sh))
1061 				rbi->bi_iter.bi_sector = (sh->sector
1062 						  + rrdev->new_data_offset);
1063 			else
1064 				rbi->bi_iter.bi_sector = (sh->sector
1065 						  + rrdev->data_offset);
1066 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1069 			rbi->bi_vcnt = 1;
1070 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071 			rbi->bi_io_vec[0].bv_offset = 0;
1072 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1073 			/*
1074 			 * If this is discard request, set bi_vcnt 0. We don't
1075 			 * want to confuse SCSI because SCSI will replace payload
1076 			 */
1077 			if (rw & REQ_DISCARD)
1078 				rbi->bi_vcnt = 0;
1079 			if (conf->mddev->gendisk)
1080 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081 						      rbi, disk_devt(conf->mddev->gendisk),
1082 						      sh->dev[i].sector);
1083 			generic_make_request(rbi);
1084 		}
1085 		if (!rdev && !rrdev) {
1086 			if (rw & WRITE)
1087 				set_bit(STRIPE_DEGRADED, &sh->state);
1088 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1089 				bi->bi_rw, i, (unsigned long long)sh->sector);
1090 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091 			set_bit(STRIPE_HANDLE, &sh->state);
1092 		}
1093 
1094 		if (!head_sh->batch_head)
1095 			continue;
1096 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097 				      batch_list);
1098 		if (sh != head_sh)
1099 			goto again;
1100 	}
1101 }
1102 
1103 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh)1104 async_copy_data(int frombio, struct bio *bio, struct page **page,
1105 	sector_t sector, struct dma_async_tx_descriptor *tx,
1106 	struct stripe_head *sh)
1107 {
1108 	struct bio_vec bvl;
1109 	struct bvec_iter iter;
1110 	struct page *bio_page;
1111 	int page_offset;
1112 	struct async_submit_ctl submit;
1113 	enum async_tx_flags flags = 0;
1114 
1115 	if (bio->bi_iter.bi_sector >= sector)
1116 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1117 	else
1118 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1119 
1120 	if (frombio)
1121 		flags |= ASYNC_TX_FENCE;
1122 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1123 
1124 	bio_for_each_segment(bvl, bio, iter) {
1125 		int len = bvl.bv_len;
1126 		int clen;
1127 		int b_offset = 0;
1128 
1129 		if (page_offset < 0) {
1130 			b_offset = -page_offset;
1131 			page_offset += b_offset;
1132 			len -= b_offset;
1133 		}
1134 
1135 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1136 			clen = STRIPE_SIZE - page_offset;
1137 		else
1138 			clen = len;
1139 
1140 		if (clen > 0) {
1141 			b_offset += bvl.bv_offset;
1142 			bio_page = bvl.bv_page;
1143 			if (frombio) {
1144 				if (sh->raid_conf->skip_copy &&
1145 				    b_offset == 0 && page_offset == 0 &&
1146 				    clen == STRIPE_SIZE)
1147 					*page = bio_page;
1148 				else
1149 					tx = async_memcpy(*page, bio_page, page_offset,
1150 						  b_offset, clen, &submit);
1151 			} else
1152 				tx = async_memcpy(bio_page, *page, b_offset,
1153 						  page_offset, clen, &submit);
1154 		}
1155 		/* chain the operations */
1156 		submit.depend_tx = tx;
1157 
1158 		if (clen < len) /* hit end of page */
1159 			break;
1160 		page_offset +=  len;
1161 	}
1162 
1163 	return tx;
1164 }
1165 
ops_complete_biofill(void * stripe_head_ref)1166 static void ops_complete_biofill(void *stripe_head_ref)
1167 {
1168 	struct stripe_head *sh = stripe_head_ref;
1169 	struct bio *return_bi = NULL;
1170 	int i;
1171 
1172 	pr_debug("%s: stripe %llu\n", __func__,
1173 		(unsigned long long)sh->sector);
1174 
1175 	/* clear completed biofills */
1176 	for (i = sh->disks; i--; ) {
1177 		struct r5dev *dev = &sh->dev[i];
1178 
1179 		/* acknowledge completion of a biofill operation */
1180 		/* and check if we need to reply to a read request,
1181 		 * new R5_Wantfill requests are held off until
1182 		 * !STRIPE_BIOFILL_RUN
1183 		 */
1184 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1185 			struct bio *rbi, *rbi2;
1186 
1187 			BUG_ON(!dev->read);
1188 			rbi = dev->read;
1189 			dev->read = NULL;
1190 			while (rbi && rbi->bi_iter.bi_sector <
1191 				dev->sector + STRIPE_SECTORS) {
1192 				rbi2 = r5_next_bio(rbi, dev->sector);
1193 				if (!raid5_dec_bi_active_stripes(rbi)) {
1194 					rbi->bi_next = return_bi;
1195 					return_bi = rbi;
1196 				}
1197 				rbi = rbi2;
1198 			}
1199 		}
1200 	}
1201 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202 
1203 	return_io(return_bi);
1204 
1205 	set_bit(STRIPE_HANDLE, &sh->state);
1206 	release_stripe(sh);
1207 }
1208 
ops_run_biofill(struct stripe_head * sh)1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211 	struct dma_async_tx_descriptor *tx = NULL;
1212 	struct async_submit_ctl submit;
1213 	int i;
1214 
1215 	BUG_ON(sh->batch_head);
1216 	pr_debug("%s: stripe %llu\n", __func__,
1217 		(unsigned long long)sh->sector);
1218 
1219 	for (i = sh->disks; i--; ) {
1220 		struct r5dev *dev = &sh->dev[i];
1221 		if (test_bit(R5_Wantfill, &dev->flags)) {
1222 			struct bio *rbi;
1223 			spin_lock_irq(&sh->stripe_lock);
1224 			dev->read = rbi = dev->toread;
1225 			dev->toread = NULL;
1226 			spin_unlock_irq(&sh->stripe_lock);
1227 			while (rbi && rbi->bi_iter.bi_sector <
1228 				dev->sector + STRIPE_SECTORS) {
1229 				tx = async_copy_data(0, rbi, &dev->page,
1230 					dev->sector, tx, sh);
1231 				rbi = r5_next_bio(rbi, dev->sector);
1232 			}
1233 		}
1234 	}
1235 
1236 	atomic_inc(&sh->count);
1237 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 	async_trigger_callback(&submit);
1239 }
1240 
mark_target_uptodate(struct stripe_head * sh,int target)1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243 	struct r5dev *tgt;
1244 
1245 	if (target < 0)
1246 		return;
1247 
1248 	tgt = &sh->dev[target];
1249 	set_bit(R5_UPTODATE, &tgt->flags);
1250 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 	clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253 
ops_complete_compute(void * stripe_head_ref)1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256 	struct stripe_head *sh = stripe_head_ref;
1257 
1258 	pr_debug("%s: stripe %llu\n", __func__,
1259 		(unsigned long long)sh->sector);
1260 
1261 	/* mark the computed target(s) as uptodate */
1262 	mark_target_uptodate(sh, sh->ops.target);
1263 	mark_target_uptodate(sh, sh->ops.target2);
1264 
1265 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 	if (sh->check_state == check_state_compute_run)
1267 		sh->check_state = check_state_compute_result;
1268 	set_bit(STRIPE_HANDLE, &sh->state);
1269 	release_stripe(sh);
1270 }
1271 
1272 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 				 struct raid5_percpu *percpu, int i)
1275 {
1276 	void *addr;
1277 
1278 	addr = flex_array_get(percpu->scribble, i);
1279 	return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281 
1282 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285 	void *addr;
1286 
1287 	addr = flex_array_get(percpu->scribble, i);
1288 	return addr;
1289 }
1290 
1291 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294 	int disks = sh->disks;
1295 	struct page **xor_srcs = to_addr_page(percpu, 0);
1296 	int target = sh->ops.target;
1297 	struct r5dev *tgt = &sh->dev[target];
1298 	struct page *xor_dest = tgt->page;
1299 	int count = 0;
1300 	struct dma_async_tx_descriptor *tx;
1301 	struct async_submit_ctl submit;
1302 	int i;
1303 
1304 	BUG_ON(sh->batch_head);
1305 
1306 	pr_debug("%s: stripe %llu block: %d\n",
1307 		__func__, (unsigned long long)sh->sector, target);
1308 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309 
1310 	for (i = disks; i--; )
1311 		if (i != target)
1312 			xor_srcs[count++] = sh->dev[i].page;
1313 
1314 	atomic_inc(&sh->count);
1315 
1316 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 	if (unlikely(count == 1))
1319 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 	else
1321 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322 
1323 	return tx;
1324 }
1325 
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327  * @srcs - (struct page *) array of size sh->disks
1328  * @sh - stripe_head to parse
1329  *
1330  * Populates srcs in proper layout order for the stripe and returns the
1331  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1332  * destination buffer is recorded in srcs[count] and the Q destination
1333  * is recorded in srcs[count+1]].
1334  */
set_syndrome_sources(struct page ** srcs,struct stripe_head * sh,int srctype)1335 static int set_syndrome_sources(struct page **srcs,
1336 				struct stripe_head *sh,
1337 				int srctype)
1338 {
1339 	int disks = sh->disks;
1340 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 	int d0_idx = raid6_d0(sh);
1342 	int count;
1343 	int i;
1344 
1345 	for (i = 0; i < disks; i++)
1346 		srcs[i] = NULL;
1347 
1348 	count = 0;
1349 	i = d0_idx;
1350 	do {
1351 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 		struct r5dev *dev = &sh->dev[i];
1353 
1354 		if (i == sh->qd_idx || i == sh->pd_idx ||
1355 		    (srctype == SYNDROME_SRC_ALL) ||
1356 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1358 		    (srctype == SYNDROME_SRC_WRITTEN &&
1359 		     dev->written))
1360 			srcs[slot] = sh->dev[i].page;
1361 		i = raid6_next_disk(i, disks);
1362 	} while (i != d0_idx);
1363 
1364 	return syndrome_disks;
1365 }
1366 
1367 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370 	int disks = sh->disks;
1371 	struct page **blocks = to_addr_page(percpu, 0);
1372 	int target;
1373 	int qd_idx = sh->qd_idx;
1374 	struct dma_async_tx_descriptor *tx;
1375 	struct async_submit_ctl submit;
1376 	struct r5dev *tgt;
1377 	struct page *dest;
1378 	int i;
1379 	int count;
1380 
1381 	BUG_ON(sh->batch_head);
1382 	if (sh->ops.target < 0)
1383 		target = sh->ops.target2;
1384 	else if (sh->ops.target2 < 0)
1385 		target = sh->ops.target;
1386 	else
1387 		/* we should only have one valid target */
1388 		BUG();
1389 	BUG_ON(target < 0);
1390 	pr_debug("%s: stripe %llu block: %d\n",
1391 		__func__, (unsigned long long)sh->sector, target);
1392 
1393 	tgt = &sh->dev[target];
1394 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 	dest = tgt->page;
1396 
1397 	atomic_inc(&sh->count);
1398 
1399 	if (target == qd_idx) {
1400 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 		blocks[count] = NULL; /* regenerating p is not necessary */
1402 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 				  ops_complete_compute, sh,
1405 				  to_addr_conv(sh, percpu, 0));
1406 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 	} else {
1408 		/* Compute any data- or p-drive using XOR */
1409 		count = 0;
1410 		for (i = disks; i-- ; ) {
1411 			if (i == target || i == qd_idx)
1412 				continue;
1413 			blocks[count++] = sh->dev[i].page;
1414 		}
1415 
1416 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 				  NULL, ops_complete_compute, sh,
1418 				  to_addr_conv(sh, percpu, 0));
1419 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 	}
1421 
1422 	return tx;
1423 }
1424 
1425 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428 	int i, count, disks = sh->disks;
1429 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 	int d0_idx = raid6_d0(sh);
1431 	int faila = -1, failb = -1;
1432 	int target = sh->ops.target;
1433 	int target2 = sh->ops.target2;
1434 	struct r5dev *tgt = &sh->dev[target];
1435 	struct r5dev *tgt2 = &sh->dev[target2];
1436 	struct dma_async_tx_descriptor *tx;
1437 	struct page **blocks = to_addr_page(percpu, 0);
1438 	struct async_submit_ctl submit;
1439 
1440 	BUG_ON(sh->batch_head);
1441 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 		 __func__, (unsigned long long)sh->sector, target, target2);
1443 	BUG_ON(target < 0 || target2 < 0);
1444 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446 
1447 	/* we need to open-code set_syndrome_sources to handle the
1448 	 * slot number conversion for 'faila' and 'failb'
1449 	 */
1450 	for (i = 0; i < disks ; i++)
1451 		blocks[i] = NULL;
1452 	count = 0;
1453 	i = d0_idx;
1454 	do {
1455 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456 
1457 		blocks[slot] = sh->dev[i].page;
1458 
1459 		if (i == target)
1460 			faila = slot;
1461 		if (i == target2)
1462 			failb = slot;
1463 		i = raid6_next_disk(i, disks);
1464 	} while (i != d0_idx);
1465 
1466 	BUG_ON(faila == failb);
1467 	if (failb < faila)
1468 		swap(faila, failb);
1469 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 		 __func__, (unsigned long long)sh->sector, faila, failb);
1471 
1472 	atomic_inc(&sh->count);
1473 
1474 	if (failb == syndrome_disks+1) {
1475 		/* Q disk is one of the missing disks */
1476 		if (faila == syndrome_disks) {
1477 			/* Missing P+Q, just recompute */
1478 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 					  ops_complete_compute, sh,
1480 					  to_addr_conv(sh, percpu, 0));
1481 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 						  STRIPE_SIZE, &submit);
1483 		} else {
1484 			struct page *dest;
1485 			int data_target;
1486 			int qd_idx = sh->qd_idx;
1487 
1488 			/* Missing D+Q: recompute D from P, then recompute Q */
1489 			if (target == qd_idx)
1490 				data_target = target2;
1491 			else
1492 				data_target = target;
1493 
1494 			count = 0;
1495 			for (i = disks; i-- ; ) {
1496 				if (i == data_target || i == qd_idx)
1497 					continue;
1498 				blocks[count++] = sh->dev[i].page;
1499 			}
1500 			dest = sh->dev[data_target].page;
1501 			init_async_submit(&submit,
1502 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 					  NULL, NULL, NULL,
1504 					  to_addr_conv(sh, percpu, 0));
1505 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 				       &submit);
1507 
1508 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 					  ops_complete_compute, sh,
1511 					  to_addr_conv(sh, percpu, 0));
1512 			return async_gen_syndrome(blocks, 0, count+2,
1513 						  STRIPE_SIZE, &submit);
1514 		}
1515 	} else {
1516 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 				  ops_complete_compute, sh,
1518 				  to_addr_conv(sh, percpu, 0));
1519 		if (failb == syndrome_disks) {
1520 			/* We're missing D+P. */
1521 			return async_raid6_datap_recov(syndrome_disks+2,
1522 						       STRIPE_SIZE, faila,
1523 						       blocks, &submit);
1524 		} else {
1525 			/* We're missing D+D. */
1526 			return async_raid6_2data_recov(syndrome_disks+2,
1527 						       STRIPE_SIZE, faila, failb,
1528 						       blocks, &submit);
1529 		}
1530 	}
1531 }
1532 
ops_complete_prexor(void * stripe_head_ref)1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535 	struct stripe_head *sh = stripe_head_ref;
1536 
1537 	pr_debug("%s: stripe %llu\n", __func__,
1538 		(unsigned long long)sh->sector);
1539 }
1540 
1541 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 		struct dma_async_tx_descriptor *tx)
1544 {
1545 	int disks = sh->disks;
1546 	struct page **xor_srcs = to_addr_page(percpu, 0);
1547 	int count = 0, pd_idx = sh->pd_idx, i;
1548 	struct async_submit_ctl submit;
1549 
1550 	/* existing parity data subtracted */
1551 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552 
1553 	BUG_ON(sh->batch_head);
1554 	pr_debug("%s: stripe %llu\n", __func__,
1555 		(unsigned long long)sh->sector);
1556 
1557 	for (i = disks; i--; ) {
1558 		struct r5dev *dev = &sh->dev[i];
1559 		/* Only process blocks that are known to be uptodate */
1560 		if (test_bit(R5_Wantdrain, &dev->flags))
1561 			xor_srcs[count++] = dev->page;
1562 	}
1563 
1564 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567 
1568 	return tx;
1569 }
1570 
1571 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 		struct dma_async_tx_descriptor *tx)
1574 {
1575 	struct page **blocks = to_addr_page(percpu, 0);
1576 	int count;
1577 	struct async_submit_ctl submit;
1578 
1579 	pr_debug("%s: stripe %llu\n", __func__,
1580 		(unsigned long long)sh->sector);
1581 
1582 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583 
1584 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1587 
1588 	return tx;
1589 }
1590 
1591 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594 	int disks = sh->disks;
1595 	int i;
1596 	struct stripe_head *head_sh = sh;
1597 
1598 	pr_debug("%s: stripe %llu\n", __func__,
1599 		(unsigned long long)sh->sector);
1600 
1601 	for (i = disks; i--; ) {
1602 		struct r5dev *dev;
1603 		struct bio *chosen;
1604 
1605 		sh = head_sh;
1606 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 			struct bio *wbi;
1608 
1609 again:
1610 			dev = &sh->dev[i];
1611 			spin_lock_irq(&sh->stripe_lock);
1612 			chosen = dev->towrite;
1613 			dev->towrite = NULL;
1614 			sh->overwrite_disks = 0;
1615 			BUG_ON(dev->written);
1616 			wbi = dev->written = chosen;
1617 			spin_unlock_irq(&sh->stripe_lock);
1618 			WARN_ON(dev->page != dev->orig_page);
1619 
1620 			while (wbi && wbi->bi_iter.bi_sector <
1621 				dev->sector + STRIPE_SECTORS) {
1622 				if (wbi->bi_rw & REQ_FUA)
1623 					set_bit(R5_WantFUA, &dev->flags);
1624 				if (wbi->bi_rw & REQ_SYNC)
1625 					set_bit(R5_SyncIO, &dev->flags);
1626 				if (wbi->bi_rw & REQ_DISCARD)
1627 					set_bit(R5_Discard, &dev->flags);
1628 				else {
1629 					tx = async_copy_data(1, wbi, &dev->page,
1630 						dev->sector, tx, sh);
1631 					if (dev->page != dev->orig_page) {
1632 						set_bit(R5_SkipCopy, &dev->flags);
1633 						clear_bit(R5_UPTODATE, &dev->flags);
1634 						clear_bit(R5_OVERWRITE, &dev->flags);
1635 					}
1636 				}
1637 				wbi = r5_next_bio(wbi, dev->sector);
1638 			}
1639 
1640 			if (head_sh->batch_head) {
1641 				sh = list_first_entry(&sh->batch_list,
1642 						      struct stripe_head,
1643 						      batch_list);
1644 				if (sh == head_sh)
1645 					continue;
1646 				goto again;
1647 			}
1648 		}
1649 	}
1650 
1651 	return tx;
1652 }
1653 
ops_complete_reconstruct(void * stripe_head_ref)1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656 	struct stripe_head *sh = stripe_head_ref;
1657 	int disks = sh->disks;
1658 	int pd_idx = sh->pd_idx;
1659 	int qd_idx = sh->qd_idx;
1660 	int i;
1661 	bool fua = false, sync = false, discard = false;
1662 
1663 	pr_debug("%s: stripe %llu\n", __func__,
1664 		(unsigned long long)sh->sector);
1665 
1666 	for (i = disks; i--; ) {
1667 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670 	}
1671 
1672 	for (i = disks; i--; ) {
1673 		struct r5dev *dev = &sh->dev[i];
1674 
1675 		if (dev->written || i == pd_idx || i == qd_idx) {
1676 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 				set_bit(R5_UPTODATE, &dev->flags);
1678 			if (fua)
1679 				set_bit(R5_WantFUA, &dev->flags);
1680 			if (sync)
1681 				set_bit(R5_SyncIO, &dev->flags);
1682 		}
1683 	}
1684 
1685 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 		sh->reconstruct_state = reconstruct_state_drain_result;
1687 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 	else {
1690 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 		sh->reconstruct_state = reconstruct_state_result;
1692 	}
1693 
1694 	set_bit(STRIPE_HANDLE, &sh->state);
1695 	release_stripe(sh);
1696 }
1697 
1698 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 		     struct dma_async_tx_descriptor *tx)
1701 {
1702 	int disks = sh->disks;
1703 	struct page **xor_srcs;
1704 	struct async_submit_ctl submit;
1705 	int count, pd_idx = sh->pd_idx, i;
1706 	struct page *xor_dest;
1707 	int prexor = 0;
1708 	unsigned long flags;
1709 	int j = 0;
1710 	struct stripe_head *head_sh = sh;
1711 	int last_stripe;
1712 
1713 	pr_debug("%s: stripe %llu\n", __func__,
1714 		(unsigned long long)sh->sector);
1715 
1716 	for (i = 0; i < sh->disks; i++) {
1717 		if (pd_idx == i)
1718 			continue;
1719 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 			break;
1721 	}
1722 	if (i >= sh->disks) {
1723 		atomic_inc(&sh->count);
1724 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 		ops_complete_reconstruct(sh);
1726 		return;
1727 	}
1728 again:
1729 	count = 0;
1730 	xor_srcs = to_addr_page(percpu, j);
1731 	/* check if prexor is active which means only process blocks
1732 	 * that are part of a read-modify-write (written)
1733 	 */
1734 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 		prexor = 1;
1736 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 		for (i = disks; i--; ) {
1738 			struct r5dev *dev = &sh->dev[i];
1739 			if (head_sh->dev[i].written)
1740 				xor_srcs[count++] = dev->page;
1741 		}
1742 	} else {
1743 		xor_dest = sh->dev[pd_idx].page;
1744 		for (i = disks; i--; ) {
1745 			struct r5dev *dev = &sh->dev[i];
1746 			if (i != pd_idx)
1747 				xor_srcs[count++] = dev->page;
1748 		}
1749 	}
1750 
1751 	/* 1/ if we prexor'd then the dest is reused as a source
1752 	 * 2/ if we did not prexor then we are redoing the parity
1753 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 	 * for the synchronous xor case
1755 	 */
1756 	last_stripe = !head_sh->batch_head ||
1757 		list_first_entry(&sh->batch_list,
1758 				 struct stripe_head, batch_list) == head_sh;
1759 	if (last_stripe) {
1760 		flags = ASYNC_TX_ACK |
1761 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762 
1763 		atomic_inc(&head_sh->count);
1764 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 				  to_addr_conv(sh, percpu, j));
1766 	} else {
1767 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 		init_async_submit(&submit, flags, tx, NULL, NULL,
1769 				  to_addr_conv(sh, percpu, j));
1770 	}
1771 
1772 	if (unlikely(count == 1))
1773 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 	else
1775 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 	if (!last_stripe) {
1777 		j++;
1778 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 				      batch_list);
1780 		goto again;
1781 	}
1782 }
1783 
1784 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 		     struct dma_async_tx_descriptor *tx)
1787 {
1788 	struct async_submit_ctl submit;
1789 	struct page **blocks;
1790 	int count, i, j = 0;
1791 	struct stripe_head *head_sh = sh;
1792 	int last_stripe;
1793 	int synflags;
1794 	unsigned long txflags;
1795 
1796 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797 
1798 	for (i = 0; i < sh->disks; i++) {
1799 		if (sh->pd_idx == i || sh->qd_idx == i)
1800 			continue;
1801 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 			break;
1803 	}
1804 	if (i >= sh->disks) {
1805 		atomic_inc(&sh->count);
1806 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 		ops_complete_reconstruct(sh);
1809 		return;
1810 	}
1811 
1812 again:
1813 	blocks = to_addr_page(percpu, j);
1814 
1815 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 		synflags = SYNDROME_SRC_WRITTEN;
1817 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 	} else {
1819 		synflags = SYNDROME_SRC_ALL;
1820 		txflags = ASYNC_TX_ACK;
1821 	}
1822 
1823 	count = set_syndrome_sources(blocks, sh, synflags);
1824 	last_stripe = !head_sh->batch_head ||
1825 		list_first_entry(&sh->batch_list,
1826 				 struct stripe_head, batch_list) == head_sh;
1827 
1828 	if (last_stripe) {
1829 		atomic_inc(&head_sh->count);
1830 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 				  head_sh, to_addr_conv(sh, percpu, j));
1832 	} else
1833 		init_async_submit(&submit, 0, tx, NULL, NULL,
1834 				  to_addr_conv(sh, percpu, j));
1835 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1836 	if (!last_stripe) {
1837 		j++;
1838 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 				      batch_list);
1840 		goto again;
1841 	}
1842 }
1843 
ops_complete_check(void * stripe_head_ref)1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846 	struct stripe_head *sh = stripe_head_ref;
1847 
1848 	pr_debug("%s: stripe %llu\n", __func__,
1849 		(unsigned long long)sh->sector);
1850 
1851 	sh->check_state = check_state_check_result;
1852 	set_bit(STRIPE_HANDLE, &sh->state);
1853 	release_stripe(sh);
1854 }
1855 
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858 	int disks = sh->disks;
1859 	int pd_idx = sh->pd_idx;
1860 	int qd_idx = sh->qd_idx;
1861 	struct page *xor_dest;
1862 	struct page **xor_srcs = to_addr_page(percpu, 0);
1863 	struct dma_async_tx_descriptor *tx;
1864 	struct async_submit_ctl submit;
1865 	int count;
1866 	int i;
1867 
1868 	pr_debug("%s: stripe %llu\n", __func__,
1869 		(unsigned long long)sh->sector);
1870 
1871 	BUG_ON(sh->batch_head);
1872 	count = 0;
1873 	xor_dest = sh->dev[pd_idx].page;
1874 	xor_srcs[count++] = xor_dest;
1875 	for (i = disks; i--; ) {
1876 		if (i == pd_idx || i == qd_idx)
1877 			continue;
1878 		xor_srcs[count++] = sh->dev[i].page;
1879 	}
1880 
1881 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 			  to_addr_conv(sh, percpu, 0));
1883 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 			   &sh->ops.zero_sum_result, &submit);
1885 
1886 	atomic_inc(&sh->count);
1887 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 	tx = async_trigger_callback(&submit);
1889 }
1890 
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893 	struct page **srcs = to_addr_page(percpu, 0);
1894 	struct async_submit_ctl submit;
1895 	int count;
1896 
1897 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 		(unsigned long long)sh->sector, checkp);
1899 
1900 	BUG_ON(sh->batch_head);
1901 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 	if (!checkp)
1903 		srcs[count] = NULL;
1904 
1905 	atomic_inc(&sh->count);
1906 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 			  sh, to_addr_conv(sh, percpu, 0));
1908 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911 
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914 	int overlap_clear = 0, i, disks = sh->disks;
1915 	struct dma_async_tx_descriptor *tx = NULL;
1916 	struct r5conf *conf = sh->raid_conf;
1917 	int level = conf->level;
1918 	struct raid5_percpu *percpu;
1919 	unsigned long cpu;
1920 
1921 	cpu = get_cpu();
1922 	percpu = per_cpu_ptr(conf->percpu, cpu);
1923 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 		ops_run_biofill(sh);
1925 		overlap_clear++;
1926 	}
1927 
1928 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 		if (level < 6)
1930 			tx = ops_run_compute5(sh, percpu);
1931 		else {
1932 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 				tx = ops_run_compute6_1(sh, percpu);
1934 			else
1935 				tx = ops_run_compute6_2(sh, percpu);
1936 		}
1937 		/* terminate the chain if reconstruct is not set to be run */
1938 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 			async_tx_ack(tx);
1940 	}
1941 
1942 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 		if (level < 6)
1944 			tx = ops_run_prexor5(sh, percpu, tx);
1945 		else
1946 			tx = ops_run_prexor6(sh, percpu, tx);
1947 	}
1948 
1949 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 		tx = ops_run_biodrain(sh, tx);
1951 		overlap_clear++;
1952 	}
1953 
1954 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 		if (level < 6)
1956 			ops_run_reconstruct5(sh, percpu, tx);
1957 		else
1958 			ops_run_reconstruct6(sh, percpu, tx);
1959 	}
1960 
1961 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 		if (sh->check_state == check_state_run)
1963 			ops_run_check_p(sh, percpu);
1964 		else if (sh->check_state == check_state_run_q)
1965 			ops_run_check_pq(sh, percpu, 0);
1966 		else if (sh->check_state == check_state_run_pq)
1967 			ops_run_check_pq(sh, percpu, 1);
1968 		else
1969 			BUG();
1970 	}
1971 
1972 	if (overlap_clear && !sh->batch_head)
1973 		for (i = disks; i--; ) {
1974 			struct r5dev *dev = &sh->dev[i];
1975 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 				wake_up(&sh->raid_conf->wait_for_overlap);
1977 		}
1978 	put_cpu();
1979 }
1980 
alloc_stripe(struct kmem_cache * sc,gfp_t gfp)1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983 	struct stripe_head *sh;
1984 
1985 	sh = kmem_cache_zalloc(sc, gfp);
1986 	if (sh) {
1987 		spin_lock_init(&sh->stripe_lock);
1988 		spin_lock_init(&sh->batch_lock);
1989 		INIT_LIST_HEAD(&sh->batch_list);
1990 		INIT_LIST_HEAD(&sh->lru);
1991 		atomic_set(&sh->count, 1);
1992 	}
1993 	return sh;
1994 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997 	struct stripe_head *sh;
1998 
1999 	sh = alloc_stripe(conf->slab_cache, gfp);
2000 	if (!sh)
2001 		return 0;
2002 
2003 	sh->raid_conf = conf;
2004 
2005 	if (grow_buffers(sh, gfp)) {
2006 		shrink_buffers(sh);
2007 		kmem_cache_free(conf->slab_cache, sh);
2008 		return 0;
2009 	}
2010 	sh->hash_lock_index =
2011 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 	/* we just created an active stripe so... */
2013 	atomic_inc(&conf->active_stripes);
2014 
2015 	release_stripe(sh);
2016 	conf->max_nr_stripes++;
2017 	return 1;
2018 }
2019 
grow_stripes(struct r5conf * conf,int num)2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022 	struct kmem_cache *sc;
2023 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024 
2025 	if (conf->mddev->gendisk)
2026 		sprintf(conf->cache_name[0],
2027 			"raid%d-%s", conf->level, mdname(conf->mddev));
2028 	else
2029 		sprintf(conf->cache_name[0],
2030 			"raid%d-%p", conf->level, conf->mddev);
2031 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032 
2033 	conf->active_name = 0;
2034 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 			       0, 0, NULL);
2037 	if (!sc)
2038 		return 1;
2039 	conf->slab_cache = sc;
2040 	conf->pool_size = devs;
2041 	while (num--)
2042 		if (!grow_one_stripe(conf, GFP_KERNEL))
2043 			return 1;
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * scribble_len - return the required size of the scribble region
2050  * @num - total number of disks in the array
2051  *
2052  * The size must be enough to contain:
2053  * 1/ a struct page pointer for each device in the array +2
2054  * 2/ room to convert each entry in (1) to its corresponding dma
2055  *    (dma_map_page()) or page (page_address()) address.
2056  *
2057  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058  * calculate over all devices (not just the data blocks), using zeros in place
2059  * of the P and Q blocks.
2060  */
scribble_alloc(int num,int cnt,gfp_t flags)2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063 	struct flex_array *ret;
2064 	size_t len;
2065 
2066 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 	ret = flex_array_alloc(len, cnt, flags);
2068 	if (!ret)
2069 		return NULL;
2070 	/* always prealloc all elements, so no locking is required */
2071 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 		flex_array_free(ret);
2073 		return NULL;
2074 	}
2075 	return ret;
2076 }
2077 
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080 	unsigned long cpu;
2081 	int err = 0;
2082 
2083 	/*
2084 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2085 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2086 	 * should equal to new_disks and new_sectors
2087 	 */
2088 	if (conf->scribble_disks >= new_disks &&
2089 	    conf->scribble_sectors >= new_sectors)
2090 		return 0;
2091 	mddev_suspend(conf->mddev);
2092 	get_online_cpus();
2093 	for_each_present_cpu(cpu) {
2094 		struct raid5_percpu *percpu;
2095 		struct flex_array *scribble;
2096 
2097 		percpu = per_cpu_ptr(conf->percpu, cpu);
2098 		scribble = scribble_alloc(new_disks,
2099 					  new_sectors / STRIPE_SECTORS,
2100 					  GFP_NOIO);
2101 
2102 		if (scribble) {
2103 			flex_array_free(percpu->scribble);
2104 			percpu->scribble = scribble;
2105 		} else {
2106 			err = -ENOMEM;
2107 			break;
2108 		}
2109 	}
2110 	put_online_cpus();
2111 	mddev_resume(conf->mddev);
2112 	if (!err) {
2113 		conf->scribble_disks = new_disks;
2114 		conf->scribble_sectors = new_sectors;
2115 	}
2116 	return err;
2117 }
2118 
resize_stripes(struct r5conf * conf,int newsize)2119 static int resize_stripes(struct r5conf *conf, int newsize)
2120 {
2121 	/* Make all the stripes able to hold 'newsize' devices.
2122 	 * New slots in each stripe get 'page' set to a new page.
2123 	 *
2124 	 * This happens in stages:
2125 	 * 1/ create a new kmem_cache and allocate the required number of
2126 	 *    stripe_heads.
2127 	 * 2/ gather all the old stripe_heads and transfer the pages across
2128 	 *    to the new stripe_heads.  This will have the side effect of
2129 	 *    freezing the array as once all stripe_heads have been collected,
2130 	 *    no IO will be possible.  Old stripe heads are freed once their
2131 	 *    pages have been transferred over, and the old kmem_cache is
2132 	 *    freed when all stripes are done.
2133 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2134 	 *    we simple return a failre status - no need to clean anything up.
2135 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2136 	 *    If this fails, we don't bother trying the shrink the
2137 	 *    stripe_heads down again, we just leave them as they are.
2138 	 *    As each stripe_head is processed the new one is released into
2139 	 *    active service.
2140 	 *
2141 	 * Once step2 is started, we cannot afford to wait for a write,
2142 	 * so we use GFP_NOIO allocations.
2143 	 */
2144 	struct stripe_head *osh, *nsh;
2145 	LIST_HEAD(newstripes);
2146 	struct disk_info *ndisks;
2147 	int err;
2148 	struct kmem_cache *sc;
2149 	int i;
2150 	int hash, cnt;
2151 
2152 	if (newsize <= conf->pool_size)
2153 		return 0; /* never bother to shrink */
2154 
2155 	err = md_allow_write(conf->mddev);
2156 	if (err)
2157 		return err;
2158 
2159 	/* Step 1 */
2160 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2161 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2162 			       0, 0, NULL);
2163 	if (!sc)
2164 		return -ENOMEM;
2165 
2166 	/* Need to ensure auto-resizing doesn't interfere */
2167 	mutex_lock(&conf->cache_size_mutex);
2168 
2169 	for (i = conf->max_nr_stripes; i; i--) {
2170 		nsh = alloc_stripe(sc, GFP_KERNEL);
2171 		if (!nsh)
2172 			break;
2173 
2174 		nsh->raid_conf = conf;
2175 		list_add(&nsh->lru, &newstripes);
2176 	}
2177 	if (i) {
2178 		/* didn't get enough, give up */
2179 		while (!list_empty(&newstripes)) {
2180 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2181 			list_del(&nsh->lru);
2182 			kmem_cache_free(sc, nsh);
2183 		}
2184 		kmem_cache_destroy(sc);
2185 		mutex_unlock(&conf->cache_size_mutex);
2186 		return -ENOMEM;
2187 	}
2188 	/* Step 2 - Must use GFP_NOIO now.
2189 	 * OK, we have enough stripes, start collecting inactive
2190 	 * stripes and copying them over
2191 	 */
2192 	hash = 0;
2193 	cnt = 0;
2194 	list_for_each_entry(nsh, &newstripes, lru) {
2195 		lock_device_hash_lock(conf, hash);
2196 		wait_event_cmd(conf->wait_for_stripe,
2197 				    !list_empty(conf->inactive_list + hash),
2198 				    unlock_device_hash_lock(conf, hash),
2199 				    lock_device_hash_lock(conf, hash));
2200 		osh = get_free_stripe(conf, hash);
2201 		unlock_device_hash_lock(conf, hash);
2202 
2203 		for(i=0; i<conf->pool_size; i++) {
2204 			nsh->dev[i].page = osh->dev[i].page;
2205 			nsh->dev[i].orig_page = osh->dev[i].page;
2206 		}
2207 		nsh->hash_lock_index = hash;
2208 		kmem_cache_free(conf->slab_cache, osh);
2209 		cnt++;
2210 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2211 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2212 			hash++;
2213 			cnt = 0;
2214 		}
2215 	}
2216 	kmem_cache_destroy(conf->slab_cache);
2217 
2218 	/* Step 3.
2219 	 * At this point, we are holding all the stripes so the array
2220 	 * is completely stalled, so now is a good time to resize
2221 	 * conf->disks and the scribble region
2222 	 */
2223 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2224 	if (ndisks) {
2225 		for (i=0; i<conf->raid_disks; i++)
2226 			ndisks[i] = conf->disks[i];
2227 		kfree(conf->disks);
2228 		conf->disks = ndisks;
2229 	} else
2230 		err = -ENOMEM;
2231 
2232 	mutex_unlock(&conf->cache_size_mutex);
2233 	/* Step 4, return new stripes to service */
2234 	while(!list_empty(&newstripes)) {
2235 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2236 		list_del_init(&nsh->lru);
2237 
2238 		for (i=conf->raid_disks; i < newsize; i++)
2239 			if (nsh->dev[i].page == NULL) {
2240 				struct page *p = alloc_page(GFP_NOIO);
2241 				nsh->dev[i].page = p;
2242 				nsh->dev[i].orig_page = p;
2243 				if (!p)
2244 					err = -ENOMEM;
2245 			}
2246 		release_stripe(nsh);
2247 	}
2248 	/* critical section pass, GFP_NOIO no longer needed */
2249 
2250 	conf->slab_cache = sc;
2251 	conf->active_name = 1-conf->active_name;
2252 	if (!err)
2253 		conf->pool_size = newsize;
2254 	return err;
2255 }
2256 
drop_one_stripe(struct r5conf * conf)2257 static int drop_one_stripe(struct r5conf *conf)
2258 {
2259 	struct stripe_head *sh;
2260 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2261 
2262 	spin_lock_irq(conf->hash_locks + hash);
2263 	sh = get_free_stripe(conf, hash);
2264 	spin_unlock_irq(conf->hash_locks + hash);
2265 	if (!sh)
2266 		return 0;
2267 	BUG_ON(atomic_read(&sh->count));
2268 	shrink_buffers(sh);
2269 	kmem_cache_free(conf->slab_cache, sh);
2270 	atomic_dec(&conf->active_stripes);
2271 	conf->max_nr_stripes--;
2272 	return 1;
2273 }
2274 
shrink_stripes(struct r5conf * conf)2275 static void shrink_stripes(struct r5conf *conf)
2276 {
2277 	while (conf->max_nr_stripes &&
2278 	       drop_one_stripe(conf))
2279 		;
2280 
2281 	if (conf->slab_cache)
2282 		kmem_cache_destroy(conf->slab_cache);
2283 	conf->slab_cache = NULL;
2284 }
2285 
raid5_end_read_request(struct bio * bi,int error)2286 static void raid5_end_read_request(struct bio * bi, int error)
2287 {
2288 	struct stripe_head *sh = bi->bi_private;
2289 	struct r5conf *conf = sh->raid_conf;
2290 	int disks = sh->disks, i;
2291 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2292 	char b[BDEVNAME_SIZE];
2293 	struct md_rdev *rdev = NULL;
2294 	sector_t s;
2295 
2296 	for (i=0 ; i<disks; i++)
2297 		if (bi == &sh->dev[i].req)
2298 			break;
2299 
2300 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2301 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2302 		uptodate);
2303 	if (i == disks) {
2304 		BUG();
2305 		return;
2306 	}
2307 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2308 		/* If replacement finished while this request was outstanding,
2309 		 * 'replacement' might be NULL already.
2310 		 * In that case it moved down to 'rdev'.
2311 		 * rdev is not removed until all requests are finished.
2312 		 */
2313 		rdev = conf->disks[i].replacement;
2314 	if (!rdev)
2315 		rdev = conf->disks[i].rdev;
2316 
2317 	if (use_new_offset(conf, sh))
2318 		s = sh->sector + rdev->new_data_offset;
2319 	else
2320 		s = sh->sector + rdev->data_offset;
2321 	if (uptodate) {
2322 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2323 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2324 			/* Note that this cannot happen on a
2325 			 * replacement device.  We just fail those on
2326 			 * any error
2327 			 */
2328 			printk_ratelimited(
2329 				KERN_INFO
2330 				"md/raid:%s: read error corrected"
2331 				" (%lu sectors at %llu on %s)\n",
2332 				mdname(conf->mddev), STRIPE_SECTORS,
2333 				(unsigned long long)s,
2334 				bdevname(rdev->bdev, b));
2335 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2336 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2337 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2338 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2339 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2340 
2341 		if (atomic_read(&rdev->read_errors))
2342 			atomic_set(&rdev->read_errors, 0);
2343 	} else {
2344 		const char *bdn = bdevname(rdev->bdev, b);
2345 		int retry = 0;
2346 		int set_bad = 0;
2347 
2348 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2349 		atomic_inc(&rdev->read_errors);
2350 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2351 			printk_ratelimited(
2352 				KERN_WARNING
2353 				"md/raid:%s: read error on replacement device "
2354 				"(sector %llu on %s).\n",
2355 				mdname(conf->mddev),
2356 				(unsigned long long)s,
2357 				bdn);
2358 		else if (conf->mddev->degraded >= conf->max_degraded) {
2359 			set_bad = 1;
2360 			printk_ratelimited(
2361 				KERN_WARNING
2362 				"md/raid:%s: read error not correctable "
2363 				"(sector %llu on %s).\n",
2364 				mdname(conf->mddev),
2365 				(unsigned long long)s,
2366 				bdn);
2367 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2368 			/* Oh, no!!! */
2369 			set_bad = 1;
2370 			printk_ratelimited(
2371 				KERN_WARNING
2372 				"md/raid:%s: read error NOT corrected!! "
2373 				"(sector %llu on %s).\n",
2374 				mdname(conf->mddev),
2375 				(unsigned long long)s,
2376 				bdn);
2377 		} else if (atomic_read(&rdev->read_errors)
2378 			 > conf->max_nr_stripes)
2379 			printk(KERN_WARNING
2380 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2381 			       mdname(conf->mddev), bdn);
2382 		else
2383 			retry = 1;
2384 		if (set_bad && test_bit(In_sync, &rdev->flags)
2385 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2386 			retry = 1;
2387 		if (retry)
2388 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2389 				set_bit(R5_ReadError, &sh->dev[i].flags);
2390 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2391 			} else
2392 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2393 		else {
2394 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2395 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2396 			if (!(set_bad
2397 			      && test_bit(In_sync, &rdev->flags)
2398 			      && rdev_set_badblocks(
2399 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2400 				md_error(conf->mddev, rdev);
2401 		}
2402 	}
2403 	rdev_dec_pending(rdev, conf->mddev);
2404 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2405 	set_bit(STRIPE_HANDLE, &sh->state);
2406 	release_stripe(sh);
2407 }
2408 
raid5_end_write_request(struct bio * bi,int error)2409 static void raid5_end_write_request(struct bio *bi, int error)
2410 {
2411 	struct stripe_head *sh = bi->bi_private;
2412 	struct r5conf *conf = sh->raid_conf;
2413 	int disks = sh->disks, i;
2414 	struct md_rdev *uninitialized_var(rdev);
2415 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2416 	sector_t first_bad;
2417 	int bad_sectors;
2418 	int replacement = 0;
2419 
2420 	for (i = 0 ; i < disks; i++) {
2421 		if (bi == &sh->dev[i].req) {
2422 			rdev = conf->disks[i].rdev;
2423 			break;
2424 		}
2425 		if (bi == &sh->dev[i].rreq) {
2426 			rdev = conf->disks[i].replacement;
2427 			if (rdev)
2428 				replacement = 1;
2429 			else
2430 				/* rdev was removed and 'replacement'
2431 				 * replaced it.  rdev is not removed
2432 				 * until all requests are finished.
2433 				 */
2434 				rdev = conf->disks[i].rdev;
2435 			break;
2436 		}
2437 	}
2438 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2439 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2440 		uptodate);
2441 	if (i == disks) {
2442 		BUG();
2443 		return;
2444 	}
2445 
2446 	if (replacement) {
2447 		if (!uptodate)
2448 			md_error(conf->mddev, rdev);
2449 		else if (is_badblock(rdev, sh->sector,
2450 				     STRIPE_SECTORS,
2451 				     &first_bad, &bad_sectors))
2452 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2453 	} else {
2454 		if (!uptodate) {
2455 			set_bit(STRIPE_DEGRADED, &sh->state);
2456 			set_bit(WriteErrorSeen, &rdev->flags);
2457 			set_bit(R5_WriteError, &sh->dev[i].flags);
2458 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2459 				set_bit(MD_RECOVERY_NEEDED,
2460 					&rdev->mddev->recovery);
2461 		} else if (is_badblock(rdev, sh->sector,
2462 				       STRIPE_SECTORS,
2463 				       &first_bad, &bad_sectors)) {
2464 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2465 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2466 				/* That was a successful write so make
2467 				 * sure it looks like we already did
2468 				 * a re-write.
2469 				 */
2470 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2471 		}
2472 	}
2473 	rdev_dec_pending(rdev, conf->mddev);
2474 
2475 	if (sh->batch_head && !uptodate && !replacement)
2476 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2477 
2478 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2479 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2480 	set_bit(STRIPE_HANDLE, &sh->state);
2481 	release_stripe(sh);
2482 
2483 	if (sh->batch_head && sh != sh->batch_head)
2484 		release_stripe(sh->batch_head);
2485 }
2486 
2487 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2488 
raid5_build_block(struct stripe_head * sh,int i,int previous)2489 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2490 {
2491 	struct r5dev *dev = &sh->dev[i];
2492 
2493 	bio_init(&dev->req);
2494 	dev->req.bi_io_vec = &dev->vec;
2495 	dev->req.bi_max_vecs = 1;
2496 	dev->req.bi_private = sh;
2497 
2498 	bio_init(&dev->rreq);
2499 	dev->rreq.bi_io_vec = &dev->rvec;
2500 	dev->rreq.bi_max_vecs = 1;
2501 	dev->rreq.bi_private = sh;
2502 
2503 	dev->flags = 0;
2504 	dev->sector = compute_blocknr(sh, i, previous);
2505 }
2506 
error(struct mddev * mddev,struct md_rdev * rdev)2507 static void error(struct mddev *mddev, struct md_rdev *rdev)
2508 {
2509 	char b[BDEVNAME_SIZE];
2510 	struct r5conf *conf = mddev->private;
2511 	unsigned long flags;
2512 	pr_debug("raid456: error called\n");
2513 
2514 	spin_lock_irqsave(&conf->device_lock, flags);
2515 	clear_bit(In_sync, &rdev->flags);
2516 	mddev->degraded = calc_degraded(conf);
2517 	spin_unlock_irqrestore(&conf->device_lock, flags);
2518 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2519 
2520 	set_bit(Blocked, &rdev->flags);
2521 	set_bit(Faulty, &rdev->flags);
2522 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2523 	printk(KERN_ALERT
2524 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2525 	       "md/raid:%s: Operation continuing on %d devices.\n",
2526 	       mdname(mddev),
2527 	       bdevname(rdev->bdev, b),
2528 	       mdname(mddev),
2529 	       conf->raid_disks - mddev->degraded);
2530 }
2531 
2532 /*
2533  * Input: a 'big' sector number,
2534  * Output: index of the data and parity disk, and the sector # in them.
2535  */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2536 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2537 				     int previous, int *dd_idx,
2538 				     struct stripe_head *sh)
2539 {
2540 	sector_t stripe, stripe2;
2541 	sector_t chunk_number;
2542 	unsigned int chunk_offset;
2543 	int pd_idx, qd_idx;
2544 	int ddf_layout = 0;
2545 	sector_t new_sector;
2546 	int algorithm = previous ? conf->prev_algo
2547 				 : conf->algorithm;
2548 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2549 					 : conf->chunk_sectors;
2550 	int raid_disks = previous ? conf->previous_raid_disks
2551 				  : conf->raid_disks;
2552 	int data_disks = raid_disks - conf->max_degraded;
2553 
2554 	/* First compute the information on this sector */
2555 
2556 	/*
2557 	 * Compute the chunk number and the sector offset inside the chunk
2558 	 */
2559 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2560 	chunk_number = r_sector;
2561 
2562 	/*
2563 	 * Compute the stripe number
2564 	 */
2565 	stripe = chunk_number;
2566 	*dd_idx = sector_div(stripe, data_disks);
2567 	stripe2 = stripe;
2568 	/*
2569 	 * Select the parity disk based on the user selected algorithm.
2570 	 */
2571 	pd_idx = qd_idx = -1;
2572 	switch(conf->level) {
2573 	case 4:
2574 		pd_idx = data_disks;
2575 		break;
2576 	case 5:
2577 		switch (algorithm) {
2578 		case ALGORITHM_LEFT_ASYMMETRIC:
2579 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2580 			if (*dd_idx >= pd_idx)
2581 				(*dd_idx)++;
2582 			break;
2583 		case ALGORITHM_RIGHT_ASYMMETRIC:
2584 			pd_idx = sector_div(stripe2, raid_disks);
2585 			if (*dd_idx >= pd_idx)
2586 				(*dd_idx)++;
2587 			break;
2588 		case ALGORITHM_LEFT_SYMMETRIC:
2589 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2590 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2591 			break;
2592 		case ALGORITHM_RIGHT_SYMMETRIC:
2593 			pd_idx = sector_div(stripe2, raid_disks);
2594 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2595 			break;
2596 		case ALGORITHM_PARITY_0:
2597 			pd_idx = 0;
2598 			(*dd_idx)++;
2599 			break;
2600 		case ALGORITHM_PARITY_N:
2601 			pd_idx = data_disks;
2602 			break;
2603 		default:
2604 			BUG();
2605 		}
2606 		break;
2607 	case 6:
2608 
2609 		switch (algorithm) {
2610 		case ALGORITHM_LEFT_ASYMMETRIC:
2611 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2612 			qd_idx = pd_idx + 1;
2613 			if (pd_idx == raid_disks-1) {
2614 				(*dd_idx)++;	/* Q D D D P */
2615 				qd_idx = 0;
2616 			} else if (*dd_idx >= pd_idx)
2617 				(*dd_idx) += 2; /* D D P Q D */
2618 			break;
2619 		case ALGORITHM_RIGHT_ASYMMETRIC:
2620 			pd_idx = sector_div(stripe2, raid_disks);
2621 			qd_idx = pd_idx + 1;
2622 			if (pd_idx == raid_disks-1) {
2623 				(*dd_idx)++;	/* Q D D D P */
2624 				qd_idx = 0;
2625 			} else if (*dd_idx >= pd_idx)
2626 				(*dd_idx) += 2; /* D D P Q D */
2627 			break;
2628 		case ALGORITHM_LEFT_SYMMETRIC:
2629 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2630 			qd_idx = (pd_idx + 1) % raid_disks;
2631 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632 			break;
2633 		case ALGORITHM_RIGHT_SYMMETRIC:
2634 			pd_idx = sector_div(stripe2, raid_disks);
2635 			qd_idx = (pd_idx + 1) % raid_disks;
2636 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2637 			break;
2638 
2639 		case ALGORITHM_PARITY_0:
2640 			pd_idx = 0;
2641 			qd_idx = 1;
2642 			(*dd_idx) += 2;
2643 			break;
2644 		case ALGORITHM_PARITY_N:
2645 			pd_idx = data_disks;
2646 			qd_idx = data_disks + 1;
2647 			break;
2648 
2649 		case ALGORITHM_ROTATING_ZERO_RESTART:
2650 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2651 			 * of blocks for computing Q is different.
2652 			 */
2653 			pd_idx = sector_div(stripe2, raid_disks);
2654 			qd_idx = pd_idx + 1;
2655 			if (pd_idx == raid_disks-1) {
2656 				(*dd_idx)++;	/* Q D D D P */
2657 				qd_idx = 0;
2658 			} else if (*dd_idx >= pd_idx)
2659 				(*dd_idx) += 2; /* D D P Q D */
2660 			ddf_layout = 1;
2661 			break;
2662 
2663 		case ALGORITHM_ROTATING_N_RESTART:
2664 			/* Same a left_asymmetric, by first stripe is
2665 			 * D D D P Q  rather than
2666 			 * Q D D D P
2667 			 */
2668 			stripe2 += 1;
2669 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2670 			qd_idx = pd_idx + 1;
2671 			if (pd_idx == raid_disks-1) {
2672 				(*dd_idx)++;	/* Q D D D P */
2673 				qd_idx = 0;
2674 			} else if (*dd_idx >= pd_idx)
2675 				(*dd_idx) += 2; /* D D P Q D */
2676 			ddf_layout = 1;
2677 			break;
2678 
2679 		case ALGORITHM_ROTATING_N_CONTINUE:
2680 			/* Same as left_symmetric but Q is before P */
2681 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2682 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2683 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2684 			ddf_layout = 1;
2685 			break;
2686 
2687 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2688 			/* RAID5 left_asymmetric, with Q on last device */
2689 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2690 			if (*dd_idx >= pd_idx)
2691 				(*dd_idx)++;
2692 			qd_idx = raid_disks - 1;
2693 			break;
2694 
2695 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2696 			pd_idx = sector_div(stripe2, raid_disks-1);
2697 			if (*dd_idx >= pd_idx)
2698 				(*dd_idx)++;
2699 			qd_idx = raid_disks - 1;
2700 			break;
2701 
2702 		case ALGORITHM_LEFT_SYMMETRIC_6:
2703 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2704 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705 			qd_idx = raid_disks - 1;
2706 			break;
2707 
2708 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2709 			pd_idx = sector_div(stripe2, raid_disks-1);
2710 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2711 			qd_idx = raid_disks - 1;
2712 			break;
2713 
2714 		case ALGORITHM_PARITY_0_6:
2715 			pd_idx = 0;
2716 			(*dd_idx)++;
2717 			qd_idx = raid_disks - 1;
2718 			break;
2719 
2720 		default:
2721 			BUG();
2722 		}
2723 		break;
2724 	}
2725 
2726 	if (sh) {
2727 		sh->pd_idx = pd_idx;
2728 		sh->qd_idx = qd_idx;
2729 		sh->ddf_layout = ddf_layout;
2730 	}
2731 	/*
2732 	 * Finally, compute the new sector number
2733 	 */
2734 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2735 	return new_sector;
2736 }
2737 
compute_blocknr(struct stripe_head * sh,int i,int previous)2738 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2739 {
2740 	struct r5conf *conf = sh->raid_conf;
2741 	int raid_disks = sh->disks;
2742 	int data_disks = raid_disks - conf->max_degraded;
2743 	sector_t new_sector = sh->sector, check;
2744 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2745 					 : conf->chunk_sectors;
2746 	int algorithm = previous ? conf->prev_algo
2747 				 : conf->algorithm;
2748 	sector_t stripe;
2749 	int chunk_offset;
2750 	sector_t chunk_number;
2751 	int dummy1, dd_idx = i;
2752 	sector_t r_sector;
2753 	struct stripe_head sh2;
2754 
2755 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2756 	stripe = new_sector;
2757 
2758 	if (i == sh->pd_idx)
2759 		return 0;
2760 	switch(conf->level) {
2761 	case 4: break;
2762 	case 5:
2763 		switch (algorithm) {
2764 		case ALGORITHM_LEFT_ASYMMETRIC:
2765 		case ALGORITHM_RIGHT_ASYMMETRIC:
2766 			if (i > sh->pd_idx)
2767 				i--;
2768 			break;
2769 		case ALGORITHM_LEFT_SYMMETRIC:
2770 		case ALGORITHM_RIGHT_SYMMETRIC:
2771 			if (i < sh->pd_idx)
2772 				i += raid_disks;
2773 			i -= (sh->pd_idx + 1);
2774 			break;
2775 		case ALGORITHM_PARITY_0:
2776 			i -= 1;
2777 			break;
2778 		case ALGORITHM_PARITY_N:
2779 			break;
2780 		default:
2781 			BUG();
2782 		}
2783 		break;
2784 	case 6:
2785 		if (i == sh->qd_idx)
2786 			return 0; /* It is the Q disk */
2787 		switch (algorithm) {
2788 		case ALGORITHM_LEFT_ASYMMETRIC:
2789 		case ALGORITHM_RIGHT_ASYMMETRIC:
2790 		case ALGORITHM_ROTATING_ZERO_RESTART:
2791 		case ALGORITHM_ROTATING_N_RESTART:
2792 			if (sh->pd_idx == raid_disks-1)
2793 				i--;	/* Q D D D P */
2794 			else if (i > sh->pd_idx)
2795 				i -= 2; /* D D P Q D */
2796 			break;
2797 		case ALGORITHM_LEFT_SYMMETRIC:
2798 		case ALGORITHM_RIGHT_SYMMETRIC:
2799 			if (sh->pd_idx == raid_disks-1)
2800 				i--; /* Q D D D P */
2801 			else {
2802 				/* D D P Q D */
2803 				if (i < sh->pd_idx)
2804 					i += raid_disks;
2805 				i -= (sh->pd_idx + 2);
2806 			}
2807 			break;
2808 		case ALGORITHM_PARITY_0:
2809 			i -= 2;
2810 			break;
2811 		case ALGORITHM_PARITY_N:
2812 			break;
2813 		case ALGORITHM_ROTATING_N_CONTINUE:
2814 			/* Like left_symmetric, but P is before Q */
2815 			if (sh->pd_idx == 0)
2816 				i--;	/* P D D D Q */
2817 			else {
2818 				/* D D Q P D */
2819 				if (i < sh->pd_idx)
2820 					i += raid_disks;
2821 				i -= (sh->pd_idx + 1);
2822 			}
2823 			break;
2824 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2825 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2826 			if (i > sh->pd_idx)
2827 				i--;
2828 			break;
2829 		case ALGORITHM_LEFT_SYMMETRIC_6:
2830 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2831 			if (i < sh->pd_idx)
2832 				i += data_disks + 1;
2833 			i -= (sh->pd_idx + 1);
2834 			break;
2835 		case ALGORITHM_PARITY_0_6:
2836 			i -= 1;
2837 			break;
2838 		default:
2839 			BUG();
2840 		}
2841 		break;
2842 	}
2843 
2844 	chunk_number = stripe * data_disks + i;
2845 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2846 
2847 	check = raid5_compute_sector(conf, r_sector,
2848 				     previous, &dummy1, &sh2);
2849 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2850 		|| sh2.qd_idx != sh->qd_idx) {
2851 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2852 		       mdname(conf->mddev));
2853 		return 0;
2854 	}
2855 	return r_sector;
2856 }
2857 
2858 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)2859 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2860 			 int rcw, int expand)
2861 {
2862 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2863 	struct r5conf *conf = sh->raid_conf;
2864 	int level = conf->level;
2865 
2866 	if (rcw) {
2867 
2868 		for (i = disks; i--; ) {
2869 			struct r5dev *dev = &sh->dev[i];
2870 
2871 			if (dev->towrite) {
2872 				set_bit(R5_LOCKED, &dev->flags);
2873 				set_bit(R5_Wantdrain, &dev->flags);
2874 				if (!expand)
2875 					clear_bit(R5_UPTODATE, &dev->flags);
2876 				s->locked++;
2877 			}
2878 		}
2879 		/* if we are not expanding this is a proper write request, and
2880 		 * there will be bios with new data to be drained into the
2881 		 * stripe cache
2882 		 */
2883 		if (!expand) {
2884 			if (!s->locked)
2885 				/* False alarm, nothing to do */
2886 				return;
2887 			sh->reconstruct_state = reconstruct_state_drain_run;
2888 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2889 		} else
2890 			sh->reconstruct_state = reconstruct_state_run;
2891 
2892 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2893 
2894 		if (s->locked + conf->max_degraded == disks)
2895 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2896 				atomic_inc(&conf->pending_full_writes);
2897 	} else {
2898 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2899 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2900 		BUG_ON(level == 6 &&
2901 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2902 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2903 
2904 		for (i = disks; i--; ) {
2905 			struct r5dev *dev = &sh->dev[i];
2906 			if (i == pd_idx || i == qd_idx)
2907 				continue;
2908 
2909 			if (dev->towrite &&
2910 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2911 			     test_bit(R5_Wantcompute, &dev->flags))) {
2912 				set_bit(R5_Wantdrain, &dev->flags);
2913 				set_bit(R5_LOCKED, &dev->flags);
2914 				clear_bit(R5_UPTODATE, &dev->flags);
2915 				s->locked++;
2916 			}
2917 		}
2918 		if (!s->locked)
2919 			/* False alarm - nothing to do */
2920 			return;
2921 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2922 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2923 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2924 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2925 	}
2926 
2927 	/* keep the parity disk(s) locked while asynchronous operations
2928 	 * are in flight
2929 	 */
2930 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2931 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2932 	s->locked++;
2933 
2934 	if (level == 6) {
2935 		int qd_idx = sh->qd_idx;
2936 		struct r5dev *dev = &sh->dev[qd_idx];
2937 
2938 		set_bit(R5_LOCKED, &dev->flags);
2939 		clear_bit(R5_UPTODATE, &dev->flags);
2940 		s->locked++;
2941 	}
2942 
2943 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2944 		__func__, (unsigned long long)sh->sector,
2945 		s->locked, s->ops_request);
2946 }
2947 
2948 /*
2949  * Each stripe/dev can have one or more bion attached.
2950  * toread/towrite point to the first in a chain.
2951  * The bi_next chain must be in order.
2952  */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)2953 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2954 			  int forwrite, int previous)
2955 {
2956 	struct bio **bip;
2957 	struct r5conf *conf = sh->raid_conf;
2958 	int firstwrite=0;
2959 
2960 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2961 		(unsigned long long)bi->bi_iter.bi_sector,
2962 		(unsigned long long)sh->sector);
2963 
2964 	/*
2965 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2966 	 * reference count to avoid race. The reference count should already be
2967 	 * increased before this function is called (for example, in
2968 	 * make_request()), so other bio sharing this stripe will not free the
2969 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2970 	 * protect it.
2971 	 */
2972 	spin_lock_irq(&sh->stripe_lock);
2973 	/* Don't allow new IO added to stripes in batch list */
2974 	if (sh->batch_head)
2975 		goto overlap;
2976 	if (forwrite) {
2977 		bip = &sh->dev[dd_idx].towrite;
2978 		if (*bip == NULL)
2979 			firstwrite = 1;
2980 	} else
2981 		bip = &sh->dev[dd_idx].toread;
2982 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2983 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2984 			goto overlap;
2985 		bip = & (*bip)->bi_next;
2986 	}
2987 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2988 		goto overlap;
2989 
2990 	if (!forwrite || previous)
2991 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2992 
2993 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2994 	if (*bip)
2995 		bi->bi_next = *bip;
2996 	*bip = bi;
2997 	raid5_inc_bi_active_stripes(bi);
2998 
2999 	if (forwrite) {
3000 		/* check if page is covered */
3001 		sector_t sector = sh->dev[dd_idx].sector;
3002 		for (bi=sh->dev[dd_idx].towrite;
3003 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3004 			     bi && bi->bi_iter.bi_sector <= sector;
3005 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3006 			if (bio_end_sector(bi) >= sector)
3007 				sector = bio_end_sector(bi);
3008 		}
3009 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3010 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3011 				sh->overwrite_disks++;
3012 	}
3013 
3014 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3015 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3016 		(unsigned long long)sh->sector, dd_idx);
3017 
3018 	if (conf->mddev->bitmap && firstwrite) {
3019 		/* Cannot hold spinlock over bitmap_startwrite,
3020 		 * but must ensure this isn't added to a batch until
3021 		 * we have added to the bitmap and set bm_seq.
3022 		 * So set STRIPE_BITMAP_PENDING to prevent
3023 		 * batching.
3024 		 * If multiple add_stripe_bio() calls race here they
3025 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3026 		 * to complete "bitmap_startwrite" gets to set
3027 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3028 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3029 		 * any more.
3030 		 */
3031 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032 		spin_unlock_irq(&sh->stripe_lock);
3033 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3034 				  STRIPE_SECTORS, 0);
3035 		spin_lock_irq(&sh->stripe_lock);
3036 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3037 		if (!sh->batch_head) {
3038 			sh->bm_seq = conf->seq_flush+1;
3039 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3040 		}
3041 	}
3042 	spin_unlock_irq(&sh->stripe_lock);
3043 
3044 	if (stripe_can_batch(sh))
3045 		stripe_add_to_batch_list(conf, sh);
3046 	return 1;
3047 
3048  overlap:
3049 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3050 	spin_unlock_irq(&sh->stripe_lock);
3051 	return 0;
3052 }
3053 
3054 static void end_reshape(struct r5conf *conf);
3055 
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3056 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3057 			    struct stripe_head *sh)
3058 {
3059 	int sectors_per_chunk =
3060 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3061 	int dd_idx;
3062 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3063 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3064 
3065 	raid5_compute_sector(conf,
3066 			     stripe * (disks - conf->max_degraded)
3067 			     *sectors_per_chunk + chunk_offset,
3068 			     previous,
3069 			     &dd_idx, sh);
3070 }
3071 
3072 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks,struct bio ** return_bi)3073 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3074 				struct stripe_head_state *s, int disks,
3075 				struct bio **return_bi)
3076 {
3077 	int i;
3078 	BUG_ON(sh->batch_head);
3079 	for (i = disks; i--; ) {
3080 		struct bio *bi;
3081 		int bitmap_end = 0;
3082 
3083 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3084 			struct md_rdev *rdev;
3085 			rcu_read_lock();
3086 			rdev = rcu_dereference(conf->disks[i].rdev);
3087 			if (rdev && test_bit(In_sync, &rdev->flags))
3088 				atomic_inc(&rdev->nr_pending);
3089 			else
3090 				rdev = NULL;
3091 			rcu_read_unlock();
3092 			if (rdev) {
3093 				if (!rdev_set_badblocks(
3094 					    rdev,
3095 					    sh->sector,
3096 					    STRIPE_SECTORS, 0))
3097 					md_error(conf->mddev, rdev);
3098 				rdev_dec_pending(rdev, conf->mddev);
3099 			}
3100 		}
3101 		spin_lock_irq(&sh->stripe_lock);
3102 		/* fail all writes first */
3103 		bi = sh->dev[i].towrite;
3104 		sh->dev[i].towrite = NULL;
3105 		sh->overwrite_disks = 0;
3106 		spin_unlock_irq(&sh->stripe_lock);
3107 		if (bi)
3108 			bitmap_end = 1;
3109 
3110 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3111 			wake_up(&conf->wait_for_overlap);
3112 
3113 		while (bi && bi->bi_iter.bi_sector <
3114 			sh->dev[i].sector + STRIPE_SECTORS) {
3115 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3116 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3117 			if (!raid5_dec_bi_active_stripes(bi)) {
3118 				md_write_end(conf->mddev);
3119 				bi->bi_next = *return_bi;
3120 				*return_bi = bi;
3121 			}
3122 			bi = nextbi;
3123 		}
3124 		if (bitmap_end)
3125 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3126 				STRIPE_SECTORS, 0, 0);
3127 		bitmap_end = 0;
3128 		/* and fail all 'written' */
3129 		bi = sh->dev[i].written;
3130 		sh->dev[i].written = NULL;
3131 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3132 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3133 			sh->dev[i].page = sh->dev[i].orig_page;
3134 		}
3135 
3136 		if (bi) bitmap_end = 1;
3137 		while (bi && bi->bi_iter.bi_sector <
3138 		       sh->dev[i].sector + STRIPE_SECTORS) {
3139 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3140 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3141 			if (!raid5_dec_bi_active_stripes(bi)) {
3142 				md_write_end(conf->mddev);
3143 				bi->bi_next = *return_bi;
3144 				*return_bi = bi;
3145 			}
3146 			bi = bi2;
3147 		}
3148 
3149 		/* fail any reads if this device is non-operational and
3150 		 * the data has not reached the cache yet.
3151 		 */
3152 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3153 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3154 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3155 			spin_lock_irq(&sh->stripe_lock);
3156 			bi = sh->dev[i].toread;
3157 			sh->dev[i].toread = NULL;
3158 			spin_unlock_irq(&sh->stripe_lock);
3159 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3160 				wake_up(&conf->wait_for_overlap);
3161 			while (bi && bi->bi_iter.bi_sector <
3162 			       sh->dev[i].sector + STRIPE_SECTORS) {
3163 				struct bio *nextbi =
3164 					r5_next_bio(bi, sh->dev[i].sector);
3165 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3166 				if (!raid5_dec_bi_active_stripes(bi)) {
3167 					bi->bi_next = *return_bi;
3168 					*return_bi = bi;
3169 				}
3170 				bi = nextbi;
3171 			}
3172 		}
3173 		if (bitmap_end)
3174 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3175 					STRIPE_SECTORS, 0, 0);
3176 		/* If we were in the middle of a write the parity block might
3177 		 * still be locked - so just clear all R5_LOCKED flags
3178 		 */
3179 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3180 	}
3181 
3182 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3183 		if (atomic_dec_and_test(&conf->pending_full_writes))
3184 			md_wakeup_thread(conf->mddev->thread);
3185 }
3186 
3187 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3188 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3189 		   struct stripe_head_state *s)
3190 {
3191 	int abort = 0;
3192 	int i;
3193 
3194 	BUG_ON(sh->batch_head);
3195 	clear_bit(STRIPE_SYNCING, &sh->state);
3196 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3197 		wake_up(&conf->wait_for_overlap);
3198 	s->syncing = 0;
3199 	s->replacing = 0;
3200 	/* There is nothing more to do for sync/check/repair.
3201 	 * Don't even need to abort as that is handled elsewhere
3202 	 * if needed, and not always wanted e.g. if there is a known
3203 	 * bad block here.
3204 	 * For recover/replace we need to record a bad block on all
3205 	 * non-sync devices, or abort the recovery
3206 	 */
3207 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3208 		/* During recovery devices cannot be removed, so
3209 		 * locking and refcounting of rdevs is not needed
3210 		 */
3211 		for (i = 0; i < conf->raid_disks; i++) {
3212 			struct md_rdev *rdev = conf->disks[i].rdev;
3213 			if (rdev
3214 			    && !test_bit(Faulty, &rdev->flags)
3215 			    && !test_bit(In_sync, &rdev->flags)
3216 			    && !rdev_set_badblocks(rdev, sh->sector,
3217 						   STRIPE_SECTORS, 0))
3218 				abort = 1;
3219 			rdev = conf->disks[i].replacement;
3220 			if (rdev
3221 			    && !test_bit(Faulty, &rdev->flags)
3222 			    && !test_bit(In_sync, &rdev->flags)
3223 			    && !rdev_set_badblocks(rdev, sh->sector,
3224 						   STRIPE_SECTORS, 0))
3225 				abort = 1;
3226 		}
3227 		if (abort)
3228 			conf->recovery_disabled =
3229 				conf->mddev->recovery_disabled;
3230 	}
3231 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3232 }
3233 
want_replace(struct stripe_head * sh,int disk_idx)3234 static int want_replace(struct stripe_head *sh, int disk_idx)
3235 {
3236 	struct md_rdev *rdev;
3237 	int rv = 0;
3238 	/* Doing recovery so rcu locking not required */
3239 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3240 	if (rdev
3241 	    && !test_bit(Faulty, &rdev->flags)
3242 	    && !test_bit(In_sync, &rdev->flags)
3243 	    && (rdev->recovery_offset <= sh->sector
3244 		|| rdev->mddev->recovery_cp <= sh->sector))
3245 		rv = 1;
3246 
3247 	return rv;
3248 }
3249 
3250 /* fetch_block - checks the given member device to see if its data needs
3251  * to be read or computed to satisfy a request.
3252  *
3253  * Returns 1 when no more member devices need to be checked, otherwise returns
3254  * 0 to tell the loop in handle_stripe_fill to continue
3255  */
3256 
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3257 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3258 			   int disk_idx, int disks)
3259 {
3260 	struct r5dev *dev = &sh->dev[disk_idx];
3261 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3262 				  &sh->dev[s->failed_num[1]] };
3263 	int i;
3264 
3265 
3266 	if (test_bit(R5_LOCKED, &dev->flags) ||
3267 	    test_bit(R5_UPTODATE, &dev->flags))
3268 		/* No point reading this as we already have it or have
3269 		 * decided to get it.
3270 		 */
3271 		return 0;
3272 
3273 	if (dev->toread ||
3274 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3275 		/* We need this block to directly satisfy a request */
3276 		return 1;
3277 
3278 	if (s->syncing || s->expanding ||
3279 	    (s->replacing && want_replace(sh, disk_idx)))
3280 		/* When syncing, or expanding we read everything.
3281 		 * When replacing, we need the replaced block.
3282 		 */
3283 		return 1;
3284 
3285 	if ((s->failed >= 1 && fdev[0]->toread) ||
3286 	    (s->failed >= 2 && fdev[1]->toread))
3287 		/* If we want to read from a failed device, then
3288 		 * we need to actually read every other device.
3289 		 */
3290 		return 1;
3291 
3292 	/* Sometimes neither read-modify-write nor reconstruct-write
3293 	 * cycles can work.  In those cases we read every block we
3294 	 * can.  Then the parity-update is certain to have enough to
3295 	 * work with.
3296 	 * This can only be a problem when we need to write something,
3297 	 * and some device has failed.  If either of those tests
3298 	 * fail we need look no further.
3299 	 */
3300 	if (!s->failed || !s->to_write)
3301 		return 0;
3302 
3303 	if (test_bit(R5_Insync, &dev->flags) &&
3304 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3305 		/* Pre-reads at not permitted until after short delay
3306 		 * to gather multiple requests.  However if this
3307 		 * device is no Insync, the block could only be be computed
3308 		 * and there is no need to delay that.
3309 		 */
3310 		return 0;
3311 
3312 	for (i = 0; i < s->failed; i++) {
3313 		if (fdev[i]->towrite &&
3314 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3315 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3316 			/* If we have a partial write to a failed
3317 			 * device, then we will need to reconstruct
3318 			 * the content of that device, so all other
3319 			 * devices must be read.
3320 			 */
3321 			return 1;
3322 	}
3323 
3324 	/* If we are forced to do a reconstruct-write, either because
3325 	 * the current RAID6 implementation only supports that, or
3326 	 * or because parity cannot be trusted and we are currently
3327 	 * recovering it, there is extra need to be careful.
3328 	 * If one of the devices that we would need to read, because
3329 	 * it is not being overwritten (and maybe not written at all)
3330 	 * is missing/faulty, then we need to read everything we can.
3331 	 */
3332 	if (sh->raid_conf->level != 6 &&
3333 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3334 		/* reconstruct-write isn't being forced */
3335 		return 0;
3336 	for (i = 0; i < s->failed; i++) {
3337 		if (s->failed_num[i] != sh->pd_idx &&
3338 		    s->failed_num[i] != sh->qd_idx &&
3339 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341 			return 1;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3347 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3348 		       int disk_idx, int disks)
3349 {
3350 	struct r5dev *dev = &sh->dev[disk_idx];
3351 
3352 	/* is the data in this block needed, and can we get it? */
3353 	if (need_this_block(sh, s, disk_idx, disks)) {
3354 		/* we would like to get this block, possibly by computing it,
3355 		 * otherwise read it if the backing disk is insync
3356 		 */
3357 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3358 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3359 		BUG_ON(sh->batch_head);
3360 		if ((s->uptodate == disks - 1) &&
3361 		    (s->failed && (disk_idx == s->failed_num[0] ||
3362 				   disk_idx == s->failed_num[1]))) {
3363 			/* have disk failed, and we're requested to fetch it;
3364 			 * do compute it
3365 			 */
3366 			pr_debug("Computing stripe %llu block %d\n",
3367 			       (unsigned long long)sh->sector, disk_idx);
3368 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3369 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3370 			set_bit(R5_Wantcompute, &dev->flags);
3371 			sh->ops.target = disk_idx;
3372 			sh->ops.target2 = -1; /* no 2nd target */
3373 			s->req_compute = 1;
3374 			/* Careful: from this point on 'uptodate' is in the eye
3375 			 * of raid_run_ops which services 'compute' operations
3376 			 * before writes. R5_Wantcompute flags a block that will
3377 			 * be R5_UPTODATE by the time it is needed for a
3378 			 * subsequent operation.
3379 			 */
3380 			s->uptodate++;
3381 			return 1;
3382 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3383 			/* Computing 2-failure is *very* expensive; only
3384 			 * do it if failed >= 2
3385 			 */
3386 			int other;
3387 			for (other = disks; other--; ) {
3388 				if (other == disk_idx)
3389 					continue;
3390 				if (!test_bit(R5_UPTODATE,
3391 				      &sh->dev[other].flags))
3392 					break;
3393 			}
3394 			BUG_ON(other < 0);
3395 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3396 			       (unsigned long long)sh->sector,
3397 			       disk_idx, other);
3398 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3399 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3400 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3401 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3402 			sh->ops.target = disk_idx;
3403 			sh->ops.target2 = other;
3404 			s->uptodate += 2;
3405 			s->req_compute = 1;
3406 			return 1;
3407 		} else if (test_bit(R5_Insync, &dev->flags)) {
3408 			set_bit(R5_LOCKED, &dev->flags);
3409 			set_bit(R5_Wantread, &dev->flags);
3410 			s->locked++;
3411 			pr_debug("Reading block %d (sync=%d)\n",
3412 				disk_idx, s->syncing);
3413 		}
3414 	}
3415 
3416 	return 0;
3417 }
3418 
3419 /**
3420  * handle_stripe_fill - read or compute data to satisfy pending requests.
3421  */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3422 static void handle_stripe_fill(struct stripe_head *sh,
3423 			       struct stripe_head_state *s,
3424 			       int disks)
3425 {
3426 	int i;
3427 
3428 	/* look for blocks to read/compute, skip this if a compute
3429 	 * is already in flight, or if the stripe contents are in the
3430 	 * midst of changing due to a write
3431 	 */
3432 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3433 	    !sh->reconstruct_state)
3434 		for (i = disks; i--; )
3435 			if (fetch_block(sh, s, i, disks))
3436 				break;
3437 	set_bit(STRIPE_HANDLE, &sh->state);
3438 }
3439 
3440 static void break_stripe_batch_list(struct stripe_head *head_sh,
3441 				    unsigned long handle_flags);
3442 /* handle_stripe_clean_event
3443  * any written block on an uptodate or failed drive can be returned.
3444  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3445  * never LOCKED, so we don't need to test 'failed' directly.
3446  */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks,struct bio ** return_bi)3447 static void handle_stripe_clean_event(struct r5conf *conf,
3448 	struct stripe_head *sh, int disks, struct bio **return_bi)
3449 {
3450 	int i;
3451 	struct r5dev *dev;
3452 	int discard_pending = 0;
3453 	struct stripe_head *head_sh = sh;
3454 	bool do_endio = false;
3455 
3456 	for (i = disks; i--; )
3457 		if (sh->dev[i].written) {
3458 			dev = &sh->dev[i];
3459 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3460 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3461 			     test_bit(R5_Discard, &dev->flags) ||
3462 			     test_bit(R5_SkipCopy, &dev->flags))) {
3463 				/* We can return any write requests */
3464 				struct bio *wbi, *wbi2;
3465 				pr_debug("Return write for disc %d\n", i);
3466 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3467 					clear_bit(R5_UPTODATE, &dev->flags);
3468 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3469 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3470 				}
3471 				do_endio = true;
3472 
3473 returnbi:
3474 				dev->page = dev->orig_page;
3475 				wbi = dev->written;
3476 				dev->written = NULL;
3477 				while (wbi && wbi->bi_iter.bi_sector <
3478 					dev->sector + STRIPE_SECTORS) {
3479 					wbi2 = r5_next_bio(wbi, dev->sector);
3480 					if (!raid5_dec_bi_active_stripes(wbi)) {
3481 						md_write_end(conf->mddev);
3482 						wbi->bi_next = *return_bi;
3483 						*return_bi = wbi;
3484 					}
3485 					wbi = wbi2;
3486 				}
3487 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3488 						STRIPE_SECTORS,
3489 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3490 						0);
3491 				if (head_sh->batch_head) {
3492 					sh = list_first_entry(&sh->batch_list,
3493 							      struct stripe_head,
3494 							      batch_list);
3495 					if (sh != head_sh) {
3496 						dev = &sh->dev[i];
3497 						goto returnbi;
3498 					}
3499 				}
3500 				sh = head_sh;
3501 				dev = &sh->dev[i];
3502 			} else if (test_bit(R5_Discard, &dev->flags))
3503 				discard_pending = 1;
3504 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3505 			WARN_ON(dev->page != dev->orig_page);
3506 		}
3507 	if (!discard_pending &&
3508 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3509 		int hash;
3510 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3511 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3512 		if (sh->qd_idx >= 0) {
3513 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3514 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3515 		}
3516 		/* now that discard is done we can proceed with any sync */
3517 		clear_bit(STRIPE_DISCARD, &sh->state);
3518 		/*
3519 		 * SCSI discard will change some bio fields and the stripe has
3520 		 * no updated data, so remove it from hash list and the stripe
3521 		 * will be reinitialized
3522 		 */
3523 unhash:
3524 		hash = sh->hash_lock_index;
3525 		spin_lock_irq(conf->hash_locks + hash);
3526 		remove_hash(sh);
3527 		spin_unlock_irq(conf->hash_locks + hash);
3528 		if (head_sh->batch_head) {
3529 			sh = list_first_entry(&sh->batch_list,
3530 					      struct stripe_head, batch_list);
3531 			if (sh != head_sh)
3532 					goto unhash;
3533 		}
3534 		sh = head_sh;
3535 
3536 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3537 			set_bit(STRIPE_HANDLE, &sh->state);
3538 
3539 	}
3540 
3541 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3542 		if (atomic_dec_and_test(&conf->pending_full_writes))
3543 			md_wakeup_thread(conf->mddev->thread);
3544 
3545 	if (head_sh->batch_head && do_endio)
3546 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3547 }
3548 
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3549 static void handle_stripe_dirtying(struct r5conf *conf,
3550 				   struct stripe_head *sh,
3551 				   struct stripe_head_state *s,
3552 				   int disks)
3553 {
3554 	int rmw = 0, rcw = 0, i;
3555 	sector_t recovery_cp = conf->mddev->recovery_cp;
3556 
3557 	/* Check whether resync is now happening or should start.
3558 	 * If yes, then the array is dirty (after unclean shutdown or
3559 	 * initial creation), so parity in some stripes might be inconsistent.
3560 	 * In this case, we need to always do reconstruct-write, to ensure
3561 	 * that in case of drive failure or read-error correction, we
3562 	 * generate correct data from the parity.
3563 	 */
3564 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3565 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3566 	     s->failed == 0)) {
3567 		/* Calculate the real rcw later - for now make it
3568 		 * look like rcw is cheaper
3569 		 */
3570 		rcw = 1; rmw = 2;
3571 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3572 			 conf->rmw_level, (unsigned long long)recovery_cp,
3573 			 (unsigned long long)sh->sector);
3574 	} else for (i = disks; i--; ) {
3575 		/* would I have to read this buffer for read_modify_write */
3576 		struct r5dev *dev = &sh->dev[i];
3577 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3578 		    !test_bit(R5_LOCKED, &dev->flags) &&
3579 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3580 		      test_bit(R5_Wantcompute, &dev->flags))) {
3581 			if (test_bit(R5_Insync, &dev->flags))
3582 				rmw++;
3583 			else
3584 				rmw += 2*disks;  /* cannot read it */
3585 		}
3586 		/* Would I have to read this buffer for reconstruct_write */
3587 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3588 		    i != sh->pd_idx && i != sh->qd_idx &&
3589 		    !test_bit(R5_LOCKED, &dev->flags) &&
3590 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3591 		    test_bit(R5_Wantcompute, &dev->flags))) {
3592 			if (test_bit(R5_Insync, &dev->flags))
3593 				rcw++;
3594 			else
3595 				rcw += 2*disks;
3596 		}
3597 	}
3598 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3599 		(unsigned long long)sh->sector, rmw, rcw);
3600 	set_bit(STRIPE_HANDLE, &sh->state);
3601 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3602 		/* prefer read-modify-write, but need to get some data */
3603 		if (conf->mddev->queue)
3604 			blk_add_trace_msg(conf->mddev->queue,
3605 					  "raid5 rmw %llu %d",
3606 					  (unsigned long long)sh->sector, rmw);
3607 		for (i = disks; i--; ) {
3608 			struct r5dev *dev = &sh->dev[i];
3609 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3610 			    !test_bit(R5_LOCKED, &dev->flags) &&
3611 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3612 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3613 			    test_bit(R5_Insync, &dev->flags)) {
3614 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3615 					     &sh->state)) {
3616 					pr_debug("Read_old block %d for r-m-w\n",
3617 						 i);
3618 					set_bit(R5_LOCKED, &dev->flags);
3619 					set_bit(R5_Wantread, &dev->flags);
3620 					s->locked++;
3621 				} else {
3622 					set_bit(STRIPE_DELAYED, &sh->state);
3623 					set_bit(STRIPE_HANDLE, &sh->state);
3624 				}
3625 			}
3626 		}
3627 	}
3628 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3629 		/* want reconstruct write, but need to get some data */
3630 		int qread =0;
3631 		rcw = 0;
3632 		for (i = disks; i--; ) {
3633 			struct r5dev *dev = &sh->dev[i];
3634 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3635 			    i != sh->pd_idx && i != sh->qd_idx &&
3636 			    !test_bit(R5_LOCKED, &dev->flags) &&
3637 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3638 			      test_bit(R5_Wantcompute, &dev->flags))) {
3639 				rcw++;
3640 				if (test_bit(R5_Insync, &dev->flags) &&
3641 				    test_bit(STRIPE_PREREAD_ACTIVE,
3642 					     &sh->state)) {
3643 					pr_debug("Read_old block "
3644 						"%d for Reconstruct\n", i);
3645 					set_bit(R5_LOCKED, &dev->flags);
3646 					set_bit(R5_Wantread, &dev->flags);
3647 					s->locked++;
3648 					qread++;
3649 				} else {
3650 					set_bit(STRIPE_DELAYED, &sh->state);
3651 					set_bit(STRIPE_HANDLE, &sh->state);
3652 				}
3653 			}
3654 		}
3655 		if (rcw && conf->mddev->queue)
3656 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3657 					  (unsigned long long)sh->sector,
3658 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3659 	}
3660 
3661 	if (rcw > disks && rmw > disks &&
3662 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3663 		set_bit(STRIPE_DELAYED, &sh->state);
3664 
3665 	/* now if nothing is locked, and if we have enough data,
3666 	 * we can start a write request
3667 	 */
3668 	/* since handle_stripe can be called at any time we need to handle the
3669 	 * case where a compute block operation has been submitted and then a
3670 	 * subsequent call wants to start a write request.  raid_run_ops only
3671 	 * handles the case where compute block and reconstruct are requested
3672 	 * simultaneously.  If this is not the case then new writes need to be
3673 	 * held off until the compute completes.
3674 	 */
3675 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3676 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3677 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3678 		schedule_reconstruction(sh, s, rcw == 0, 0);
3679 }
3680 
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3681 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3682 				struct stripe_head_state *s, int disks)
3683 {
3684 	struct r5dev *dev = NULL;
3685 
3686 	BUG_ON(sh->batch_head);
3687 	set_bit(STRIPE_HANDLE, &sh->state);
3688 
3689 	switch (sh->check_state) {
3690 	case check_state_idle:
3691 		/* start a new check operation if there are no failures */
3692 		if (s->failed == 0) {
3693 			BUG_ON(s->uptodate != disks);
3694 			sh->check_state = check_state_run;
3695 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3696 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3697 			s->uptodate--;
3698 			break;
3699 		}
3700 		dev = &sh->dev[s->failed_num[0]];
3701 		/* fall through */
3702 	case check_state_compute_result:
3703 		sh->check_state = check_state_idle;
3704 		if (!dev)
3705 			dev = &sh->dev[sh->pd_idx];
3706 
3707 		/* check that a write has not made the stripe insync */
3708 		if (test_bit(STRIPE_INSYNC, &sh->state))
3709 			break;
3710 
3711 		/* either failed parity check, or recovery is happening */
3712 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3713 		BUG_ON(s->uptodate != disks);
3714 
3715 		set_bit(R5_LOCKED, &dev->flags);
3716 		s->locked++;
3717 		set_bit(R5_Wantwrite, &dev->flags);
3718 
3719 		clear_bit(STRIPE_DEGRADED, &sh->state);
3720 		set_bit(STRIPE_INSYNC, &sh->state);
3721 		break;
3722 	case check_state_run:
3723 		break; /* we will be called again upon completion */
3724 	case check_state_check_result:
3725 		sh->check_state = check_state_idle;
3726 
3727 		/* if a failure occurred during the check operation, leave
3728 		 * STRIPE_INSYNC not set and let the stripe be handled again
3729 		 */
3730 		if (s->failed)
3731 			break;
3732 
3733 		/* handle a successful check operation, if parity is correct
3734 		 * we are done.  Otherwise update the mismatch count and repair
3735 		 * parity if !MD_RECOVERY_CHECK
3736 		 */
3737 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3738 			/* parity is correct (on disc,
3739 			 * not in buffer any more)
3740 			 */
3741 			set_bit(STRIPE_INSYNC, &sh->state);
3742 		else {
3743 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3744 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3745 				/* don't try to repair!! */
3746 				set_bit(STRIPE_INSYNC, &sh->state);
3747 			else {
3748 				sh->check_state = check_state_compute_run;
3749 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3750 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3751 				set_bit(R5_Wantcompute,
3752 					&sh->dev[sh->pd_idx].flags);
3753 				sh->ops.target = sh->pd_idx;
3754 				sh->ops.target2 = -1;
3755 				s->uptodate++;
3756 			}
3757 		}
3758 		break;
3759 	case check_state_compute_run:
3760 		break;
3761 	default:
3762 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3763 		       __func__, sh->check_state,
3764 		       (unsigned long long) sh->sector);
3765 		BUG();
3766 	}
3767 }
3768 
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3769 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3770 				  struct stripe_head_state *s,
3771 				  int disks)
3772 {
3773 	int pd_idx = sh->pd_idx;
3774 	int qd_idx = sh->qd_idx;
3775 	struct r5dev *dev;
3776 
3777 	BUG_ON(sh->batch_head);
3778 	set_bit(STRIPE_HANDLE, &sh->state);
3779 
3780 	BUG_ON(s->failed > 2);
3781 
3782 	/* Want to check and possibly repair P and Q.
3783 	 * However there could be one 'failed' device, in which
3784 	 * case we can only check one of them, possibly using the
3785 	 * other to generate missing data
3786 	 */
3787 
3788 	switch (sh->check_state) {
3789 	case check_state_idle:
3790 		/* start a new check operation if there are < 2 failures */
3791 		if (s->failed == s->q_failed) {
3792 			/* The only possible failed device holds Q, so it
3793 			 * makes sense to check P (If anything else were failed,
3794 			 * we would have used P to recreate it).
3795 			 */
3796 			sh->check_state = check_state_run;
3797 		}
3798 		if (!s->q_failed && s->failed < 2) {
3799 			/* Q is not failed, and we didn't use it to generate
3800 			 * anything, so it makes sense to check it
3801 			 */
3802 			if (sh->check_state == check_state_run)
3803 				sh->check_state = check_state_run_pq;
3804 			else
3805 				sh->check_state = check_state_run_q;
3806 		}
3807 
3808 		/* discard potentially stale zero_sum_result */
3809 		sh->ops.zero_sum_result = 0;
3810 
3811 		if (sh->check_state == check_state_run) {
3812 			/* async_xor_zero_sum destroys the contents of P */
3813 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3814 			s->uptodate--;
3815 		}
3816 		if (sh->check_state >= check_state_run &&
3817 		    sh->check_state <= check_state_run_pq) {
3818 			/* async_syndrome_zero_sum preserves P and Q, so
3819 			 * no need to mark them !uptodate here
3820 			 */
3821 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3822 			break;
3823 		}
3824 
3825 		/* we have 2-disk failure */
3826 		BUG_ON(s->failed != 2);
3827 		/* fall through */
3828 	case check_state_compute_result:
3829 		sh->check_state = check_state_idle;
3830 
3831 		/* check that a write has not made the stripe insync */
3832 		if (test_bit(STRIPE_INSYNC, &sh->state))
3833 			break;
3834 
3835 		/* now write out any block on a failed drive,
3836 		 * or P or Q if they were recomputed
3837 		 */
3838 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3839 		if (s->failed == 2) {
3840 			dev = &sh->dev[s->failed_num[1]];
3841 			s->locked++;
3842 			set_bit(R5_LOCKED, &dev->flags);
3843 			set_bit(R5_Wantwrite, &dev->flags);
3844 		}
3845 		if (s->failed >= 1) {
3846 			dev = &sh->dev[s->failed_num[0]];
3847 			s->locked++;
3848 			set_bit(R5_LOCKED, &dev->flags);
3849 			set_bit(R5_Wantwrite, &dev->flags);
3850 		}
3851 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3852 			dev = &sh->dev[pd_idx];
3853 			s->locked++;
3854 			set_bit(R5_LOCKED, &dev->flags);
3855 			set_bit(R5_Wantwrite, &dev->flags);
3856 		}
3857 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3858 			dev = &sh->dev[qd_idx];
3859 			s->locked++;
3860 			set_bit(R5_LOCKED, &dev->flags);
3861 			set_bit(R5_Wantwrite, &dev->flags);
3862 		}
3863 		clear_bit(STRIPE_DEGRADED, &sh->state);
3864 
3865 		set_bit(STRIPE_INSYNC, &sh->state);
3866 		break;
3867 	case check_state_run:
3868 	case check_state_run_q:
3869 	case check_state_run_pq:
3870 		break; /* we will be called again upon completion */
3871 	case check_state_check_result:
3872 		sh->check_state = check_state_idle;
3873 
3874 		/* handle a successful check operation, if parity is correct
3875 		 * we are done.  Otherwise update the mismatch count and repair
3876 		 * parity if !MD_RECOVERY_CHECK
3877 		 */
3878 		if (sh->ops.zero_sum_result == 0) {
3879 			/* both parities are correct */
3880 			if (!s->failed)
3881 				set_bit(STRIPE_INSYNC, &sh->state);
3882 			else {
3883 				/* in contrast to the raid5 case we can validate
3884 				 * parity, but still have a failure to write
3885 				 * back
3886 				 */
3887 				sh->check_state = check_state_compute_result;
3888 				/* Returning at this point means that we may go
3889 				 * off and bring p and/or q uptodate again so
3890 				 * we make sure to check zero_sum_result again
3891 				 * to verify if p or q need writeback
3892 				 */
3893 			}
3894 		} else {
3895 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3896 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3897 				/* don't try to repair!! */
3898 				set_bit(STRIPE_INSYNC, &sh->state);
3899 			else {
3900 				int *target = &sh->ops.target;
3901 
3902 				sh->ops.target = -1;
3903 				sh->ops.target2 = -1;
3904 				sh->check_state = check_state_compute_run;
3905 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3906 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3907 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3908 					set_bit(R5_Wantcompute,
3909 						&sh->dev[pd_idx].flags);
3910 					*target = pd_idx;
3911 					target = &sh->ops.target2;
3912 					s->uptodate++;
3913 				}
3914 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3915 					set_bit(R5_Wantcompute,
3916 						&sh->dev[qd_idx].flags);
3917 					*target = qd_idx;
3918 					s->uptodate++;
3919 				}
3920 			}
3921 		}
3922 		break;
3923 	case check_state_compute_run:
3924 		break;
3925 	default:
3926 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3927 		       __func__, sh->check_state,
3928 		       (unsigned long long) sh->sector);
3929 		BUG();
3930 	}
3931 }
3932 
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)3933 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3934 {
3935 	int i;
3936 
3937 	/* We have read all the blocks in this stripe and now we need to
3938 	 * copy some of them into a target stripe for expand.
3939 	 */
3940 	struct dma_async_tx_descriptor *tx = NULL;
3941 	BUG_ON(sh->batch_head);
3942 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3943 	for (i = 0; i < sh->disks; i++)
3944 		if (i != sh->pd_idx && i != sh->qd_idx) {
3945 			int dd_idx, j;
3946 			struct stripe_head *sh2;
3947 			struct async_submit_ctl submit;
3948 
3949 			sector_t bn = compute_blocknr(sh, i, 1);
3950 			sector_t s = raid5_compute_sector(conf, bn, 0,
3951 							  &dd_idx, NULL);
3952 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3953 			if (sh2 == NULL)
3954 				/* so far only the early blocks of this stripe
3955 				 * have been requested.  When later blocks
3956 				 * get requested, we will try again
3957 				 */
3958 				continue;
3959 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3960 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3961 				/* must have already done this block */
3962 				release_stripe(sh2);
3963 				continue;
3964 			}
3965 
3966 			/* place all the copies on one channel */
3967 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3968 			tx = async_memcpy(sh2->dev[dd_idx].page,
3969 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3970 					  &submit);
3971 
3972 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3973 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3974 			for (j = 0; j < conf->raid_disks; j++)
3975 				if (j != sh2->pd_idx &&
3976 				    j != sh2->qd_idx &&
3977 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3978 					break;
3979 			if (j == conf->raid_disks) {
3980 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3981 				set_bit(STRIPE_HANDLE, &sh2->state);
3982 			}
3983 			release_stripe(sh2);
3984 
3985 		}
3986 	/* done submitting copies, wait for them to complete */
3987 	async_tx_quiesce(&tx);
3988 }
3989 
3990 /*
3991  * handle_stripe - do things to a stripe.
3992  *
3993  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3994  * state of various bits to see what needs to be done.
3995  * Possible results:
3996  *    return some read requests which now have data
3997  *    return some write requests which are safely on storage
3998  *    schedule a read on some buffers
3999  *    schedule a write of some buffers
4000  *    return confirmation of parity correctness
4001  *
4002  */
4003 
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4004 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4005 {
4006 	struct r5conf *conf = sh->raid_conf;
4007 	int disks = sh->disks;
4008 	struct r5dev *dev;
4009 	int i;
4010 	int do_recovery = 0;
4011 
4012 	memset(s, 0, sizeof(*s));
4013 
4014 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4015 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4016 	s->failed_num[0] = -1;
4017 	s->failed_num[1] = -1;
4018 
4019 	/* Now to look around and see what can be done */
4020 	rcu_read_lock();
4021 	for (i=disks; i--; ) {
4022 		struct md_rdev *rdev;
4023 		sector_t first_bad;
4024 		int bad_sectors;
4025 		int is_bad = 0;
4026 
4027 		dev = &sh->dev[i];
4028 
4029 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4030 			 i, dev->flags,
4031 			 dev->toread, dev->towrite, dev->written);
4032 		/* maybe we can reply to a read
4033 		 *
4034 		 * new wantfill requests are only permitted while
4035 		 * ops_complete_biofill is guaranteed to be inactive
4036 		 */
4037 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4038 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4039 			set_bit(R5_Wantfill, &dev->flags);
4040 
4041 		/* now count some things */
4042 		if (test_bit(R5_LOCKED, &dev->flags))
4043 			s->locked++;
4044 		if (test_bit(R5_UPTODATE, &dev->flags))
4045 			s->uptodate++;
4046 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4047 			s->compute++;
4048 			BUG_ON(s->compute > 2);
4049 		}
4050 
4051 		if (test_bit(R5_Wantfill, &dev->flags))
4052 			s->to_fill++;
4053 		else if (dev->toread)
4054 			s->to_read++;
4055 		if (dev->towrite) {
4056 			s->to_write++;
4057 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4058 				s->non_overwrite++;
4059 		}
4060 		if (dev->written)
4061 			s->written++;
4062 		/* Prefer to use the replacement for reads, but only
4063 		 * if it is recovered enough and has no bad blocks.
4064 		 */
4065 		rdev = rcu_dereference(conf->disks[i].replacement);
4066 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4067 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4068 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4069 				 &first_bad, &bad_sectors))
4070 			set_bit(R5_ReadRepl, &dev->flags);
4071 		else {
4072 			if (rdev)
4073 				set_bit(R5_NeedReplace, &dev->flags);
4074 			rdev = rcu_dereference(conf->disks[i].rdev);
4075 			clear_bit(R5_ReadRepl, &dev->flags);
4076 		}
4077 		if (rdev && test_bit(Faulty, &rdev->flags))
4078 			rdev = NULL;
4079 		if (rdev) {
4080 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4081 					     &first_bad, &bad_sectors);
4082 			if (s->blocked_rdev == NULL
4083 			    && (test_bit(Blocked, &rdev->flags)
4084 				|| is_bad < 0)) {
4085 				if (is_bad < 0)
4086 					set_bit(BlockedBadBlocks,
4087 						&rdev->flags);
4088 				s->blocked_rdev = rdev;
4089 				atomic_inc(&rdev->nr_pending);
4090 			}
4091 		}
4092 		clear_bit(R5_Insync, &dev->flags);
4093 		if (!rdev)
4094 			/* Not in-sync */;
4095 		else if (is_bad) {
4096 			/* also not in-sync */
4097 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4098 			    test_bit(R5_UPTODATE, &dev->flags)) {
4099 				/* treat as in-sync, but with a read error
4100 				 * which we can now try to correct
4101 				 */
4102 				set_bit(R5_Insync, &dev->flags);
4103 				set_bit(R5_ReadError, &dev->flags);
4104 			}
4105 		} else if (test_bit(In_sync, &rdev->flags))
4106 			set_bit(R5_Insync, &dev->flags);
4107 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4108 			/* in sync if before recovery_offset */
4109 			set_bit(R5_Insync, &dev->flags);
4110 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4111 			 test_bit(R5_Expanded, &dev->flags))
4112 			/* If we've reshaped into here, we assume it is Insync.
4113 			 * We will shortly update recovery_offset to make
4114 			 * it official.
4115 			 */
4116 			set_bit(R5_Insync, &dev->flags);
4117 
4118 		if (test_bit(R5_WriteError, &dev->flags)) {
4119 			/* This flag does not apply to '.replacement'
4120 			 * only to .rdev, so make sure to check that*/
4121 			struct md_rdev *rdev2 = rcu_dereference(
4122 				conf->disks[i].rdev);
4123 			if (rdev2 == rdev)
4124 				clear_bit(R5_Insync, &dev->flags);
4125 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4126 				s->handle_bad_blocks = 1;
4127 				atomic_inc(&rdev2->nr_pending);
4128 			} else
4129 				clear_bit(R5_WriteError, &dev->flags);
4130 		}
4131 		if (test_bit(R5_MadeGood, &dev->flags)) {
4132 			/* This flag does not apply to '.replacement'
4133 			 * only to .rdev, so make sure to check that*/
4134 			struct md_rdev *rdev2 = rcu_dereference(
4135 				conf->disks[i].rdev);
4136 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4137 				s->handle_bad_blocks = 1;
4138 				atomic_inc(&rdev2->nr_pending);
4139 			} else
4140 				clear_bit(R5_MadeGood, &dev->flags);
4141 		}
4142 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4143 			struct md_rdev *rdev2 = rcu_dereference(
4144 				conf->disks[i].replacement);
4145 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4146 				s->handle_bad_blocks = 1;
4147 				atomic_inc(&rdev2->nr_pending);
4148 			} else
4149 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4150 		}
4151 		if (!test_bit(R5_Insync, &dev->flags)) {
4152 			/* The ReadError flag will just be confusing now */
4153 			clear_bit(R5_ReadError, &dev->flags);
4154 			clear_bit(R5_ReWrite, &dev->flags);
4155 		}
4156 		if (test_bit(R5_ReadError, &dev->flags))
4157 			clear_bit(R5_Insync, &dev->flags);
4158 		if (!test_bit(R5_Insync, &dev->flags)) {
4159 			if (s->failed < 2)
4160 				s->failed_num[s->failed] = i;
4161 			s->failed++;
4162 			if (rdev && !test_bit(Faulty, &rdev->flags))
4163 				do_recovery = 1;
4164 		}
4165 	}
4166 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4167 		/* If there is a failed device being replaced,
4168 		 *     we must be recovering.
4169 		 * else if we are after recovery_cp, we must be syncing
4170 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4171 		 * else we can only be replacing
4172 		 * sync and recovery both need to read all devices, and so
4173 		 * use the same flag.
4174 		 */
4175 		if (do_recovery ||
4176 		    sh->sector >= conf->mddev->recovery_cp ||
4177 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4178 			s->syncing = 1;
4179 		else
4180 			s->replacing = 1;
4181 	}
4182 	rcu_read_unlock();
4183 }
4184 
clear_batch_ready(struct stripe_head * sh)4185 static int clear_batch_ready(struct stripe_head *sh)
4186 {
4187 	/* Return '1' if this is a member of batch, or
4188 	 * '0' if it is a lone stripe or a head which can now be
4189 	 * handled.
4190 	 */
4191 	struct stripe_head *tmp;
4192 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4193 		return (sh->batch_head && sh->batch_head != sh);
4194 	spin_lock(&sh->stripe_lock);
4195 	if (!sh->batch_head) {
4196 		spin_unlock(&sh->stripe_lock);
4197 		return 0;
4198 	}
4199 
4200 	/*
4201 	 * this stripe could be added to a batch list before we check
4202 	 * BATCH_READY, skips it
4203 	 */
4204 	if (sh->batch_head != sh) {
4205 		spin_unlock(&sh->stripe_lock);
4206 		return 1;
4207 	}
4208 	spin_lock(&sh->batch_lock);
4209 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4210 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4211 	spin_unlock(&sh->batch_lock);
4212 	spin_unlock(&sh->stripe_lock);
4213 
4214 	/*
4215 	 * BATCH_READY is cleared, no new stripes can be added.
4216 	 * batch_list can be accessed without lock
4217 	 */
4218 	return 0;
4219 }
4220 
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4221 static void break_stripe_batch_list(struct stripe_head *head_sh,
4222 				    unsigned long handle_flags)
4223 {
4224 	struct stripe_head *sh, *next;
4225 	int i;
4226 	int do_wakeup = 0;
4227 
4228 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4229 
4230 		list_del_init(&sh->batch_list);
4231 
4232 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4233 					  (1 << STRIPE_SYNCING) |
4234 					  (1 << STRIPE_REPLACED) |
4235 					  (1 << STRIPE_DELAYED) |
4236 					  (1 << STRIPE_BIT_DELAY) |
4237 					  (1 << STRIPE_FULL_WRITE) |
4238 					  (1 << STRIPE_BIOFILL_RUN) |
4239 					  (1 << STRIPE_COMPUTE_RUN)  |
4240 					  (1 << STRIPE_OPS_REQ_PENDING) |
4241 					  (1 << STRIPE_DISCARD) |
4242 					  (1 << STRIPE_BATCH_READY) |
4243 					  (1 << STRIPE_BATCH_ERR) |
4244 					  (1 << STRIPE_BITMAP_PENDING)));
4245 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4246 					      (1 << STRIPE_REPLACED)));
4247 
4248 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4249 					    (1 << STRIPE_PREREAD_ACTIVE) |
4250 					    (1 << STRIPE_DEGRADED)),
4251 			      head_sh->state & (1 << STRIPE_INSYNC));
4252 
4253 		sh->check_state = head_sh->check_state;
4254 		sh->reconstruct_state = head_sh->reconstruct_state;
4255 		for (i = 0; i < sh->disks; i++) {
4256 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4257 				do_wakeup = 1;
4258 			sh->dev[i].flags = head_sh->dev[i].flags &
4259 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4260 		}
4261 		spin_lock_irq(&sh->stripe_lock);
4262 		sh->batch_head = NULL;
4263 		spin_unlock_irq(&sh->stripe_lock);
4264 		if (handle_flags == 0 ||
4265 		    sh->state & handle_flags)
4266 			set_bit(STRIPE_HANDLE, &sh->state);
4267 		release_stripe(sh);
4268 	}
4269 	spin_lock_irq(&head_sh->stripe_lock);
4270 	head_sh->batch_head = NULL;
4271 	spin_unlock_irq(&head_sh->stripe_lock);
4272 	for (i = 0; i < head_sh->disks; i++)
4273 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4274 			do_wakeup = 1;
4275 	if (head_sh->state & handle_flags)
4276 		set_bit(STRIPE_HANDLE, &head_sh->state);
4277 
4278 	if (do_wakeup)
4279 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4280 }
4281 
handle_stripe(struct stripe_head * sh)4282 static void handle_stripe(struct stripe_head *sh)
4283 {
4284 	struct stripe_head_state s;
4285 	struct r5conf *conf = sh->raid_conf;
4286 	int i;
4287 	int prexor;
4288 	int disks = sh->disks;
4289 	struct r5dev *pdev, *qdev;
4290 
4291 	clear_bit(STRIPE_HANDLE, &sh->state);
4292 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4293 		/* already being handled, ensure it gets handled
4294 		 * again when current action finishes */
4295 		set_bit(STRIPE_HANDLE, &sh->state);
4296 		return;
4297 	}
4298 
4299 	if (clear_batch_ready(sh) ) {
4300 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4301 		return;
4302 	}
4303 
4304 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4305 		break_stripe_batch_list(sh, 0);
4306 
4307 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4308 		spin_lock(&sh->stripe_lock);
4309 		/* Cannot process 'sync' concurrently with 'discard' */
4310 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4311 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4312 			set_bit(STRIPE_SYNCING, &sh->state);
4313 			clear_bit(STRIPE_INSYNC, &sh->state);
4314 			clear_bit(STRIPE_REPLACED, &sh->state);
4315 		}
4316 		spin_unlock(&sh->stripe_lock);
4317 	}
4318 	clear_bit(STRIPE_DELAYED, &sh->state);
4319 
4320 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4321 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4322 	       (unsigned long long)sh->sector, sh->state,
4323 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4324 	       sh->check_state, sh->reconstruct_state);
4325 
4326 	analyse_stripe(sh, &s);
4327 
4328 	if (s.handle_bad_blocks) {
4329 		set_bit(STRIPE_HANDLE, &sh->state);
4330 		goto finish;
4331 	}
4332 
4333 	if (unlikely(s.blocked_rdev)) {
4334 		if (s.syncing || s.expanding || s.expanded ||
4335 		    s.replacing || s.to_write || s.written) {
4336 			set_bit(STRIPE_HANDLE, &sh->state);
4337 			goto finish;
4338 		}
4339 		/* There is nothing for the blocked_rdev to block */
4340 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4341 		s.blocked_rdev = NULL;
4342 	}
4343 
4344 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4345 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4346 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4347 	}
4348 
4349 	pr_debug("locked=%d uptodate=%d to_read=%d"
4350 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4351 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4352 	       s.failed_num[0], s.failed_num[1]);
4353 	/* check if the array has lost more than max_degraded devices and,
4354 	 * if so, some requests might need to be failed.
4355 	 */
4356 	if (s.failed > conf->max_degraded) {
4357 		sh->check_state = 0;
4358 		sh->reconstruct_state = 0;
4359 		break_stripe_batch_list(sh, 0);
4360 		if (s.to_read+s.to_write+s.written)
4361 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4362 		if (s.syncing + s.replacing)
4363 			handle_failed_sync(conf, sh, &s);
4364 	}
4365 
4366 	/* Now we check to see if any write operations have recently
4367 	 * completed
4368 	 */
4369 	prexor = 0;
4370 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4371 		prexor = 1;
4372 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4373 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4374 		sh->reconstruct_state = reconstruct_state_idle;
4375 
4376 		/* All the 'written' buffers and the parity block are ready to
4377 		 * be written back to disk
4378 		 */
4379 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4380 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4381 		BUG_ON(sh->qd_idx >= 0 &&
4382 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4383 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4384 		for (i = disks; i--; ) {
4385 			struct r5dev *dev = &sh->dev[i];
4386 			if (test_bit(R5_LOCKED, &dev->flags) &&
4387 				(i == sh->pd_idx || i == sh->qd_idx ||
4388 				 dev->written)) {
4389 				pr_debug("Writing block %d\n", i);
4390 				set_bit(R5_Wantwrite, &dev->flags);
4391 				if (prexor)
4392 					continue;
4393 				if (s.failed > 1)
4394 					continue;
4395 				if (!test_bit(R5_Insync, &dev->flags) ||
4396 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4397 				     s.failed == 0))
4398 					set_bit(STRIPE_INSYNC, &sh->state);
4399 			}
4400 		}
4401 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4402 			s.dec_preread_active = 1;
4403 	}
4404 
4405 	/*
4406 	 * might be able to return some write requests if the parity blocks
4407 	 * are safe, or on a failed drive
4408 	 */
4409 	pdev = &sh->dev[sh->pd_idx];
4410 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4411 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4412 	qdev = &sh->dev[sh->qd_idx];
4413 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4414 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4415 		|| conf->level < 6;
4416 
4417 	if (s.written &&
4418 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4419 			     && !test_bit(R5_LOCKED, &pdev->flags)
4420 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4421 				 test_bit(R5_Discard, &pdev->flags))))) &&
4422 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4423 			     && !test_bit(R5_LOCKED, &qdev->flags)
4424 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4425 				 test_bit(R5_Discard, &qdev->flags))))))
4426 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4427 
4428 	/* Now we might consider reading some blocks, either to check/generate
4429 	 * parity, or to satisfy requests
4430 	 * or to load a block that is being partially written.
4431 	 */
4432 	if (s.to_read || s.non_overwrite
4433 	    || (conf->level == 6 && s.to_write && s.failed)
4434 	    || (s.syncing && (s.uptodate + s.compute < disks))
4435 	    || s.replacing
4436 	    || s.expanding)
4437 		handle_stripe_fill(sh, &s, disks);
4438 
4439 	/* Now to consider new write requests and what else, if anything
4440 	 * should be read.  We do not handle new writes when:
4441 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4442 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4443 	 *    block.
4444 	 */
4445 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4446 		handle_stripe_dirtying(conf, sh, &s, disks);
4447 
4448 	/* maybe we need to check and possibly fix the parity for this stripe
4449 	 * Any reads will already have been scheduled, so we just see if enough
4450 	 * data is available.  The parity check is held off while parity
4451 	 * dependent operations are in flight.
4452 	 */
4453 	if (sh->check_state ||
4454 	    (s.syncing && s.locked == 0 &&
4455 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4456 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4457 		if (conf->level == 6)
4458 			handle_parity_checks6(conf, sh, &s, disks);
4459 		else
4460 			handle_parity_checks5(conf, sh, &s, disks);
4461 	}
4462 
4463 	if ((s.replacing || s.syncing) && s.locked == 0
4464 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4465 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4466 		/* Write out to replacement devices where possible */
4467 		for (i = 0; i < conf->raid_disks; i++)
4468 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4469 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4470 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4471 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4472 				s.locked++;
4473 			}
4474 		if (s.replacing)
4475 			set_bit(STRIPE_INSYNC, &sh->state);
4476 		set_bit(STRIPE_REPLACED, &sh->state);
4477 	}
4478 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4479 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4480 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4481 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4482 		clear_bit(STRIPE_SYNCING, &sh->state);
4483 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4484 			wake_up(&conf->wait_for_overlap);
4485 	}
4486 
4487 	/* If the failed drives are just a ReadError, then we might need
4488 	 * to progress the repair/check process
4489 	 */
4490 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4491 		for (i = 0; i < s.failed; i++) {
4492 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4493 			if (test_bit(R5_ReadError, &dev->flags)
4494 			    && !test_bit(R5_LOCKED, &dev->flags)
4495 			    && test_bit(R5_UPTODATE, &dev->flags)
4496 				) {
4497 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4498 					set_bit(R5_Wantwrite, &dev->flags);
4499 					set_bit(R5_ReWrite, &dev->flags);
4500 					set_bit(R5_LOCKED, &dev->flags);
4501 					s.locked++;
4502 				} else {
4503 					/* let's read it back */
4504 					set_bit(R5_Wantread, &dev->flags);
4505 					set_bit(R5_LOCKED, &dev->flags);
4506 					s.locked++;
4507 				}
4508 			}
4509 		}
4510 
4511 	/* Finish reconstruct operations initiated by the expansion process */
4512 	if (sh->reconstruct_state == reconstruct_state_result) {
4513 		struct stripe_head *sh_src
4514 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4515 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4516 			/* sh cannot be written until sh_src has been read.
4517 			 * so arrange for sh to be delayed a little
4518 			 */
4519 			set_bit(STRIPE_DELAYED, &sh->state);
4520 			set_bit(STRIPE_HANDLE, &sh->state);
4521 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4522 					      &sh_src->state))
4523 				atomic_inc(&conf->preread_active_stripes);
4524 			release_stripe(sh_src);
4525 			goto finish;
4526 		}
4527 		if (sh_src)
4528 			release_stripe(sh_src);
4529 
4530 		sh->reconstruct_state = reconstruct_state_idle;
4531 		clear_bit(STRIPE_EXPANDING, &sh->state);
4532 		for (i = conf->raid_disks; i--; ) {
4533 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4534 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4535 			s.locked++;
4536 		}
4537 	}
4538 
4539 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4540 	    !sh->reconstruct_state) {
4541 		/* Need to write out all blocks after computing parity */
4542 		sh->disks = conf->raid_disks;
4543 		stripe_set_idx(sh->sector, conf, 0, sh);
4544 		schedule_reconstruction(sh, &s, 1, 1);
4545 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4546 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4547 		atomic_dec(&conf->reshape_stripes);
4548 		wake_up(&conf->wait_for_overlap);
4549 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4550 	}
4551 
4552 	if (s.expanding && s.locked == 0 &&
4553 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4554 		handle_stripe_expansion(conf, sh);
4555 
4556 finish:
4557 	/* wait for this device to become unblocked */
4558 	if (unlikely(s.blocked_rdev)) {
4559 		if (conf->mddev->external)
4560 			md_wait_for_blocked_rdev(s.blocked_rdev,
4561 						 conf->mddev);
4562 		else
4563 			/* Internal metadata will immediately
4564 			 * be written by raid5d, so we don't
4565 			 * need to wait here.
4566 			 */
4567 			rdev_dec_pending(s.blocked_rdev,
4568 					 conf->mddev);
4569 	}
4570 
4571 	if (s.handle_bad_blocks)
4572 		for (i = disks; i--; ) {
4573 			struct md_rdev *rdev;
4574 			struct r5dev *dev = &sh->dev[i];
4575 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4576 				/* We own a safe reference to the rdev */
4577 				rdev = conf->disks[i].rdev;
4578 				if (!rdev_set_badblocks(rdev, sh->sector,
4579 							STRIPE_SECTORS, 0))
4580 					md_error(conf->mddev, rdev);
4581 				rdev_dec_pending(rdev, conf->mddev);
4582 			}
4583 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4584 				rdev = conf->disks[i].rdev;
4585 				rdev_clear_badblocks(rdev, sh->sector,
4586 						     STRIPE_SECTORS, 0);
4587 				rdev_dec_pending(rdev, conf->mddev);
4588 			}
4589 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4590 				rdev = conf->disks[i].replacement;
4591 				if (!rdev)
4592 					/* rdev have been moved down */
4593 					rdev = conf->disks[i].rdev;
4594 				rdev_clear_badblocks(rdev, sh->sector,
4595 						     STRIPE_SECTORS, 0);
4596 				rdev_dec_pending(rdev, conf->mddev);
4597 			}
4598 		}
4599 
4600 	if (s.ops_request)
4601 		raid_run_ops(sh, s.ops_request);
4602 
4603 	ops_run_io(sh, &s);
4604 
4605 	if (s.dec_preread_active) {
4606 		/* We delay this until after ops_run_io so that if make_request
4607 		 * is waiting on a flush, it won't continue until the writes
4608 		 * have actually been submitted.
4609 		 */
4610 		atomic_dec(&conf->preread_active_stripes);
4611 		if (atomic_read(&conf->preread_active_stripes) <
4612 		    IO_THRESHOLD)
4613 			md_wakeup_thread(conf->mddev->thread);
4614 	}
4615 
4616 	return_io(s.return_bi);
4617 
4618 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4619 }
4620 
raid5_activate_delayed(struct r5conf * conf)4621 static void raid5_activate_delayed(struct r5conf *conf)
4622 {
4623 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4624 		while (!list_empty(&conf->delayed_list)) {
4625 			struct list_head *l = conf->delayed_list.next;
4626 			struct stripe_head *sh;
4627 			sh = list_entry(l, struct stripe_head, lru);
4628 			list_del_init(l);
4629 			clear_bit(STRIPE_DELAYED, &sh->state);
4630 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4631 				atomic_inc(&conf->preread_active_stripes);
4632 			list_add_tail(&sh->lru, &conf->hold_list);
4633 			raid5_wakeup_stripe_thread(sh);
4634 		}
4635 	}
4636 }
4637 
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)4638 static void activate_bit_delay(struct r5conf *conf,
4639 	struct list_head *temp_inactive_list)
4640 {
4641 	/* device_lock is held */
4642 	struct list_head head;
4643 	list_add(&head, &conf->bitmap_list);
4644 	list_del_init(&conf->bitmap_list);
4645 	while (!list_empty(&head)) {
4646 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4647 		int hash;
4648 		list_del_init(&sh->lru);
4649 		atomic_inc(&sh->count);
4650 		hash = sh->hash_lock_index;
4651 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4652 	}
4653 }
4654 
raid5_congested(struct mddev * mddev,int bits)4655 static int raid5_congested(struct mddev *mddev, int bits)
4656 {
4657 	struct r5conf *conf = mddev->private;
4658 
4659 	/* No difference between reads and writes.  Just check
4660 	 * how busy the stripe_cache is
4661 	 */
4662 
4663 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4664 		return 1;
4665 	if (conf->quiesce)
4666 		return 1;
4667 	if (atomic_read(&conf->empty_inactive_list_nr))
4668 		return 1;
4669 
4670 	return 0;
4671 }
4672 
4673 /* We want read requests to align with chunks where possible,
4674  * but write requests don't need to.
4675  */
raid5_mergeable_bvec(struct mddev * mddev,struct bvec_merge_data * bvm,struct bio_vec * biovec)4676 static int raid5_mergeable_bvec(struct mddev *mddev,
4677 				struct bvec_merge_data *bvm,
4678 				struct bio_vec *biovec)
4679 {
4680 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4681 	int max;
4682 	unsigned int chunk_sectors = mddev->chunk_sectors;
4683 	unsigned int bio_sectors = bvm->bi_size >> 9;
4684 
4685 	/*
4686 	 * always allow writes to be mergeable, read as well if array
4687 	 * is degraded as we'll go through stripe cache anyway.
4688 	 */
4689 	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4690 		return biovec->bv_len;
4691 
4692 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4693 		chunk_sectors = mddev->new_chunk_sectors;
4694 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4695 	if (max < 0) max = 0;
4696 	if (max <= biovec->bv_len && bio_sectors == 0)
4697 		return biovec->bv_len;
4698 	else
4699 		return max;
4700 }
4701 
in_chunk_boundary(struct mddev * mddev,struct bio * bio)4702 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4703 {
4704 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4705 	unsigned int chunk_sectors = mddev->chunk_sectors;
4706 	unsigned int bio_sectors = bio_sectors(bio);
4707 
4708 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4709 		chunk_sectors = mddev->new_chunk_sectors;
4710 	return  chunk_sectors >=
4711 		((sector & (chunk_sectors - 1)) + bio_sectors);
4712 }
4713 
4714 /*
4715  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4716  *  later sampled by raid5d.
4717  */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)4718 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4719 {
4720 	unsigned long flags;
4721 
4722 	spin_lock_irqsave(&conf->device_lock, flags);
4723 
4724 	bi->bi_next = conf->retry_read_aligned_list;
4725 	conf->retry_read_aligned_list = bi;
4726 
4727 	spin_unlock_irqrestore(&conf->device_lock, flags);
4728 	md_wakeup_thread(conf->mddev->thread);
4729 }
4730 
remove_bio_from_retry(struct r5conf * conf)4731 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4732 {
4733 	struct bio *bi;
4734 
4735 	bi = conf->retry_read_aligned;
4736 	if (bi) {
4737 		conf->retry_read_aligned = NULL;
4738 		return bi;
4739 	}
4740 	bi = conf->retry_read_aligned_list;
4741 	if(bi) {
4742 		conf->retry_read_aligned_list = bi->bi_next;
4743 		bi->bi_next = NULL;
4744 		/*
4745 		 * this sets the active strip count to 1 and the processed
4746 		 * strip count to zero (upper 8 bits)
4747 		 */
4748 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4749 	}
4750 
4751 	return bi;
4752 }
4753 
4754 /*
4755  *  The "raid5_align_endio" should check if the read succeeded and if it
4756  *  did, call bio_endio on the original bio (having bio_put the new bio
4757  *  first).
4758  *  If the read failed..
4759  */
raid5_align_endio(struct bio * bi,int error)4760 static void raid5_align_endio(struct bio *bi, int error)
4761 {
4762 	struct bio* raid_bi  = bi->bi_private;
4763 	struct mddev *mddev;
4764 	struct r5conf *conf;
4765 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4766 	struct md_rdev *rdev;
4767 
4768 	bio_put(bi);
4769 
4770 	rdev = (void*)raid_bi->bi_next;
4771 	raid_bi->bi_next = NULL;
4772 	mddev = rdev->mddev;
4773 	conf = mddev->private;
4774 
4775 	rdev_dec_pending(rdev, conf->mddev);
4776 
4777 	if (!error && uptodate) {
4778 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4779 					 raid_bi, 0);
4780 		bio_endio(raid_bi, 0);
4781 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4782 			wake_up(&conf->wait_for_stripe);
4783 		return;
4784 	}
4785 
4786 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4787 
4788 	add_bio_to_retry(raid_bi, conf);
4789 }
4790 
bio_fits_rdev(struct bio * bi)4791 static int bio_fits_rdev(struct bio *bi)
4792 {
4793 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4794 
4795 	if (bio_sectors(bi) > queue_max_sectors(q))
4796 		return 0;
4797 	blk_recount_segments(q, bi);
4798 	if (bi->bi_phys_segments > queue_max_segments(q))
4799 		return 0;
4800 
4801 	if (q->merge_bvec_fn)
4802 		/* it's too hard to apply the merge_bvec_fn at this stage,
4803 		 * just just give up
4804 		 */
4805 		return 0;
4806 
4807 	return 1;
4808 }
4809 
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)4810 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4811 {
4812 	struct r5conf *conf = mddev->private;
4813 	int dd_idx;
4814 	struct bio* align_bi;
4815 	struct md_rdev *rdev;
4816 	sector_t end_sector;
4817 
4818 	if (!in_chunk_boundary(mddev, raid_bio)) {
4819 		pr_debug("chunk_aligned_read : non aligned\n");
4820 		return 0;
4821 	}
4822 	/*
4823 	 * use bio_clone_mddev to make a copy of the bio
4824 	 */
4825 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4826 	if (!align_bi)
4827 		return 0;
4828 	/*
4829 	 *   set bi_end_io to a new function, and set bi_private to the
4830 	 *     original bio.
4831 	 */
4832 	align_bi->bi_end_io  = raid5_align_endio;
4833 	align_bi->bi_private = raid_bio;
4834 	/*
4835 	 *	compute position
4836 	 */
4837 	align_bi->bi_iter.bi_sector =
4838 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4839 				     0, &dd_idx, NULL);
4840 
4841 	end_sector = bio_end_sector(align_bi);
4842 	rcu_read_lock();
4843 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4844 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4845 	    rdev->recovery_offset < end_sector) {
4846 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4847 		if (rdev &&
4848 		    (test_bit(Faulty, &rdev->flags) ||
4849 		    !(test_bit(In_sync, &rdev->flags) ||
4850 		      rdev->recovery_offset >= end_sector)))
4851 			rdev = NULL;
4852 	}
4853 	if (rdev) {
4854 		sector_t first_bad;
4855 		int bad_sectors;
4856 
4857 		atomic_inc(&rdev->nr_pending);
4858 		rcu_read_unlock();
4859 		raid_bio->bi_next = (void*)rdev;
4860 		align_bi->bi_bdev =  rdev->bdev;
4861 		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4862 
4863 		if (!bio_fits_rdev(align_bi) ||
4864 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4865 				bio_sectors(align_bi),
4866 				&first_bad, &bad_sectors)) {
4867 			/* too big in some way, or has a known bad block */
4868 			bio_put(align_bi);
4869 			rdev_dec_pending(rdev, mddev);
4870 			return 0;
4871 		}
4872 
4873 		/* No reshape active, so we can trust rdev->data_offset */
4874 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4875 
4876 		spin_lock_irq(&conf->device_lock);
4877 		wait_event_lock_irq(conf->wait_for_stripe,
4878 				    conf->quiesce == 0,
4879 				    conf->device_lock);
4880 		atomic_inc(&conf->active_aligned_reads);
4881 		spin_unlock_irq(&conf->device_lock);
4882 
4883 		if (mddev->gendisk)
4884 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4885 					      align_bi, disk_devt(mddev->gendisk),
4886 					      raid_bio->bi_iter.bi_sector);
4887 		generic_make_request(align_bi);
4888 		return 1;
4889 	} else {
4890 		rcu_read_unlock();
4891 		bio_put(align_bi);
4892 		return 0;
4893 	}
4894 }
4895 
4896 /* __get_priority_stripe - get the next stripe to process
4897  *
4898  * Full stripe writes are allowed to pass preread active stripes up until
4899  * the bypass_threshold is exceeded.  In general the bypass_count
4900  * increments when the handle_list is handled before the hold_list; however, it
4901  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4902  * stripe with in flight i/o.  The bypass_count will be reset when the
4903  * head of the hold_list has changed, i.e. the head was promoted to the
4904  * handle_list.
4905  */
__get_priority_stripe(struct r5conf * conf,int group)4906 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4907 {
4908 	struct stripe_head *sh = NULL, *tmp;
4909 	struct list_head *handle_list = NULL;
4910 	struct r5worker_group *wg = NULL;
4911 
4912 	if (conf->worker_cnt_per_group == 0) {
4913 		handle_list = &conf->handle_list;
4914 	} else if (group != ANY_GROUP) {
4915 		handle_list = &conf->worker_groups[group].handle_list;
4916 		wg = &conf->worker_groups[group];
4917 	} else {
4918 		int i;
4919 		for (i = 0; i < conf->group_cnt; i++) {
4920 			handle_list = &conf->worker_groups[i].handle_list;
4921 			wg = &conf->worker_groups[i];
4922 			if (!list_empty(handle_list))
4923 				break;
4924 		}
4925 	}
4926 
4927 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4928 		  __func__,
4929 		  list_empty(handle_list) ? "empty" : "busy",
4930 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4931 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4932 
4933 	if (!list_empty(handle_list)) {
4934 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4935 
4936 		if (list_empty(&conf->hold_list))
4937 			conf->bypass_count = 0;
4938 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4939 			if (conf->hold_list.next == conf->last_hold)
4940 				conf->bypass_count++;
4941 			else {
4942 				conf->last_hold = conf->hold_list.next;
4943 				conf->bypass_count -= conf->bypass_threshold;
4944 				if (conf->bypass_count < 0)
4945 					conf->bypass_count = 0;
4946 			}
4947 		}
4948 	} else if (!list_empty(&conf->hold_list) &&
4949 		   ((conf->bypass_threshold &&
4950 		     conf->bypass_count > conf->bypass_threshold) ||
4951 		    atomic_read(&conf->pending_full_writes) == 0)) {
4952 
4953 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4954 			if (conf->worker_cnt_per_group == 0 ||
4955 			    group == ANY_GROUP ||
4956 			    !cpu_online(tmp->cpu) ||
4957 			    cpu_to_group(tmp->cpu) == group) {
4958 				sh = tmp;
4959 				break;
4960 			}
4961 		}
4962 
4963 		if (sh) {
4964 			conf->bypass_count -= conf->bypass_threshold;
4965 			if (conf->bypass_count < 0)
4966 				conf->bypass_count = 0;
4967 		}
4968 		wg = NULL;
4969 	}
4970 
4971 	if (!sh)
4972 		return NULL;
4973 
4974 	if (wg) {
4975 		wg->stripes_cnt--;
4976 		sh->group = NULL;
4977 	}
4978 	list_del_init(&sh->lru);
4979 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4980 	return sh;
4981 }
4982 
4983 struct raid5_plug_cb {
4984 	struct blk_plug_cb	cb;
4985 	struct list_head	list;
4986 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4987 };
4988 
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)4989 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4990 {
4991 	struct raid5_plug_cb *cb = container_of(
4992 		blk_cb, struct raid5_plug_cb, cb);
4993 	struct stripe_head *sh;
4994 	struct mddev *mddev = cb->cb.data;
4995 	struct r5conf *conf = mddev->private;
4996 	int cnt = 0;
4997 	int hash;
4998 
4999 	if (cb->list.next && !list_empty(&cb->list)) {
5000 		spin_lock_irq(&conf->device_lock);
5001 		while (!list_empty(&cb->list)) {
5002 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5003 			list_del_init(&sh->lru);
5004 			/*
5005 			 * avoid race release_stripe_plug() sees
5006 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5007 			 * is still in our list
5008 			 */
5009 			smp_mb__before_atomic();
5010 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5011 			/*
5012 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5013 			 * case, the count is always > 1 here
5014 			 */
5015 			hash = sh->hash_lock_index;
5016 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5017 			cnt++;
5018 		}
5019 		spin_unlock_irq(&conf->device_lock);
5020 	}
5021 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5022 				     NR_STRIPE_HASH_LOCKS);
5023 	if (mddev->queue)
5024 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5025 	kfree(cb);
5026 }
5027 
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5028 static void release_stripe_plug(struct mddev *mddev,
5029 				struct stripe_head *sh)
5030 {
5031 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5032 		raid5_unplug, mddev,
5033 		sizeof(struct raid5_plug_cb));
5034 	struct raid5_plug_cb *cb;
5035 
5036 	if (!blk_cb) {
5037 		release_stripe(sh);
5038 		return;
5039 	}
5040 
5041 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5042 
5043 	if (cb->list.next == NULL) {
5044 		int i;
5045 		INIT_LIST_HEAD(&cb->list);
5046 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5047 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5048 	}
5049 
5050 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5051 		list_add_tail(&sh->lru, &cb->list);
5052 	else
5053 		release_stripe(sh);
5054 }
5055 
make_discard_request(struct mddev * mddev,struct bio * bi)5056 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5057 {
5058 	struct r5conf *conf = mddev->private;
5059 	sector_t logical_sector, last_sector;
5060 	struct stripe_head *sh;
5061 	int remaining;
5062 	int stripe_sectors;
5063 
5064 	if (mddev->reshape_position != MaxSector)
5065 		/* Skip discard while reshape is happening */
5066 		return;
5067 
5068 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5069 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5070 
5071 	bi->bi_next = NULL;
5072 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5073 
5074 	stripe_sectors = conf->chunk_sectors *
5075 		(conf->raid_disks - conf->max_degraded);
5076 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5077 					       stripe_sectors);
5078 	sector_div(last_sector, stripe_sectors);
5079 
5080 	logical_sector *= conf->chunk_sectors;
5081 	last_sector *= conf->chunk_sectors;
5082 
5083 	for (; logical_sector < last_sector;
5084 	     logical_sector += STRIPE_SECTORS) {
5085 		DEFINE_WAIT(w);
5086 		int d;
5087 	again:
5088 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5089 		prepare_to_wait(&conf->wait_for_overlap, &w,
5090 				TASK_UNINTERRUPTIBLE);
5091 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5092 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5093 			release_stripe(sh);
5094 			schedule();
5095 			goto again;
5096 		}
5097 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5098 		spin_lock_irq(&sh->stripe_lock);
5099 		for (d = 0; d < conf->raid_disks; d++) {
5100 			if (d == sh->pd_idx || d == sh->qd_idx)
5101 				continue;
5102 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5103 				set_bit(R5_Overlap, &sh->dev[d].flags);
5104 				spin_unlock_irq(&sh->stripe_lock);
5105 				release_stripe(sh);
5106 				schedule();
5107 				goto again;
5108 			}
5109 		}
5110 		set_bit(STRIPE_DISCARD, &sh->state);
5111 		finish_wait(&conf->wait_for_overlap, &w);
5112 		sh->overwrite_disks = 0;
5113 		for (d = 0; d < conf->raid_disks; d++) {
5114 			if (d == sh->pd_idx || d == sh->qd_idx)
5115 				continue;
5116 			sh->dev[d].towrite = bi;
5117 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5118 			raid5_inc_bi_active_stripes(bi);
5119 			sh->overwrite_disks++;
5120 		}
5121 		spin_unlock_irq(&sh->stripe_lock);
5122 		if (conf->mddev->bitmap) {
5123 			for (d = 0;
5124 			     d < conf->raid_disks - conf->max_degraded;
5125 			     d++)
5126 				bitmap_startwrite(mddev->bitmap,
5127 						  sh->sector,
5128 						  STRIPE_SECTORS,
5129 						  0);
5130 			sh->bm_seq = conf->seq_flush + 1;
5131 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5132 		}
5133 
5134 		set_bit(STRIPE_HANDLE, &sh->state);
5135 		clear_bit(STRIPE_DELAYED, &sh->state);
5136 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5137 			atomic_inc(&conf->preread_active_stripes);
5138 		release_stripe_plug(mddev, sh);
5139 	}
5140 
5141 	remaining = raid5_dec_bi_active_stripes(bi);
5142 	if (remaining == 0) {
5143 		md_write_end(mddev);
5144 		bio_endio(bi, 0);
5145 	}
5146 }
5147 
make_request(struct mddev * mddev,struct bio * bi)5148 static void make_request(struct mddev *mddev, struct bio * bi)
5149 {
5150 	struct r5conf *conf = mddev->private;
5151 	int dd_idx;
5152 	sector_t new_sector;
5153 	sector_t logical_sector, last_sector;
5154 	struct stripe_head *sh;
5155 	const int rw = bio_data_dir(bi);
5156 	int remaining;
5157 	DEFINE_WAIT(w);
5158 	bool do_prepare;
5159 
5160 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5161 		md_flush_request(mddev, bi);
5162 		return;
5163 	}
5164 
5165 	md_write_start(mddev, bi);
5166 
5167 	/*
5168 	 * If array is degraded, better not do chunk aligned read because
5169 	 * later we might have to read it again in order to reconstruct
5170 	 * data on failed drives.
5171 	 */
5172 	if (rw == READ && mddev->degraded == 0 &&
5173 	     mddev->reshape_position == MaxSector &&
5174 	     chunk_aligned_read(mddev,bi))
5175 		return;
5176 
5177 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5178 		make_discard_request(mddev, bi);
5179 		return;
5180 	}
5181 
5182 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5183 	last_sector = bio_end_sector(bi);
5184 	bi->bi_next = NULL;
5185 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5186 
5187 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5188 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5189 		int previous;
5190 		int seq;
5191 
5192 		do_prepare = false;
5193 	retry:
5194 		seq = read_seqcount_begin(&conf->gen_lock);
5195 		previous = 0;
5196 		if (do_prepare)
5197 			prepare_to_wait(&conf->wait_for_overlap, &w,
5198 				TASK_UNINTERRUPTIBLE);
5199 		if (unlikely(conf->reshape_progress != MaxSector)) {
5200 			/* spinlock is needed as reshape_progress may be
5201 			 * 64bit on a 32bit platform, and so it might be
5202 			 * possible to see a half-updated value
5203 			 * Of course reshape_progress could change after
5204 			 * the lock is dropped, so once we get a reference
5205 			 * to the stripe that we think it is, we will have
5206 			 * to check again.
5207 			 */
5208 			spin_lock_irq(&conf->device_lock);
5209 			if (mddev->reshape_backwards
5210 			    ? logical_sector < conf->reshape_progress
5211 			    : logical_sector >= conf->reshape_progress) {
5212 				previous = 1;
5213 			} else {
5214 				if (mddev->reshape_backwards
5215 				    ? logical_sector < conf->reshape_safe
5216 				    : logical_sector >= conf->reshape_safe) {
5217 					spin_unlock_irq(&conf->device_lock);
5218 					schedule();
5219 					do_prepare = true;
5220 					goto retry;
5221 				}
5222 			}
5223 			spin_unlock_irq(&conf->device_lock);
5224 		}
5225 
5226 		new_sector = raid5_compute_sector(conf, logical_sector,
5227 						  previous,
5228 						  &dd_idx, NULL);
5229 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5230 			(unsigned long long)new_sector,
5231 			(unsigned long long)logical_sector);
5232 
5233 		sh = get_active_stripe(conf, new_sector, previous,
5234 				       (bi->bi_rw&RWA_MASK), 0);
5235 		if (sh) {
5236 			if (unlikely(previous)) {
5237 				/* expansion might have moved on while waiting for a
5238 				 * stripe, so we must do the range check again.
5239 				 * Expansion could still move past after this
5240 				 * test, but as we are holding a reference to
5241 				 * 'sh', we know that if that happens,
5242 				 *  STRIPE_EXPANDING will get set and the expansion
5243 				 * won't proceed until we finish with the stripe.
5244 				 */
5245 				int must_retry = 0;
5246 				spin_lock_irq(&conf->device_lock);
5247 				if (mddev->reshape_backwards
5248 				    ? logical_sector >= conf->reshape_progress
5249 				    : logical_sector < conf->reshape_progress)
5250 					/* mismatch, need to try again */
5251 					must_retry = 1;
5252 				spin_unlock_irq(&conf->device_lock);
5253 				if (must_retry) {
5254 					release_stripe(sh);
5255 					schedule();
5256 					do_prepare = true;
5257 					goto retry;
5258 				}
5259 			}
5260 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5261 				/* Might have got the wrong stripe_head
5262 				 * by accident
5263 				 */
5264 				release_stripe(sh);
5265 				goto retry;
5266 			}
5267 
5268 			if (rw == WRITE &&
5269 			    logical_sector >= mddev->suspend_lo &&
5270 			    logical_sector < mddev->suspend_hi) {
5271 				release_stripe(sh);
5272 				/* As the suspend_* range is controlled by
5273 				 * userspace, we want an interruptible
5274 				 * wait.
5275 				 */
5276 				flush_signals(current);
5277 				prepare_to_wait(&conf->wait_for_overlap,
5278 						&w, TASK_INTERRUPTIBLE);
5279 				if (logical_sector >= mddev->suspend_lo &&
5280 				    logical_sector < mddev->suspend_hi) {
5281 					schedule();
5282 					do_prepare = true;
5283 				}
5284 				goto retry;
5285 			}
5286 
5287 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5288 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5289 				/* Stripe is busy expanding or
5290 				 * add failed due to overlap.  Flush everything
5291 				 * and wait a while
5292 				 */
5293 				md_wakeup_thread(mddev->thread);
5294 				release_stripe(sh);
5295 				schedule();
5296 				do_prepare = true;
5297 				goto retry;
5298 			}
5299 			set_bit(STRIPE_HANDLE, &sh->state);
5300 			clear_bit(STRIPE_DELAYED, &sh->state);
5301 			if ((!sh->batch_head || sh == sh->batch_head) &&
5302 			    (bi->bi_rw & REQ_SYNC) &&
5303 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5304 				atomic_inc(&conf->preread_active_stripes);
5305 			release_stripe_plug(mddev, sh);
5306 		} else {
5307 			/* cannot get stripe for read-ahead, just give-up */
5308 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
5309 			break;
5310 		}
5311 	}
5312 	finish_wait(&conf->wait_for_overlap, &w);
5313 
5314 	remaining = raid5_dec_bi_active_stripes(bi);
5315 	if (remaining == 0) {
5316 
5317 		if ( rw == WRITE )
5318 			md_write_end(mddev);
5319 
5320 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5321 					 bi, 0);
5322 		bio_endio(bi, 0);
5323 	}
5324 }
5325 
5326 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5327 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5328 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5329 {
5330 	/* reshaping is quite different to recovery/resync so it is
5331 	 * handled quite separately ... here.
5332 	 *
5333 	 * On each call to sync_request, we gather one chunk worth of
5334 	 * destination stripes and flag them as expanding.
5335 	 * Then we find all the source stripes and request reads.
5336 	 * As the reads complete, handle_stripe will copy the data
5337 	 * into the destination stripe and release that stripe.
5338 	 */
5339 	struct r5conf *conf = mddev->private;
5340 	struct stripe_head *sh;
5341 	sector_t first_sector, last_sector;
5342 	int raid_disks = conf->previous_raid_disks;
5343 	int data_disks = raid_disks - conf->max_degraded;
5344 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5345 	int i;
5346 	int dd_idx;
5347 	sector_t writepos, readpos, safepos;
5348 	sector_t stripe_addr;
5349 	int reshape_sectors;
5350 	struct list_head stripes;
5351 
5352 	if (sector_nr == 0) {
5353 		/* If restarting in the middle, skip the initial sectors */
5354 		if (mddev->reshape_backwards &&
5355 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5356 			sector_nr = raid5_size(mddev, 0, 0)
5357 				- conf->reshape_progress;
5358 		} else if (!mddev->reshape_backwards &&
5359 			   conf->reshape_progress > 0)
5360 			sector_nr = conf->reshape_progress;
5361 		sector_div(sector_nr, new_data_disks);
5362 		if (sector_nr) {
5363 			mddev->curr_resync_completed = sector_nr;
5364 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5365 			*skipped = 1;
5366 			return sector_nr;
5367 		}
5368 	}
5369 
5370 	/* We need to process a full chunk at a time.
5371 	 * If old and new chunk sizes differ, we need to process the
5372 	 * largest of these
5373 	 */
5374 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5375 		reshape_sectors = mddev->new_chunk_sectors;
5376 	else
5377 		reshape_sectors = mddev->chunk_sectors;
5378 
5379 	/* We update the metadata at least every 10 seconds, or when
5380 	 * the data about to be copied would over-write the source of
5381 	 * the data at the front of the range.  i.e. one new_stripe
5382 	 * along from reshape_progress new_maps to after where
5383 	 * reshape_safe old_maps to
5384 	 */
5385 	writepos = conf->reshape_progress;
5386 	sector_div(writepos, new_data_disks);
5387 	readpos = conf->reshape_progress;
5388 	sector_div(readpos, data_disks);
5389 	safepos = conf->reshape_safe;
5390 	sector_div(safepos, data_disks);
5391 	if (mddev->reshape_backwards) {
5392 		writepos -= min_t(sector_t, reshape_sectors, writepos);
5393 		readpos += reshape_sectors;
5394 		safepos += reshape_sectors;
5395 	} else {
5396 		writepos += reshape_sectors;
5397 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5398 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5399 	}
5400 
5401 	/* Having calculated the 'writepos' possibly use it
5402 	 * to set 'stripe_addr' which is where we will write to.
5403 	 */
5404 	if (mddev->reshape_backwards) {
5405 		BUG_ON(conf->reshape_progress == 0);
5406 		stripe_addr = writepos;
5407 		BUG_ON((mddev->dev_sectors &
5408 			~((sector_t)reshape_sectors - 1))
5409 		       - reshape_sectors - stripe_addr
5410 		       != sector_nr);
5411 	} else {
5412 		BUG_ON(writepos != sector_nr + reshape_sectors);
5413 		stripe_addr = sector_nr;
5414 	}
5415 
5416 	/* 'writepos' is the most advanced device address we might write.
5417 	 * 'readpos' is the least advanced device address we might read.
5418 	 * 'safepos' is the least address recorded in the metadata as having
5419 	 *     been reshaped.
5420 	 * If there is a min_offset_diff, these are adjusted either by
5421 	 * increasing the safepos/readpos if diff is negative, or
5422 	 * increasing writepos if diff is positive.
5423 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5424 	 * ensure safety in the face of a crash - that must be done by userspace
5425 	 * making a backup of the data.  So in that case there is no particular
5426 	 * rush to update metadata.
5427 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5428 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5429 	 * we can be safe in the event of a crash.
5430 	 * So we insist on updating metadata if safepos is behind writepos and
5431 	 * readpos is beyond writepos.
5432 	 * In any case, update the metadata every 10 seconds.
5433 	 * Maybe that number should be configurable, but I'm not sure it is
5434 	 * worth it.... maybe it could be a multiple of safemode_delay???
5435 	 */
5436 	if (conf->min_offset_diff < 0) {
5437 		safepos += -conf->min_offset_diff;
5438 		readpos += -conf->min_offset_diff;
5439 	} else
5440 		writepos += conf->min_offset_diff;
5441 
5442 	if ((mddev->reshape_backwards
5443 	     ? (safepos > writepos && readpos < writepos)
5444 	     : (safepos < writepos && readpos > writepos)) ||
5445 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5446 		/* Cannot proceed until we've updated the superblock... */
5447 		wait_event(conf->wait_for_overlap,
5448 			   atomic_read(&conf->reshape_stripes)==0
5449 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5450 		if (atomic_read(&conf->reshape_stripes) != 0)
5451 			return 0;
5452 		mddev->reshape_position = conf->reshape_progress;
5453 		mddev->curr_resync_completed = sector_nr;
5454 		conf->reshape_checkpoint = jiffies;
5455 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5456 		md_wakeup_thread(mddev->thread);
5457 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5458 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5459 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5460 			return 0;
5461 		spin_lock_irq(&conf->device_lock);
5462 		conf->reshape_safe = mddev->reshape_position;
5463 		spin_unlock_irq(&conf->device_lock);
5464 		wake_up(&conf->wait_for_overlap);
5465 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5466 	}
5467 
5468 	INIT_LIST_HEAD(&stripes);
5469 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5470 		int j;
5471 		int skipped_disk = 0;
5472 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5473 		set_bit(STRIPE_EXPANDING, &sh->state);
5474 		atomic_inc(&conf->reshape_stripes);
5475 		/* If any of this stripe is beyond the end of the old
5476 		 * array, then we need to zero those blocks
5477 		 */
5478 		for (j=sh->disks; j--;) {
5479 			sector_t s;
5480 			if (j == sh->pd_idx)
5481 				continue;
5482 			if (conf->level == 6 &&
5483 			    j == sh->qd_idx)
5484 				continue;
5485 			s = compute_blocknr(sh, j, 0);
5486 			if (s < raid5_size(mddev, 0, 0)) {
5487 				skipped_disk = 1;
5488 				continue;
5489 			}
5490 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5491 			set_bit(R5_Expanded, &sh->dev[j].flags);
5492 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5493 		}
5494 		if (!skipped_disk) {
5495 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5496 			set_bit(STRIPE_HANDLE, &sh->state);
5497 		}
5498 		list_add(&sh->lru, &stripes);
5499 	}
5500 	spin_lock_irq(&conf->device_lock);
5501 	if (mddev->reshape_backwards)
5502 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5503 	else
5504 		conf->reshape_progress += reshape_sectors * new_data_disks;
5505 	spin_unlock_irq(&conf->device_lock);
5506 	/* Ok, those stripe are ready. We can start scheduling
5507 	 * reads on the source stripes.
5508 	 * The source stripes are determined by mapping the first and last
5509 	 * block on the destination stripes.
5510 	 */
5511 	first_sector =
5512 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5513 				     1, &dd_idx, NULL);
5514 	last_sector =
5515 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5516 					    * new_data_disks - 1),
5517 				     1, &dd_idx, NULL);
5518 	if (last_sector >= mddev->dev_sectors)
5519 		last_sector = mddev->dev_sectors - 1;
5520 	while (first_sector <= last_sector) {
5521 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5522 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5523 		set_bit(STRIPE_HANDLE, &sh->state);
5524 		release_stripe(sh);
5525 		first_sector += STRIPE_SECTORS;
5526 	}
5527 	/* Now that the sources are clearly marked, we can release
5528 	 * the destination stripes
5529 	 */
5530 	while (!list_empty(&stripes)) {
5531 		sh = list_entry(stripes.next, struct stripe_head, lru);
5532 		list_del_init(&sh->lru);
5533 		release_stripe(sh);
5534 	}
5535 	/* If this takes us to the resync_max point where we have to pause,
5536 	 * then we need to write out the superblock.
5537 	 */
5538 	sector_nr += reshape_sectors;
5539 	if ((sector_nr - mddev->curr_resync_completed) * 2
5540 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5541 		/* Cannot proceed until we've updated the superblock... */
5542 		wait_event(conf->wait_for_overlap,
5543 			   atomic_read(&conf->reshape_stripes) == 0
5544 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5545 		if (atomic_read(&conf->reshape_stripes) != 0)
5546 			goto ret;
5547 		mddev->reshape_position = conf->reshape_progress;
5548 		mddev->curr_resync_completed = sector_nr;
5549 		conf->reshape_checkpoint = jiffies;
5550 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5551 		md_wakeup_thread(mddev->thread);
5552 		wait_event(mddev->sb_wait,
5553 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5554 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5555 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5556 			goto ret;
5557 		spin_lock_irq(&conf->device_lock);
5558 		conf->reshape_safe = mddev->reshape_position;
5559 		spin_unlock_irq(&conf->device_lock);
5560 		wake_up(&conf->wait_for_overlap);
5561 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5562 	}
5563 ret:
5564 	return reshape_sectors;
5565 }
5566 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5567 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5568 {
5569 	struct r5conf *conf = mddev->private;
5570 	struct stripe_head *sh;
5571 	sector_t max_sector = mddev->dev_sectors;
5572 	sector_t sync_blocks;
5573 	int still_degraded = 0;
5574 	int i;
5575 
5576 	if (sector_nr >= max_sector) {
5577 		/* just being told to finish up .. nothing much to do */
5578 
5579 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5580 			end_reshape(conf);
5581 			return 0;
5582 		}
5583 
5584 		if (mddev->curr_resync < max_sector) /* aborted */
5585 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5586 					&sync_blocks, 1);
5587 		else /* completed sync */
5588 			conf->fullsync = 0;
5589 		bitmap_close_sync(mddev->bitmap);
5590 
5591 		return 0;
5592 	}
5593 
5594 	/* Allow raid5_quiesce to complete */
5595 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5596 
5597 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5598 		return reshape_request(mddev, sector_nr, skipped);
5599 
5600 	/* No need to check resync_max as we never do more than one
5601 	 * stripe, and as resync_max will always be on a chunk boundary,
5602 	 * if the check in md_do_sync didn't fire, there is no chance
5603 	 * of overstepping resync_max here
5604 	 */
5605 
5606 	/* if there is too many failed drives and we are trying
5607 	 * to resync, then assert that we are finished, because there is
5608 	 * nothing we can do.
5609 	 */
5610 	if (mddev->degraded >= conf->max_degraded &&
5611 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5612 		sector_t rv = mddev->dev_sectors - sector_nr;
5613 		*skipped = 1;
5614 		return rv;
5615 	}
5616 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5617 	    !conf->fullsync &&
5618 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5619 	    sync_blocks >= STRIPE_SECTORS) {
5620 		/* we can skip this block, and probably more */
5621 		sync_blocks /= STRIPE_SECTORS;
5622 		*skipped = 1;
5623 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5624 	}
5625 
5626 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5627 
5628 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5629 	if (sh == NULL) {
5630 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5631 		/* make sure we don't swamp the stripe cache if someone else
5632 		 * is trying to get access
5633 		 */
5634 		schedule_timeout_uninterruptible(1);
5635 	}
5636 	/* Need to check if array will still be degraded after recovery/resync
5637 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5638 	 * one drive while leaving another faulty drive in array.
5639 	 */
5640 	rcu_read_lock();
5641 	for (i = 0; i < conf->raid_disks; i++) {
5642 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5643 
5644 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5645 			still_degraded = 1;
5646 	}
5647 	rcu_read_unlock();
5648 
5649 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5650 
5651 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5652 	set_bit(STRIPE_HANDLE, &sh->state);
5653 
5654 	release_stripe(sh);
5655 
5656 	return STRIPE_SECTORS;
5657 }
5658 
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio)5659 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5660 {
5661 	/* We may not be able to submit a whole bio at once as there
5662 	 * may not be enough stripe_heads available.
5663 	 * We cannot pre-allocate enough stripe_heads as we may need
5664 	 * more than exist in the cache (if we allow ever large chunks).
5665 	 * So we do one stripe head at a time and record in
5666 	 * ->bi_hw_segments how many have been done.
5667 	 *
5668 	 * We *know* that this entire raid_bio is in one chunk, so
5669 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5670 	 */
5671 	struct stripe_head *sh;
5672 	int dd_idx;
5673 	sector_t sector, logical_sector, last_sector;
5674 	int scnt = 0;
5675 	int remaining;
5676 	int handled = 0;
5677 
5678 	logical_sector = raid_bio->bi_iter.bi_sector &
5679 		~((sector_t)STRIPE_SECTORS-1);
5680 	sector = raid5_compute_sector(conf, logical_sector,
5681 				      0, &dd_idx, NULL);
5682 	last_sector = bio_end_sector(raid_bio);
5683 
5684 	for (; logical_sector < last_sector;
5685 	     logical_sector += STRIPE_SECTORS,
5686 		     sector += STRIPE_SECTORS,
5687 		     scnt++) {
5688 
5689 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5690 			/* already done this stripe */
5691 			continue;
5692 
5693 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5694 
5695 		if (!sh) {
5696 			/* failed to get a stripe - must wait */
5697 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5698 			conf->retry_read_aligned = raid_bio;
5699 			return handled;
5700 		}
5701 
5702 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5703 			release_stripe(sh);
5704 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5705 			conf->retry_read_aligned = raid_bio;
5706 			return handled;
5707 		}
5708 
5709 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5710 		handle_stripe(sh);
5711 		release_stripe(sh);
5712 		handled++;
5713 	}
5714 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5715 	if (remaining == 0) {
5716 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5717 					 raid_bio, 0);
5718 		bio_endio(raid_bio, 0);
5719 	}
5720 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5721 		wake_up(&conf->wait_for_stripe);
5722 	return handled;
5723 }
5724 
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)5725 static int handle_active_stripes(struct r5conf *conf, int group,
5726 				 struct r5worker *worker,
5727 				 struct list_head *temp_inactive_list)
5728 {
5729 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5730 	int i, batch_size = 0, hash;
5731 	bool release_inactive = false;
5732 
5733 	while (batch_size < MAX_STRIPE_BATCH &&
5734 			(sh = __get_priority_stripe(conf, group)) != NULL)
5735 		batch[batch_size++] = sh;
5736 
5737 	if (batch_size == 0) {
5738 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5739 			if (!list_empty(temp_inactive_list + i))
5740 				break;
5741 		if (i == NR_STRIPE_HASH_LOCKS)
5742 			return batch_size;
5743 		release_inactive = true;
5744 	}
5745 	spin_unlock_irq(&conf->device_lock);
5746 
5747 	release_inactive_stripe_list(conf, temp_inactive_list,
5748 				     NR_STRIPE_HASH_LOCKS);
5749 
5750 	if (release_inactive) {
5751 		spin_lock_irq(&conf->device_lock);
5752 		return 0;
5753 	}
5754 
5755 	for (i = 0; i < batch_size; i++)
5756 		handle_stripe(batch[i]);
5757 
5758 	cond_resched();
5759 
5760 	spin_lock_irq(&conf->device_lock);
5761 	for (i = 0; i < batch_size; i++) {
5762 		hash = batch[i]->hash_lock_index;
5763 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5764 	}
5765 	return batch_size;
5766 }
5767 
raid5_do_work(struct work_struct * work)5768 static void raid5_do_work(struct work_struct *work)
5769 {
5770 	struct r5worker *worker = container_of(work, struct r5worker, work);
5771 	struct r5worker_group *group = worker->group;
5772 	struct r5conf *conf = group->conf;
5773 	int group_id = group - conf->worker_groups;
5774 	int handled;
5775 	struct blk_plug plug;
5776 
5777 	pr_debug("+++ raid5worker active\n");
5778 
5779 	blk_start_plug(&plug);
5780 	handled = 0;
5781 	spin_lock_irq(&conf->device_lock);
5782 	while (1) {
5783 		int batch_size, released;
5784 
5785 		released = release_stripe_list(conf, worker->temp_inactive_list);
5786 
5787 		batch_size = handle_active_stripes(conf, group_id, worker,
5788 						   worker->temp_inactive_list);
5789 		worker->working = false;
5790 		if (!batch_size && !released)
5791 			break;
5792 		handled += batch_size;
5793 	}
5794 	pr_debug("%d stripes handled\n", handled);
5795 
5796 	spin_unlock_irq(&conf->device_lock);
5797 	blk_finish_plug(&plug);
5798 
5799 	pr_debug("--- raid5worker inactive\n");
5800 }
5801 
5802 /*
5803  * This is our raid5 kernel thread.
5804  *
5805  * We scan the hash table for stripes which can be handled now.
5806  * During the scan, completed stripes are saved for us by the interrupt
5807  * handler, so that they will not have to wait for our next wakeup.
5808  */
raid5d(struct md_thread * thread)5809 static void raid5d(struct md_thread *thread)
5810 {
5811 	struct mddev *mddev = thread->mddev;
5812 	struct r5conf *conf = mddev->private;
5813 	int handled;
5814 	struct blk_plug plug;
5815 
5816 	pr_debug("+++ raid5d active\n");
5817 
5818 	md_check_recovery(mddev);
5819 
5820 	blk_start_plug(&plug);
5821 	handled = 0;
5822 	spin_lock_irq(&conf->device_lock);
5823 	while (1) {
5824 		struct bio *bio;
5825 		int batch_size, released;
5826 
5827 		released = release_stripe_list(conf, conf->temp_inactive_list);
5828 		if (released)
5829 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5830 
5831 		if (
5832 		    !list_empty(&conf->bitmap_list)) {
5833 			/* Now is a good time to flush some bitmap updates */
5834 			conf->seq_flush++;
5835 			spin_unlock_irq(&conf->device_lock);
5836 			bitmap_unplug(mddev->bitmap);
5837 			spin_lock_irq(&conf->device_lock);
5838 			conf->seq_write = conf->seq_flush;
5839 			activate_bit_delay(conf, conf->temp_inactive_list);
5840 		}
5841 		raid5_activate_delayed(conf);
5842 
5843 		while ((bio = remove_bio_from_retry(conf))) {
5844 			int ok;
5845 			spin_unlock_irq(&conf->device_lock);
5846 			ok = retry_aligned_read(conf, bio);
5847 			spin_lock_irq(&conf->device_lock);
5848 			if (!ok)
5849 				break;
5850 			handled++;
5851 		}
5852 
5853 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5854 						   conf->temp_inactive_list);
5855 		if (!batch_size && !released)
5856 			break;
5857 		handled += batch_size;
5858 
5859 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5860 			spin_unlock_irq(&conf->device_lock);
5861 			md_check_recovery(mddev);
5862 			spin_lock_irq(&conf->device_lock);
5863 		}
5864 	}
5865 	pr_debug("%d stripes handled\n", handled);
5866 
5867 	spin_unlock_irq(&conf->device_lock);
5868 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5869 	    mutex_trylock(&conf->cache_size_mutex)) {
5870 		grow_one_stripe(conf, __GFP_NOWARN);
5871 		/* Set flag even if allocation failed.  This helps
5872 		 * slow down allocation requests when mem is short
5873 		 */
5874 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5875 		mutex_unlock(&conf->cache_size_mutex);
5876 	}
5877 
5878 	async_tx_issue_pending_all();
5879 	blk_finish_plug(&plug);
5880 
5881 	pr_debug("--- raid5d inactive\n");
5882 }
5883 
5884 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)5885 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5886 {
5887 	struct r5conf *conf;
5888 	int ret = 0;
5889 	spin_lock(&mddev->lock);
5890 	conf = mddev->private;
5891 	if (conf)
5892 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5893 	spin_unlock(&mddev->lock);
5894 	return ret;
5895 }
5896 
5897 int
raid5_set_cache_size(struct mddev * mddev,int size)5898 raid5_set_cache_size(struct mddev *mddev, int size)
5899 {
5900 	struct r5conf *conf = mddev->private;
5901 	int err;
5902 
5903 	if (size <= 16 || size > 32768)
5904 		return -EINVAL;
5905 
5906 	conf->min_nr_stripes = size;
5907 	mutex_lock(&conf->cache_size_mutex);
5908 	while (size < conf->max_nr_stripes &&
5909 	       drop_one_stripe(conf))
5910 		;
5911 	mutex_unlock(&conf->cache_size_mutex);
5912 
5913 
5914 	err = md_allow_write(mddev);
5915 	if (err)
5916 		return err;
5917 
5918 	mutex_lock(&conf->cache_size_mutex);
5919 	while (size > conf->max_nr_stripes)
5920 		if (!grow_one_stripe(conf, GFP_KERNEL))
5921 			break;
5922 	mutex_unlock(&conf->cache_size_mutex);
5923 
5924 	return 0;
5925 }
5926 EXPORT_SYMBOL(raid5_set_cache_size);
5927 
5928 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)5929 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5930 {
5931 	struct r5conf *conf;
5932 	unsigned long new;
5933 	int err;
5934 
5935 	if (len >= PAGE_SIZE)
5936 		return -EINVAL;
5937 	if (kstrtoul(page, 10, &new))
5938 		return -EINVAL;
5939 	err = mddev_lock(mddev);
5940 	if (err)
5941 		return err;
5942 	conf = mddev->private;
5943 	if (!conf)
5944 		err = -ENODEV;
5945 	else
5946 		err = raid5_set_cache_size(mddev, new);
5947 	mddev_unlock(mddev);
5948 
5949 	return err ?: len;
5950 }
5951 
5952 static struct md_sysfs_entry
5953 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5954 				raid5_show_stripe_cache_size,
5955 				raid5_store_stripe_cache_size);
5956 
5957 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)5958 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5959 {
5960 	struct r5conf *conf = mddev->private;
5961 	if (conf)
5962 		return sprintf(page, "%d\n", conf->rmw_level);
5963 	else
5964 		return 0;
5965 }
5966 
5967 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)5968 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5969 {
5970 	struct r5conf *conf = mddev->private;
5971 	unsigned long new;
5972 
5973 	if (!conf)
5974 		return -ENODEV;
5975 
5976 	if (len >= PAGE_SIZE)
5977 		return -EINVAL;
5978 
5979 	if (kstrtoul(page, 10, &new))
5980 		return -EINVAL;
5981 
5982 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5983 		return -EINVAL;
5984 
5985 	if (new != PARITY_DISABLE_RMW &&
5986 	    new != PARITY_ENABLE_RMW &&
5987 	    new != PARITY_PREFER_RMW)
5988 		return -EINVAL;
5989 
5990 	conf->rmw_level = new;
5991 	return len;
5992 }
5993 
5994 static struct md_sysfs_entry
5995 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5996 			 raid5_show_rmw_level,
5997 			 raid5_store_rmw_level);
5998 
5999 
6000 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)6001 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6002 {
6003 	struct r5conf *conf;
6004 	int ret = 0;
6005 	spin_lock(&mddev->lock);
6006 	conf = mddev->private;
6007 	if (conf)
6008 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6009 	spin_unlock(&mddev->lock);
6010 	return ret;
6011 }
6012 
6013 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)6014 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6015 {
6016 	struct r5conf *conf;
6017 	unsigned long new;
6018 	int err;
6019 
6020 	if (len >= PAGE_SIZE)
6021 		return -EINVAL;
6022 	if (kstrtoul(page, 10, &new))
6023 		return -EINVAL;
6024 
6025 	err = mddev_lock(mddev);
6026 	if (err)
6027 		return err;
6028 	conf = mddev->private;
6029 	if (!conf)
6030 		err = -ENODEV;
6031 	else if (new > conf->min_nr_stripes)
6032 		err = -EINVAL;
6033 	else
6034 		conf->bypass_threshold = new;
6035 	mddev_unlock(mddev);
6036 	return err ?: len;
6037 }
6038 
6039 static struct md_sysfs_entry
6040 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6041 					S_IRUGO | S_IWUSR,
6042 					raid5_show_preread_threshold,
6043 					raid5_store_preread_threshold);
6044 
6045 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)6046 raid5_show_skip_copy(struct mddev *mddev, char *page)
6047 {
6048 	struct r5conf *conf;
6049 	int ret = 0;
6050 	spin_lock(&mddev->lock);
6051 	conf = mddev->private;
6052 	if (conf)
6053 		ret = sprintf(page, "%d\n", conf->skip_copy);
6054 	spin_unlock(&mddev->lock);
6055 	return ret;
6056 }
6057 
6058 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)6059 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6060 {
6061 	struct r5conf *conf;
6062 	unsigned long new;
6063 	int err;
6064 
6065 	if (len >= PAGE_SIZE)
6066 		return -EINVAL;
6067 	if (kstrtoul(page, 10, &new))
6068 		return -EINVAL;
6069 	new = !!new;
6070 
6071 	err = mddev_lock(mddev);
6072 	if (err)
6073 		return err;
6074 	conf = mddev->private;
6075 	if (!conf)
6076 		err = -ENODEV;
6077 	else if (new != conf->skip_copy) {
6078 		mddev_suspend(mddev);
6079 		conf->skip_copy = new;
6080 		if (new)
6081 			mddev->queue->backing_dev_info.capabilities |=
6082 				BDI_CAP_STABLE_WRITES;
6083 		else
6084 			mddev->queue->backing_dev_info.capabilities &=
6085 				~BDI_CAP_STABLE_WRITES;
6086 		mddev_resume(mddev);
6087 	}
6088 	mddev_unlock(mddev);
6089 	return err ?: len;
6090 }
6091 
6092 static struct md_sysfs_entry
6093 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6094 					raid5_show_skip_copy,
6095 					raid5_store_skip_copy);
6096 
6097 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)6098 stripe_cache_active_show(struct mddev *mddev, char *page)
6099 {
6100 	struct r5conf *conf = mddev->private;
6101 	if (conf)
6102 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6103 	else
6104 		return 0;
6105 }
6106 
6107 static struct md_sysfs_entry
6108 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6109 
6110 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)6111 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6112 {
6113 	struct r5conf *conf;
6114 	int ret = 0;
6115 	spin_lock(&mddev->lock);
6116 	conf = mddev->private;
6117 	if (conf)
6118 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6119 	spin_unlock(&mddev->lock);
6120 	return ret;
6121 }
6122 
6123 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6124 			       int *group_cnt,
6125 			       int *worker_cnt_per_group,
6126 			       struct r5worker_group **worker_groups);
6127 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)6128 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6129 {
6130 	struct r5conf *conf;
6131 	unsigned long new;
6132 	int err;
6133 	struct r5worker_group *new_groups, *old_groups;
6134 	int group_cnt, worker_cnt_per_group;
6135 
6136 	if (len >= PAGE_SIZE)
6137 		return -EINVAL;
6138 	if (kstrtoul(page, 10, &new))
6139 		return -EINVAL;
6140 
6141 	err = mddev_lock(mddev);
6142 	if (err)
6143 		return err;
6144 	conf = mddev->private;
6145 	if (!conf)
6146 		err = -ENODEV;
6147 	else if (new != conf->worker_cnt_per_group) {
6148 		mddev_suspend(mddev);
6149 
6150 		old_groups = conf->worker_groups;
6151 		if (old_groups)
6152 			flush_workqueue(raid5_wq);
6153 
6154 		err = alloc_thread_groups(conf, new,
6155 					  &group_cnt, &worker_cnt_per_group,
6156 					  &new_groups);
6157 		if (!err) {
6158 			spin_lock_irq(&conf->device_lock);
6159 			conf->group_cnt = group_cnt;
6160 			conf->worker_cnt_per_group = worker_cnt_per_group;
6161 			conf->worker_groups = new_groups;
6162 			spin_unlock_irq(&conf->device_lock);
6163 
6164 			if (old_groups)
6165 				kfree(old_groups[0].workers);
6166 			kfree(old_groups);
6167 		}
6168 		mddev_resume(mddev);
6169 	}
6170 	mddev_unlock(mddev);
6171 
6172 	return err ?: len;
6173 }
6174 
6175 static struct md_sysfs_entry
6176 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6177 				raid5_show_group_thread_cnt,
6178 				raid5_store_group_thread_cnt);
6179 
6180 static struct attribute *raid5_attrs[] =  {
6181 	&raid5_stripecache_size.attr,
6182 	&raid5_stripecache_active.attr,
6183 	&raid5_preread_bypass_threshold.attr,
6184 	&raid5_group_thread_cnt.attr,
6185 	&raid5_skip_copy.attr,
6186 	&raid5_rmw_level.attr,
6187 	NULL,
6188 };
6189 static struct attribute_group raid5_attrs_group = {
6190 	.name = NULL,
6191 	.attrs = raid5_attrs,
6192 };
6193 
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,int * worker_cnt_per_group,struct r5worker_group ** worker_groups)6194 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6195 			       int *group_cnt,
6196 			       int *worker_cnt_per_group,
6197 			       struct r5worker_group **worker_groups)
6198 {
6199 	int i, j, k;
6200 	ssize_t size;
6201 	struct r5worker *workers;
6202 
6203 	*worker_cnt_per_group = cnt;
6204 	if (cnt == 0) {
6205 		*group_cnt = 0;
6206 		*worker_groups = NULL;
6207 		return 0;
6208 	}
6209 	*group_cnt = num_possible_nodes();
6210 	size = sizeof(struct r5worker) * cnt;
6211 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6212 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6213 				*group_cnt, GFP_NOIO);
6214 	if (!*worker_groups || !workers) {
6215 		kfree(workers);
6216 		kfree(*worker_groups);
6217 		return -ENOMEM;
6218 	}
6219 
6220 	for (i = 0; i < *group_cnt; i++) {
6221 		struct r5worker_group *group;
6222 
6223 		group = &(*worker_groups)[i];
6224 		INIT_LIST_HEAD(&group->handle_list);
6225 		group->conf = conf;
6226 		group->workers = workers + i * cnt;
6227 
6228 		for (j = 0; j < cnt; j++) {
6229 			struct r5worker *worker = group->workers + j;
6230 			worker->group = group;
6231 			INIT_WORK(&worker->work, raid5_do_work);
6232 
6233 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6234 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6235 		}
6236 	}
6237 
6238 	return 0;
6239 }
6240 
free_thread_groups(struct r5conf * conf)6241 static void free_thread_groups(struct r5conf *conf)
6242 {
6243 	if (conf->worker_groups)
6244 		kfree(conf->worker_groups[0].workers);
6245 	kfree(conf->worker_groups);
6246 	conf->worker_groups = NULL;
6247 }
6248 
6249 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)6250 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6251 {
6252 	struct r5conf *conf = mddev->private;
6253 
6254 	if (!sectors)
6255 		sectors = mddev->dev_sectors;
6256 	if (!raid_disks)
6257 		/* size is defined by the smallest of previous and new size */
6258 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6259 
6260 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6261 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6262 	return sectors * (raid_disks - conf->max_degraded);
6263 }
6264 
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6265 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6266 {
6267 	safe_put_page(percpu->spare_page);
6268 	if (percpu->scribble)
6269 		flex_array_free(percpu->scribble);
6270 	percpu->spare_page = NULL;
6271 	percpu->scribble = NULL;
6272 }
6273 
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)6274 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6275 {
6276 	if (conf->level == 6 && !percpu->spare_page)
6277 		percpu->spare_page = alloc_page(GFP_KERNEL);
6278 	if (!percpu->scribble)
6279 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6280 						      conf->previous_raid_disks),
6281 						  max(conf->chunk_sectors,
6282 						      conf->prev_chunk_sectors)
6283 						   / STRIPE_SECTORS,
6284 						  GFP_KERNEL);
6285 
6286 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6287 		free_scratch_buffer(conf, percpu);
6288 		return -ENOMEM;
6289 	}
6290 
6291 	return 0;
6292 }
6293 
raid5_free_percpu(struct r5conf * conf)6294 static void raid5_free_percpu(struct r5conf *conf)
6295 {
6296 	unsigned long cpu;
6297 
6298 	if (!conf->percpu)
6299 		return;
6300 
6301 #ifdef CONFIG_HOTPLUG_CPU
6302 	unregister_cpu_notifier(&conf->cpu_notify);
6303 #endif
6304 
6305 	get_online_cpus();
6306 	for_each_possible_cpu(cpu)
6307 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6308 	put_online_cpus();
6309 
6310 	free_percpu(conf->percpu);
6311 }
6312 
free_conf(struct r5conf * conf)6313 static void free_conf(struct r5conf *conf)
6314 {
6315 	if (conf->shrinker.seeks)
6316 		unregister_shrinker(&conf->shrinker);
6317 	free_thread_groups(conf);
6318 	shrink_stripes(conf);
6319 	raid5_free_percpu(conf);
6320 	kfree(conf->disks);
6321 	kfree(conf->stripe_hashtbl);
6322 	kfree(conf);
6323 }
6324 
6325 #ifdef CONFIG_HOTPLUG_CPU
raid456_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)6326 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6327 			      void *hcpu)
6328 {
6329 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6330 	long cpu = (long)hcpu;
6331 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6332 
6333 	switch (action) {
6334 	case CPU_UP_PREPARE:
6335 	case CPU_UP_PREPARE_FROZEN:
6336 		if (alloc_scratch_buffer(conf, percpu)) {
6337 			pr_err("%s: failed memory allocation for cpu%ld\n",
6338 			       __func__, cpu);
6339 			return notifier_from_errno(-ENOMEM);
6340 		}
6341 		break;
6342 	case CPU_DEAD:
6343 	case CPU_DEAD_FROZEN:
6344 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6345 		break;
6346 	default:
6347 		break;
6348 	}
6349 	return NOTIFY_OK;
6350 }
6351 #endif
6352 
raid5_alloc_percpu(struct r5conf * conf)6353 static int raid5_alloc_percpu(struct r5conf *conf)
6354 {
6355 	unsigned long cpu;
6356 	int err = 0;
6357 
6358 	conf->percpu = alloc_percpu(struct raid5_percpu);
6359 	if (!conf->percpu)
6360 		return -ENOMEM;
6361 
6362 #ifdef CONFIG_HOTPLUG_CPU
6363 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6364 	conf->cpu_notify.priority = 0;
6365 	err = register_cpu_notifier(&conf->cpu_notify);
6366 	if (err)
6367 		return err;
6368 #endif
6369 
6370 	get_online_cpus();
6371 	for_each_present_cpu(cpu) {
6372 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6373 		if (err) {
6374 			pr_err("%s: failed memory allocation for cpu%ld\n",
6375 			       __func__, cpu);
6376 			break;
6377 		}
6378 	}
6379 	put_online_cpus();
6380 
6381 	if (!err) {
6382 		conf->scribble_disks = max(conf->raid_disks,
6383 			conf->previous_raid_disks);
6384 		conf->scribble_sectors = max(conf->chunk_sectors,
6385 			conf->prev_chunk_sectors);
6386 	}
6387 	return err;
6388 }
6389 
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)6390 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6391 				      struct shrink_control *sc)
6392 {
6393 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6394 	unsigned long ret = SHRINK_STOP;
6395 
6396 	if (mutex_trylock(&conf->cache_size_mutex)) {
6397 		ret= 0;
6398 		while (ret < sc->nr_to_scan &&
6399 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6400 			if (drop_one_stripe(conf) == 0) {
6401 				ret = SHRINK_STOP;
6402 				break;
6403 			}
6404 			ret++;
6405 		}
6406 		mutex_unlock(&conf->cache_size_mutex);
6407 	}
6408 	return ret;
6409 }
6410 
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)6411 static unsigned long raid5_cache_count(struct shrinker *shrink,
6412 				       struct shrink_control *sc)
6413 {
6414 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6415 
6416 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6417 		/* unlikely, but not impossible */
6418 		return 0;
6419 	return conf->max_nr_stripes - conf->min_nr_stripes;
6420 }
6421 
setup_conf(struct mddev * mddev)6422 static struct r5conf *setup_conf(struct mddev *mddev)
6423 {
6424 	struct r5conf *conf;
6425 	int raid_disk, memory, max_disks;
6426 	struct md_rdev *rdev;
6427 	struct disk_info *disk;
6428 	char pers_name[6];
6429 	int i;
6430 	int group_cnt, worker_cnt_per_group;
6431 	struct r5worker_group *new_group;
6432 
6433 	if (mddev->new_level != 5
6434 	    && mddev->new_level != 4
6435 	    && mddev->new_level != 6) {
6436 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6437 		       mdname(mddev), mddev->new_level);
6438 		return ERR_PTR(-EIO);
6439 	}
6440 	if ((mddev->new_level == 5
6441 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6442 	    (mddev->new_level == 6
6443 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6444 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6445 		       mdname(mddev), mddev->new_layout);
6446 		return ERR_PTR(-EIO);
6447 	}
6448 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6449 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6450 		       mdname(mddev), mddev->raid_disks);
6451 		return ERR_PTR(-EINVAL);
6452 	}
6453 
6454 	if (!mddev->new_chunk_sectors ||
6455 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6456 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6457 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6458 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6459 		return ERR_PTR(-EINVAL);
6460 	}
6461 
6462 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6463 	if (conf == NULL)
6464 		goto abort;
6465 	/* Don't enable multi-threading by default*/
6466 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6467 				 &new_group)) {
6468 		conf->group_cnt = group_cnt;
6469 		conf->worker_cnt_per_group = worker_cnt_per_group;
6470 		conf->worker_groups = new_group;
6471 	} else
6472 		goto abort;
6473 	spin_lock_init(&conf->device_lock);
6474 	seqcount_init(&conf->gen_lock);
6475 	mutex_init(&conf->cache_size_mutex);
6476 	init_waitqueue_head(&conf->wait_for_stripe);
6477 	init_waitqueue_head(&conf->wait_for_overlap);
6478 	INIT_LIST_HEAD(&conf->handle_list);
6479 	INIT_LIST_HEAD(&conf->hold_list);
6480 	INIT_LIST_HEAD(&conf->delayed_list);
6481 	INIT_LIST_HEAD(&conf->bitmap_list);
6482 	init_llist_head(&conf->released_stripes);
6483 	atomic_set(&conf->active_stripes, 0);
6484 	atomic_set(&conf->preread_active_stripes, 0);
6485 	atomic_set(&conf->active_aligned_reads, 0);
6486 	conf->bypass_threshold = BYPASS_THRESHOLD;
6487 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6488 
6489 	conf->raid_disks = mddev->raid_disks;
6490 	if (mddev->reshape_position == MaxSector)
6491 		conf->previous_raid_disks = mddev->raid_disks;
6492 	else
6493 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6494 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6495 
6496 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6497 			      GFP_KERNEL);
6498 	if (!conf->disks)
6499 		goto abort;
6500 
6501 	conf->mddev = mddev;
6502 
6503 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6504 		goto abort;
6505 
6506 	/* We init hash_locks[0] separately to that it can be used
6507 	 * as the reference lock in the spin_lock_nest_lock() call
6508 	 * in lock_all_device_hash_locks_irq in order to convince
6509 	 * lockdep that we know what we are doing.
6510 	 */
6511 	spin_lock_init(conf->hash_locks);
6512 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6513 		spin_lock_init(conf->hash_locks + i);
6514 
6515 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516 		INIT_LIST_HEAD(conf->inactive_list + i);
6517 
6518 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6519 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6520 
6521 	conf->level = mddev->new_level;
6522 	conf->chunk_sectors = mddev->new_chunk_sectors;
6523 	if (raid5_alloc_percpu(conf) != 0)
6524 		goto abort;
6525 
6526 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6527 
6528 	rdev_for_each(rdev, mddev) {
6529 		raid_disk = rdev->raid_disk;
6530 		if (raid_disk >= max_disks
6531 		    || raid_disk < 0)
6532 			continue;
6533 		disk = conf->disks + raid_disk;
6534 
6535 		if (test_bit(Replacement, &rdev->flags)) {
6536 			if (disk->replacement)
6537 				goto abort;
6538 			disk->replacement = rdev;
6539 		} else {
6540 			if (disk->rdev)
6541 				goto abort;
6542 			disk->rdev = rdev;
6543 		}
6544 
6545 		if (test_bit(In_sync, &rdev->flags)) {
6546 			char b[BDEVNAME_SIZE];
6547 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6548 			       " disk %d\n",
6549 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6550 		} else if (rdev->saved_raid_disk != raid_disk)
6551 			/* Cannot rely on bitmap to complete recovery */
6552 			conf->fullsync = 1;
6553 	}
6554 
6555 	conf->level = mddev->new_level;
6556 	if (conf->level == 6) {
6557 		conf->max_degraded = 2;
6558 		if (raid6_call.xor_syndrome)
6559 			conf->rmw_level = PARITY_ENABLE_RMW;
6560 		else
6561 			conf->rmw_level = PARITY_DISABLE_RMW;
6562 	} else {
6563 		conf->max_degraded = 1;
6564 		conf->rmw_level = PARITY_ENABLE_RMW;
6565 	}
6566 	conf->algorithm = mddev->new_layout;
6567 	conf->reshape_progress = mddev->reshape_position;
6568 	if (conf->reshape_progress != MaxSector) {
6569 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6570 		conf->prev_algo = mddev->layout;
6571 	}
6572 
6573 	conf->min_nr_stripes = NR_STRIPES;
6574 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6575 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6576 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6577 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6578 		printk(KERN_ERR
6579 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6580 		       mdname(mddev), memory);
6581 		goto abort;
6582 	} else
6583 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6584 		       mdname(mddev), memory);
6585 	/*
6586 	 * Losing a stripe head costs more than the time to refill it,
6587 	 * it reduces the queue depth and so can hurt throughput.
6588 	 * So set it rather large, scaled by number of devices.
6589 	 */
6590 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6591 	conf->shrinker.scan_objects = raid5_cache_scan;
6592 	conf->shrinker.count_objects = raid5_cache_count;
6593 	conf->shrinker.batch = 128;
6594 	conf->shrinker.flags = 0;
6595 	register_shrinker(&conf->shrinker);
6596 
6597 	sprintf(pers_name, "raid%d", mddev->new_level);
6598 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6599 	if (!conf->thread) {
6600 		printk(KERN_ERR
6601 		       "md/raid:%s: couldn't allocate thread.\n",
6602 		       mdname(mddev));
6603 		goto abort;
6604 	}
6605 
6606 	return conf;
6607 
6608  abort:
6609 	if (conf) {
6610 		free_conf(conf);
6611 		return ERR_PTR(-EIO);
6612 	} else
6613 		return ERR_PTR(-ENOMEM);
6614 }
6615 
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)6616 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6617 {
6618 	switch (algo) {
6619 	case ALGORITHM_PARITY_0:
6620 		if (raid_disk < max_degraded)
6621 			return 1;
6622 		break;
6623 	case ALGORITHM_PARITY_N:
6624 		if (raid_disk >= raid_disks - max_degraded)
6625 			return 1;
6626 		break;
6627 	case ALGORITHM_PARITY_0_6:
6628 		if (raid_disk == 0 ||
6629 		    raid_disk == raid_disks - 1)
6630 			return 1;
6631 		break;
6632 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6633 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6634 	case ALGORITHM_LEFT_SYMMETRIC_6:
6635 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6636 		if (raid_disk == raid_disks - 1)
6637 			return 1;
6638 	}
6639 	return 0;
6640 }
6641 
run(struct mddev * mddev)6642 static int run(struct mddev *mddev)
6643 {
6644 	struct r5conf *conf;
6645 	int working_disks = 0;
6646 	int dirty_parity_disks = 0;
6647 	struct md_rdev *rdev;
6648 	sector_t reshape_offset = 0;
6649 	int i;
6650 	long long min_offset_diff = 0;
6651 	int first = 1;
6652 
6653 	if (mddev->recovery_cp != MaxSector)
6654 		printk(KERN_NOTICE "md/raid:%s: not clean"
6655 		       " -- starting background reconstruction\n",
6656 		       mdname(mddev));
6657 
6658 	rdev_for_each(rdev, mddev) {
6659 		long long diff;
6660 		if (rdev->raid_disk < 0)
6661 			continue;
6662 		diff = (rdev->new_data_offset - rdev->data_offset);
6663 		if (first) {
6664 			min_offset_diff = diff;
6665 			first = 0;
6666 		} else if (mddev->reshape_backwards &&
6667 			 diff < min_offset_diff)
6668 			min_offset_diff = diff;
6669 		else if (!mddev->reshape_backwards &&
6670 			 diff > min_offset_diff)
6671 			min_offset_diff = diff;
6672 	}
6673 
6674 	if (mddev->reshape_position != MaxSector) {
6675 		/* Check that we can continue the reshape.
6676 		 * Difficulties arise if the stripe we would write to
6677 		 * next is at or after the stripe we would read from next.
6678 		 * For a reshape that changes the number of devices, this
6679 		 * is only possible for a very short time, and mdadm makes
6680 		 * sure that time appears to have past before assembling
6681 		 * the array.  So we fail if that time hasn't passed.
6682 		 * For a reshape that keeps the number of devices the same
6683 		 * mdadm must be monitoring the reshape can keeping the
6684 		 * critical areas read-only and backed up.  It will start
6685 		 * the array in read-only mode, so we check for that.
6686 		 */
6687 		sector_t here_new, here_old;
6688 		int old_disks;
6689 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6690 
6691 		if (mddev->new_level != mddev->level) {
6692 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6693 			       "required - aborting.\n",
6694 			       mdname(mddev));
6695 			return -EINVAL;
6696 		}
6697 		old_disks = mddev->raid_disks - mddev->delta_disks;
6698 		/* reshape_position must be on a new-stripe boundary, and one
6699 		 * further up in new geometry must map after here in old
6700 		 * geometry.
6701 		 */
6702 		here_new = mddev->reshape_position;
6703 		if (sector_div(here_new, mddev->new_chunk_sectors *
6704 			       (mddev->raid_disks - max_degraded))) {
6705 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6706 			       "on a stripe boundary\n", mdname(mddev));
6707 			return -EINVAL;
6708 		}
6709 		reshape_offset = here_new * mddev->new_chunk_sectors;
6710 		/* here_new is the stripe we will write to */
6711 		here_old = mddev->reshape_position;
6712 		sector_div(here_old, mddev->chunk_sectors *
6713 			   (old_disks-max_degraded));
6714 		/* here_old is the first stripe that we might need to read
6715 		 * from */
6716 		if (mddev->delta_disks == 0) {
6717 			if ((here_new * mddev->new_chunk_sectors !=
6718 			     here_old * mddev->chunk_sectors)) {
6719 				printk(KERN_ERR "md/raid:%s: reshape position is"
6720 				       " confused - aborting\n", mdname(mddev));
6721 				return -EINVAL;
6722 			}
6723 			/* We cannot be sure it is safe to start an in-place
6724 			 * reshape.  It is only safe if user-space is monitoring
6725 			 * and taking constant backups.
6726 			 * mdadm always starts a situation like this in
6727 			 * readonly mode so it can take control before
6728 			 * allowing any writes.  So just check for that.
6729 			 */
6730 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6731 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6732 				/* not really in-place - so OK */;
6733 			else if (mddev->ro == 0) {
6734 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6735 				       "must be started in read-only mode "
6736 				       "- aborting\n",
6737 				       mdname(mddev));
6738 				return -EINVAL;
6739 			}
6740 		} else if (mddev->reshape_backwards
6741 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6742 		       here_old * mddev->chunk_sectors)
6743 		    : (here_new * mddev->new_chunk_sectors >=
6744 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6745 			/* Reading from the same stripe as writing to - bad */
6746 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6747 			       "auto-recovery - aborting.\n",
6748 			       mdname(mddev));
6749 			return -EINVAL;
6750 		}
6751 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6752 		       mdname(mddev));
6753 		/* OK, we should be able to continue; */
6754 	} else {
6755 		BUG_ON(mddev->level != mddev->new_level);
6756 		BUG_ON(mddev->layout != mddev->new_layout);
6757 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6758 		BUG_ON(mddev->delta_disks != 0);
6759 	}
6760 
6761 	if (mddev->private == NULL)
6762 		conf = setup_conf(mddev);
6763 	else
6764 		conf = mddev->private;
6765 
6766 	if (IS_ERR(conf))
6767 		return PTR_ERR(conf);
6768 
6769 	conf->min_offset_diff = min_offset_diff;
6770 	mddev->thread = conf->thread;
6771 	conf->thread = NULL;
6772 	mddev->private = conf;
6773 
6774 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6775 	     i++) {
6776 		rdev = conf->disks[i].rdev;
6777 		if (!rdev && conf->disks[i].replacement) {
6778 			/* The replacement is all we have yet */
6779 			rdev = conf->disks[i].replacement;
6780 			conf->disks[i].replacement = NULL;
6781 			clear_bit(Replacement, &rdev->flags);
6782 			conf->disks[i].rdev = rdev;
6783 		}
6784 		if (!rdev)
6785 			continue;
6786 		if (conf->disks[i].replacement &&
6787 		    conf->reshape_progress != MaxSector) {
6788 			/* replacements and reshape simply do not mix. */
6789 			printk(KERN_ERR "md: cannot handle concurrent "
6790 			       "replacement and reshape.\n");
6791 			goto abort;
6792 		}
6793 		if (test_bit(In_sync, &rdev->flags)) {
6794 			working_disks++;
6795 			continue;
6796 		}
6797 		/* This disc is not fully in-sync.  However if it
6798 		 * just stored parity (beyond the recovery_offset),
6799 		 * when we don't need to be concerned about the
6800 		 * array being dirty.
6801 		 * When reshape goes 'backwards', we never have
6802 		 * partially completed devices, so we only need
6803 		 * to worry about reshape going forwards.
6804 		 */
6805 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6806 		if (mddev->major_version == 0 &&
6807 		    mddev->minor_version > 90)
6808 			rdev->recovery_offset = reshape_offset;
6809 
6810 		if (rdev->recovery_offset < reshape_offset) {
6811 			/* We need to check old and new layout */
6812 			if (!only_parity(rdev->raid_disk,
6813 					 conf->algorithm,
6814 					 conf->raid_disks,
6815 					 conf->max_degraded))
6816 				continue;
6817 		}
6818 		if (!only_parity(rdev->raid_disk,
6819 				 conf->prev_algo,
6820 				 conf->previous_raid_disks,
6821 				 conf->max_degraded))
6822 			continue;
6823 		dirty_parity_disks++;
6824 	}
6825 
6826 	/*
6827 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6828 	 */
6829 	mddev->degraded = calc_degraded(conf);
6830 
6831 	if (has_failed(conf)) {
6832 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6833 			" (%d/%d failed)\n",
6834 			mdname(mddev), mddev->degraded, conf->raid_disks);
6835 		goto abort;
6836 	}
6837 
6838 	/* device size must be a multiple of chunk size */
6839 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6840 	mddev->resync_max_sectors = mddev->dev_sectors;
6841 
6842 	if (mddev->degraded > dirty_parity_disks &&
6843 	    mddev->recovery_cp != MaxSector) {
6844 		if (mddev->ok_start_degraded)
6845 			printk(KERN_WARNING
6846 			       "md/raid:%s: starting dirty degraded array"
6847 			       " - data corruption possible.\n",
6848 			       mdname(mddev));
6849 		else {
6850 			printk(KERN_ERR
6851 			       "md/raid:%s: cannot start dirty degraded array.\n",
6852 			       mdname(mddev));
6853 			goto abort;
6854 		}
6855 	}
6856 
6857 	if (mddev->degraded == 0)
6858 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6859 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6860 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6861 		       mddev->new_layout);
6862 	else
6863 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6864 		       " out of %d devices, algorithm %d\n",
6865 		       mdname(mddev), conf->level,
6866 		       mddev->raid_disks - mddev->degraded,
6867 		       mddev->raid_disks, mddev->new_layout);
6868 
6869 	print_raid5_conf(conf);
6870 
6871 	if (conf->reshape_progress != MaxSector) {
6872 		conf->reshape_safe = conf->reshape_progress;
6873 		atomic_set(&conf->reshape_stripes, 0);
6874 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6875 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6876 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6877 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6878 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6879 							"reshape");
6880 	}
6881 
6882 	/* Ok, everything is just fine now */
6883 	if (mddev->to_remove == &raid5_attrs_group)
6884 		mddev->to_remove = NULL;
6885 	else if (mddev->kobj.sd &&
6886 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6887 		printk(KERN_WARNING
6888 		       "raid5: failed to create sysfs attributes for %s\n",
6889 		       mdname(mddev));
6890 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6891 
6892 	if (mddev->queue) {
6893 		int chunk_size;
6894 		bool discard_supported = true;
6895 		/* read-ahead size must cover two whole stripes, which
6896 		 * is 2 * (datadisks) * chunksize where 'n' is the
6897 		 * number of raid devices
6898 		 */
6899 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6900 		int stripe = data_disks *
6901 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6902 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6903 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6904 
6905 		chunk_size = mddev->chunk_sectors << 9;
6906 		blk_queue_io_min(mddev->queue, chunk_size);
6907 		blk_queue_io_opt(mddev->queue, chunk_size *
6908 				 (conf->raid_disks - conf->max_degraded));
6909 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6910 		/*
6911 		 * We can only discard a whole stripe. It doesn't make sense to
6912 		 * discard data disk but write parity disk
6913 		 */
6914 		stripe = stripe * PAGE_SIZE;
6915 		/* Round up to power of 2, as discard handling
6916 		 * currently assumes that */
6917 		while ((stripe-1) & stripe)
6918 			stripe = (stripe | (stripe-1)) + 1;
6919 		mddev->queue->limits.discard_alignment = stripe;
6920 		mddev->queue->limits.discard_granularity = stripe;
6921 		/*
6922 		 * unaligned part of discard request will be ignored, so can't
6923 		 * guarantee discard_zeroes_data
6924 		 */
6925 		mddev->queue->limits.discard_zeroes_data = 0;
6926 
6927 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6928 
6929 		rdev_for_each(rdev, mddev) {
6930 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6931 					  rdev->data_offset << 9);
6932 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6933 					  rdev->new_data_offset << 9);
6934 			/*
6935 			 * discard_zeroes_data is required, otherwise data
6936 			 * could be lost. Consider a scenario: discard a stripe
6937 			 * (the stripe could be inconsistent if
6938 			 * discard_zeroes_data is 0); write one disk of the
6939 			 * stripe (the stripe could be inconsistent again
6940 			 * depending on which disks are used to calculate
6941 			 * parity); the disk is broken; The stripe data of this
6942 			 * disk is lost.
6943 			 */
6944 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6945 			    !bdev_get_queue(rdev->bdev)->
6946 						limits.discard_zeroes_data)
6947 				discard_supported = false;
6948 			/* Unfortunately, discard_zeroes_data is not currently
6949 			 * a guarantee - just a hint.  So we only allow DISCARD
6950 			 * if the sysadmin has confirmed that only safe devices
6951 			 * are in use by setting a module parameter.
6952 			 */
6953 			if (!devices_handle_discard_safely) {
6954 				if (discard_supported) {
6955 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6956 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6957 				}
6958 				discard_supported = false;
6959 			}
6960 		}
6961 
6962 		if (discard_supported &&
6963 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
6964 		    mddev->queue->limits.discard_granularity >= stripe)
6965 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6966 						mddev->queue);
6967 		else
6968 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6969 						mddev->queue);
6970 	}
6971 
6972 	return 0;
6973 abort:
6974 	md_unregister_thread(&mddev->thread);
6975 	print_raid5_conf(conf);
6976 	free_conf(conf);
6977 	mddev->private = NULL;
6978 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6979 	return -EIO;
6980 }
6981 
raid5_free(struct mddev * mddev,void * priv)6982 static void raid5_free(struct mddev *mddev, void *priv)
6983 {
6984 	struct r5conf *conf = priv;
6985 
6986 	free_conf(conf);
6987 	mddev->to_remove = &raid5_attrs_group;
6988 }
6989 
status(struct seq_file * seq,struct mddev * mddev)6990 static void status(struct seq_file *seq, struct mddev *mddev)
6991 {
6992 	struct r5conf *conf = mddev->private;
6993 	int i;
6994 
6995 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6996 		mddev->chunk_sectors / 2, mddev->layout);
6997 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6998 	for (i = 0; i < conf->raid_disks; i++)
6999 		seq_printf (seq, "%s",
7000 			       conf->disks[i].rdev &&
7001 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7002 	seq_printf (seq, "]");
7003 }
7004 
print_raid5_conf(struct r5conf * conf)7005 static void print_raid5_conf (struct r5conf *conf)
7006 {
7007 	int i;
7008 	struct disk_info *tmp;
7009 
7010 	printk(KERN_DEBUG "RAID conf printout:\n");
7011 	if (!conf) {
7012 		printk("(conf==NULL)\n");
7013 		return;
7014 	}
7015 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7016 	       conf->raid_disks,
7017 	       conf->raid_disks - conf->mddev->degraded);
7018 
7019 	for (i = 0; i < conf->raid_disks; i++) {
7020 		char b[BDEVNAME_SIZE];
7021 		tmp = conf->disks + i;
7022 		if (tmp->rdev)
7023 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7024 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7025 			       bdevname(tmp->rdev->bdev, b));
7026 	}
7027 }
7028 
raid5_spare_active(struct mddev * mddev)7029 static int raid5_spare_active(struct mddev *mddev)
7030 {
7031 	int i;
7032 	struct r5conf *conf = mddev->private;
7033 	struct disk_info *tmp;
7034 	int count = 0;
7035 	unsigned long flags;
7036 
7037 	for (i = 0; i < conf->raid_disks; i++) {
7038 		tmp = conf->disks + i;
7039 		if (tmp->replacement
7040 		    && tmp->replacement->recovery_offset == MaxSector
7041 		    && !test_bit(Faulty, &tmp->replacement->flags)
7042 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7043 			/* Replacement has just become active. */
7044 			if (!tmp->rdev
7045 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7046 				count++;
7047 			if (tmp->rdev) {
7048 				/* Replaced device not technically faulty,
7049 				 * but we need to be sure it gets removed
7050 				 * and never re-added.
7051 				 */
7052 				set_bit(Faulty, &tmp->rdev->flags);
7053 				sysfs_notify_dirent_safe(
7054 					tmp->rdev->sysfs_state);
7055 			}
7056 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7057 		} else if (tmp->rdev
7058 		    && tmp->rdev->recovery_offset == MaxSector
7059 		    && !test_bit(Faulty, &tmp->rdev->flags)
7060 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7061 			count++;
7062 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7063 		}
7064 	}
7065 	spin_lock_irqsave(&conf->device_lock, flags);
7066 	mddev->degraded = calc_degraded(conf);
7067 	spin_unlock_irqrestore(&conf->device_lock, flags);
7068 	print_raid5_conf(conf);
7069 	return count;
7070 }
7071 
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)7072 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7073 {
7074 	struct r5conf *conf = mddev->private;
7075 	int err = 0;
7076 	int number = rdev->raid_disk;
7077 	struct md_rdev **rdevp;
7078 	struct disk_info *p = conf->disks + number;
7079 
7080 	print_raid5_conf(conf);
7081 	if (rdev == p->rdev)
7082 		rdevp = &p->rdev;
7083 	else if (rdev == p->replacement)
7084 		rdevp = &p->replacement;
7085 	else
7086 		return 0;
7087 
7088 	if (number >= conf->raid_disks &&
7089 	    conf->reshape_progress == MaxSector)
7090 		clear_bit(In_sync, &rdev->flags);
7091 
7092 	if (test_bit(In_sync, &rdev->flags) ||
7093 	    atomic_read(&rdev->nr_pending)) {
7094 		err = -EBUSY;
7095 		goto abort;
7096 	}
7097 	/* Only remove non-faulty devices if recovery
7098 	 * isn't possible.
7099 	 */
7100 	if (!test_bit(Faulty, &rdev->flags) &&
7101 	    mddev->recovery_disabled != conf->recovery_disabled &&
7102 	    !has_failed(conf) &&
7103 	    (!p->replacement || p->replacement == rdev) &&
7104 	    number < conf->raid_disks) {
7105 		err = -EBUSY;
7106 		goto abort;
7107 	}
7108 	*rdevp = NULL;
7109 	synchronize_rcu();
7110 	if (atomic_read(&rdev->nr_pending)) {
7111 		/* lost the race, try later */
7112 		err = -EBUSY;
7113 		*rdevp = rdev;
7114 	} else if (p->replacement) {
7115 		/* We must have just cleared 'rdev' */
7116 		p->rdev = p->replacement;
7117 		clear_bit(Replacement, &p->replacement->flags);
7118 		smp_mb(); /* Make sure other CPUs may see both as identical
7119 			   * but will never see neither - if they are careful
7120 			   */
7121 		p->replacement = NULL;
7122 		clear_bit(WantReplacement, &rdev->flags);
7123 	} else
7124 		/* We might have just removed the Replacement as faulty-
7125 		 * clear the bit just in case
7126 		 */
7127 		clear_bit(WantReplacement, &rdev->flags);
7128 abort:
7129 
7130 	print_raid5_conf(conf);
7131 	return err;
7132 }
7133 
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)7134 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7135 {
7136 	struct r5conf *conf = mddev->private;
7137 	int err = -EEXIST;
7138 	int disk;
7139 	struct disk_info *p;
7140 	int first = 0;
7141 	int last = conf->raid_disks - 1;
7142 
7143 	if (mddev->recovery_disabled == conf->recovery_disabled)
7144 		return -EBUSY;
7145 
7146 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7147 		/* no point adding a device */
7148 		return -EINVAL;
7149 
7150 	if (rdev->raid_disk >= 0)
7151 		first = last = rdev->raid_disk;
7152 
7153 	/*
7154 	 * find the disk ... but prefer rdev->saved_raid_disk
7155 	 * if possible.
7156 	 */
7157 	if (rdev->saved_raid_disk >= 0 &&
7158 	    rdev->saved_raid_disk >= first &&
7159 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7160 		first = rdev->saved_raid_disk;
7161 
7162 	for (disk = first; disk <= last; disk++) {
7163 		p = conf->disks + disk;
7164 		if (p->rdev == NULL) {
7165 			clear_bit(In_sync, &rdev->flags);
7166 			rdev->raid_disk = disk;
7167 			err = 0;
7168 			if (rdev->saved_raid_disk != disk)
7169 				conf->fullsync = 1;
7170 			rcu_assign_pointer(p->rdev, rdev);
7171 			goto out;
7172 		}
7173 	}
7174 	for (disk = first; disk <= last; disk++) {
7175 		p = conf->disks + disk;
7176 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7177 		    p->replacement == NULL) {
7178 			clear_bit(In_sync, &rdev->flags);
7179 			set_bit(Replacement, &rdev->flags);
7180 			rdev->raid_disk = disk;
7181 			err = 0;
7182 			conf->fullsync = 1;
7183 			rcu_assign_pointer(p->replacement, rdev);
7184 			break;
7185 		}
7186 	}
7187 out:
7188 	print_raid5_conf(conf);
7189 	return err;
7190 }
7191 
raid5_resize(struct mddev * mddev,sector_t sectors)7192 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7193 {
7194 	/* no resync is happening, and there is enough space
7195 	 * on all devices, so we can resize.
7196 	 * We need to make sure resync covers any new space.
7197 	 * If the array is shrinking we should possibly wait until
7198 	 * any io in the removed space completes, but it hardly seems
7199 	 * worth it.
7200 	 */
7201 	sector_t newsize;
7202 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7203 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7204 	if (mddev->external_size &&
7205 	    mddev->array_sectors > newsize)
7206 		return -EINVAL;
7207 	if (mddev->bitmap) {
7208 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7209 		if (ret)
7210 			return ret;
7211 	}
7212 	md_set_array_sectors(mddev, newsize);
7213 	set_capacity(mddev->gendisk, mddev->array_sectors);
7214 	revalidate_disk(mddev->gendisk);
7215 	if (sectors > mddev->dev_sectors &&
7216 	    mddev->recovery_cp > mddev->dev_sectors) {
7217 		mddev->recovery_cp = mddev->dev_sectors;
7218 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7219 	}
7220 	mddev->dev_sectors = sectors;
7221 	mddev->resync_max_sectors = sectors;
7222 	return 0;
7223 }
7224 
check_stripe_cache(struct mddev * mddev)7225 static int check_stripe_cache(struct mddev *mddev)
7226 {
7227 	/* Can only proceed if there are plenty of stripe_heads.
7228 	 * We need a minimum of one full stripe,, and for sensible progress
7229 	 * it is best to have about 4 times that.
7230 	 * If we require 4 times, then the default 256 4K stripe_heads will
7231 	 * allow for chunk sizes up to 256K, which is probably OK.
7232 	 * If the chunk size is greater, user-space should request more
7233 	 * stripe_heads first.
7234 	 */
7235 	struct r5conf *conf = mddev->private;
7236 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7237 	    > conf->min_nr_stripes ||
7238 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7239 	    > conf->min_nr_stripes) {
7240 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7241 		       mdname(mddev),
7242 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7243 			/ STRIPE_SIZE)*4);
7244 		return 0;
7245 	}
7246 	return 1;
7247 }
7248 
check_reshape(struct mddev * mddev)7249 static int check_reshape(struct mddev *mddev)
7250 {
7251 	struct r5conf *conf = mddev->private;
7252 
7253 	if (mddev->delta_disks == 0 &&
7254 	    mddev->new_layout == mddev->layout &&
7255 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7256 		return 0; /* nothing to do */
7257 	if (has_failed(conf))
7258 		return -EINVAL;
7259 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7260 		/* We might be able to shrink, but the devices must
7261 		 * be made bigger first.
7262 		 * For raid6, 4 is the minimum size.
7263 		 * Otherwise 2 is the minimum
7264 		 */
7265 		int min = 2;
7266 		if (mddev->level == 6)
7267 			min = 4;
7268 		if (mddev->raid_disks + mddev->delta_disks < min)
7269 			return -EINVAL;
7270 	}
7271 
7272 	if (!check_stripe_cache(mddev))
7273 		return -ENOSPC;
7274 
7275 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7276 	    mddev->delta_disks > 0)
7277 		if (resize_chunks(conf,
7278 				  conf->previous_raid_disks
7279 				  + max(0, mddev->delta_disks),
7280 				  max(mddev->new_chunk_sectors,
7281 				      mddev->chunk_sectors)
7282 			    ) < 0)
7283 			return -ENOMEM;
7284 	return resize_stripes(conf, (conf->previous_raid_disks
7285 				     + mddev->delta_disks));
7286 }
7287 
raid5_start_reshape(struct mddev * mddev)7288 static int raid5_start_reshape(struct mddev *mddev)
7289 {
7290 	struct r5conf *conf = mddev->private;
7291 	struct md_rdev *rdev;
7292 	int spares = 0;
7293 	unsigned long flags;
7294 
7295 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7296 		return -EBUSY;
7297 
7298 	if (!check_stripe_cache(mddev))
7299 		return -ENOSPC;
7300 
7301 	if (has_failed(conf))
7302 		return -EINVAL;
7303 
7304 	rdev_for_each(rdev, mddev) {
7305 		if (!test_bit(In_sync, &rdev->flags)
7306 		    && !test_bit(Faulty, &rdev->flags))
7307 			spares++;
7308 	}
7309 
7310 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7311 		/* Not enough devices even to make a degraded array
7312 		 * of that size
7313 		 */
7314 		return -EINVAL;
7315 
7316 	/* Refuse to reduce size of the array.  Any reductions in
7317 	 * array size must be through explicit setting of array_size
7318 	 * attribute.
7319 	 */
7320 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7321 	    < mddev->array_sectors) {
7322 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7323 		       "before number of disks\n", mdname(mddev));
7324 		return -EINVAL;
7325 	}
7326 
7327 	atomic_set(&conf->reshape_stripes, 0);
7328 	spin_lock_irq(&conf->device_lock);
7329 	write_seqcount_begin(&conf->gen_lock);
7330 	conf->previous_raid_disks = conf->raid_disks;
7331 	conf->raid_disks += mddev->delta_disks;
7332 	conf->prev_chunk_sectors = conf->chunk_sectors;
7333 	conf->chunk_sectors = mddev->new_chunk_sectors;
7334 	conf->prev_algo = conf->algorithm;
7335 	conf->algorithm = mddev->new_layout;
7336 	conf->generation++;
7337 	/* Code that selects data_offset needs to see the generation update
7338 	 * if reshape_progress has been set - so a memory barrier needed.
7339 	 */
7340 	smp_mb();
7341 	if (mddev->reshape_backwards)
7342 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7343 	else
7344 		conf->reshape_progress = 0;
7345 	conf->reshape_safe = conf->reshape_progress;
7346 	write_seqcount_end(&conf->gen_lock);
7347 	spin_unlock_irq(&conf->device_lock);
7348 
7349 	/* Now make sure any requests that proceeded on the assumption
7350 	 * the reshape wasn't running - like Discard or Read - have
7351 	 * completed.
7352 	 */
7353 	mddev_suspend(mddev);
7354 	mddev_resume(mddev);
7355 
7356 	/* Add some new drives, as many as will fit.
7357 	 * We know there are enough to make the newly sized array work.
7358 	 * Don't add devices if we are reducing the number of
7359 	 * devices in the array.  This is because it is not possible
7360 	 * to correctly record the "partially reconstructed" state of
7361 	 * such devices during the reshape and confusion could result.
7362 	 */
7363 	if (mddev->delta_disks >= 0) {
7364 		rdev_for_each(rdev, mddev)
7365 			if (rdev->raid_disk < 0 &&
7366 			    !test_bit(Faulty, &rdev->flags)) {
7367 				if (raid5_add_disk(mddev, rdev) == 0) {
7368 					if (rdev->raid_disk
7369 					    >= conf->previous_raid_disks)
7370 						set_bit(In_sync, &rdev->flags);
7371 					else
7372 						rdev->recovery_offset = 0;
7373 
7374 					if (sysfs_link_rdev(mddev, rdev))
7375 						/* Failure here is OK */;
7376 				}
7377 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7378 				   && !test_bit(Faulty, &rdev->flags)) {
7379 				/* This is a spare that was manually added */
7380 				set_bit(In_sync, &rdev->flags);
7381 			}
7382 
7383 		/* When a reshape changes the number of devices,
7384 		 * ->degraded is measured against the larger of the
7385 		 * pre and post number of devices.
7386 		 */
7387 		spin_lock_irqsave(&conf->device_lock, flags);
7388 		mddev->degraded = calc_degraded(conf);
7389 		spin_unlock_irqrestore(&conf->device_lock, flags);
7390 	}
7391 	mddev->raid_disks = conf->raid_disks;
7392 	mddev->reshape_position = conf->reshape_progress;
7393 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7394 
7395 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7396 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7397 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7398 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7399 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7400 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7401 						"reshape");
7402 	if (!mddev->sync_thread) {
7403 		mddev->recovery = 0;
7404 		spin_lock_irq(&conf->device_lock);
7405 		write_seqcount_begin(&conf->gen_lock);
7406 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7407 		mddev->new_chunk_sectors =
7408 			conf->chunk_sectors = conf->prev_chunk_sectors;
7409 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7410 		rdev_for_each(rdev, mddev)
7411 			rdev->new_data_offset = rdev->data_offset;
7412 		smp_wmb();
7413 		conf->generation --;
7414 		conf->reshape_progress = MaxSector;
7415 		mddev->reshape_position = MaxSector;
7416 		write_seqcount_end(&conf->gen_lock);
7417 		spin_unlock_irq(&conf->device_lock);
7418 		return -EAGAIN;
7419 	}
7420 	conf->reshape_checkpoint = jiffies;
7421 	md_wakeup_thread(mddev->sync_thread);
7422 	md_new_event(mddev);
7423 	return 0;
7424 }
7425 
7426 /* This is called from the reshape thread and should make any
7427  * changes needed in 'conf'
7428  */
end_reshape(struct r5conf * conf)7429 static void end_reshape(struct r5conf *conf)
7430 {
7431 
7432 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7433 		struct md_rdev *rdev;
7434 
7435 		spin_lock_irq(&conf->device_lock);
7436 		conf->previous_raid_disks = conf->raid_disks;
7437 		rdev_for_each(rdev, conf->mddev)
7438 			rdev->data_offset = rdev->new_data_offset;
7439 		smp_wmb();
7440 		conf->reshape_progress = MaxSector;
7441 		spin_unlock_irq(&conf->device_lock);
7442 		wake_up(&conf->wait_for_overlap);
7443 
7444 		/* read-ahead size must cover two whole stripes, which is
7445 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7446 		 */
7447 		if (conf->mddev->queue) {
7448 			int data_disks = conf->raid_disks - conf->max_degraded;
7449 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7450 						   / PAGE_SIZE);
7451 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7452 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7453 		}
7454 	}
7455 }
7456 
7457 /* This is called from the raid5d thread with mddev_lock held.
7458  * It makes config changes to the device.
7459  */
raid5_finish_reshape(struct mddev * mddev)7460 static void raid5_finish_reshape(struct mddev *mddev)
7461 {
7462 	struct r5conf *conf = mddev->private;
7463 
7464 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7465 
7466 		if (mddev->delta_disks > 0) {
7467 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7468 			set_capacity(mddev->gendisk, mddev->array_sectors);
7469 			revalidate_disk(mddev->gendisk);
7470 		} else {
7471 			int d;
7472 			spin_lock_irq(&conf->device_lock);
7473 			mddev->degraded = calc_degraded(conf);
7474 			spin_unlock_irq(&conf->device_lock);
7475 			for (d = conf->raid_disks ;
7476 			     d < conf->raid_disks - mddev->delta_disks;
7477 			     d++) {
7478 				struct md_rdev *rdev = conf->disks[d].rdev;
7479 				if (rdev)
7480 					clear_bit(In_sync, &rdev->flags);
7481 				rdev = conf->disks[d].replacement;
7482 				if (rdev)
7483 					clear_bit(In_sync, &rdev->flags);
7484 			}
7485 		}
7486 		mddev->layout = conf->algorithm;
7487 		mddev->chunk_sectors = conf->chunk_sectors;
7488 		mddev->reshape_position = MaxSector;
7489 		mddev->delta_disks = 0;
7490 		mddev->reshape_backwards = 0;
7491 	}
7492 }
7493 
raid5_quiesce(struct mddev * mddev,int state)7494 static void raid5_quiesce(struct mddev *mddev, int state)
7495 {
7496 	struct r5conf *conf = mddev->private;
7497 
7498 	switch(state) {
7499 	case 2: /* resume for a suspend */
7500 		wake_up(&conf->wait_for_overlap);
7501 		break;
7502 
7503 	case 1: /* stop all writes */
7504 		lock_all_device_hash_locks_irq(conf);
7505 		/* '2' tells resync/reshape to pause so that all
7506 		 * active stripes can drain
7507 		 */
7508 		conf->quiesce = 2;
7509 		wait_event_cmd(conf->wait_for_stripe,
7510 				    atomic_read(&conf->active_stripes) == 0 &&
7511 				    atomic_read(&conf->active_aligned_reads) == 0,
7512 				    unlock_all_device_hash_locks_irq(conf),
7513 				    lock_all_device_hash_locks_irq(conf));
7514 		conf->quiesce = 1;
7515 		unlock_all_device_hash_locks_irq(conf);
7516 		/* allow reshape to continue */
7517 		wake_up(&conf->wait_for_overlap);
7518 		break;
7519 
7520 	case 0: /* re-enable writes */
7521 		lock_all_device_hash_locks_irq(conf);
7522 		conf->quiesce = 0;
7523 		wake_up(&conf->wait_for_stripe);
7524 		wake_up(&conf->wait_for_overlap);
7525 		unlock_all_device_hash_locks_irq(conf);
7526 		break;
7527 	}
7528 }
7529 
raid45_takeover_raid0(struct mddev * mddev,int level)7530 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7531 {
7532 	struct r0conf *raid0_conf = mddev->private;
7533 	sector_t sectors;
7534 
7535 	/* for raid0 takeover only one zone is supported */
7536 	if (raid0_conf->nr_strip_zones > 1) {
7537 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7538 		       mdname(mddev));
7539 		return ERR_PTR(-EINVAL);
7540 	}
7541 
7542 	sectors = raid0_conf->strip_zone[0].zone_end;
7543 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7544 	mddev->dev_sectors = sectors;
7545 	mddev->new_level = level;
7546 	mddev->new_layout = ALGORITHM_PARITY_N;
7547 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7548 	mddev->raid_disks += 1;
7549 	mddev->delta_disks = 1;
7550 	/* make sure it will be not marked as dirty */
7551 	mddev->recovery_cp = MaxSector;
7552 
7553 	return setup_conf(mddev);
7554 }
7555 
raid5_takeover_raid1(struct mddev * mddev)7556 static void *raid5_takeover_raid1(struct mddev *mddev)
7557 {
7558 	int chunksect;
7559 
7560 	if (mddev->raid_disks != 2 ||
7561 	    mddev->degraded > 1)
7562 		return ERR_PTR(-EINVAL);
7563 
7564 	/* Should check if there are write-behind devices? */
7565 
7566 	chunksect = 64*2; /* 64K by default */
7567 
7568 	/* The array must be an exact multiple of chunksize */
7569 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7570 		chunksect >>= 1;
7571 
7572 	if ((chunksect<<9) < STRIPE_SIZE)
7573 		/* array size does not allow a suitable chunk size */
7574 		return ERR_PTR(-EINVAL);
7575 
7576 	mddev->new_level = 5;
7577 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7578 	mddev->new_chunk_sectors = chunksect;
7579 
7580 	return setup_conf(mddev);
7581 }
7582 
raid5_takeover_raid6(struct mddev * mddev)7583 static void *raid5_takeover_raid6(struct mddev *mddev)
7584 {
7585 	int new_layout;
7586 
7587 	switch (mddev->layout) {
7588 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7589 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7590 		break;
7591 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7592 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7593 		break;
7594 	case ALGORITHM_LEFT_SYMMETRIC_6:
7595 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7596 		break;
7597 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7598 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7599 		break;
7600 	case ALGORITHM_PARITY_0_6:
7601 		new_layout = ALGORITHM_PARITY_0;
7602 		break;
7603 	case ALGORITHM_PARITY_N:
7604 		new_layout = ALGORITHM_PARITY_N;
7605 		break;
7606 	default:
7607 		return ERR_PTR(-EINVAL);
7608 	}
7609 	mddev->new_level = 5;
7610 	mddev->new_layout = new_layout;
7611 	mddev->delta_disks = -1;
7612 	mddev->raid_disks -= 1;
7613 	return setup_conf(mddev);
7614 }
7615 
raid5_check_reshape(struct mddev * mddev)7616 static int raid5_check_reshape(struct mddev *mddev)
7617 {
7618 	/* For a 2-drive array, the layout and chunk size can be changed
7619 	 * immediately as not restriping is needed.
7620 	 * For larger arrays we record the new value - after validation
7621 	 * to be used by a reshape pass.
7622 	 */
7623 	struct r5conf *conf = mddev->private;
7624 	int new_chunk = mddev->new_chunk_sectors;
7625 
7626 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7627 		return -EINVAL;
7628 	if (new_chunk > 0) {
7629 		if (!is_power_of_2(new_chunk))
7630 			return -EINVAL;
7631 		if (new_chunk < (PAGE_SIZE>>9))
7632 			return -EINVAL;
7633 		if (mddev->array_sectors & (new_chunk-1))
7634 			/* not factor of array size */
7635 			return -EINVAL;
7636 	}
7637 
7638 	/* They look valid */
7639 
7640 	if (mddev->raid_disks == 2) {
7641 		/* can make the change immediately */
7642 		if (mddev->new_layout >= 0) {
7643 			conf->algorithm = mddev->new_layout;
7644 			mddev->layout = mddev->new_layout;
7645 		}
7646 		if (new_chunk > 0) {
7647 			conf->chunk_sectors = new_chunk ;
7648 			mddev->chunk_sectors = new_chunk;
7649 		}
7650 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7651 		md_wakeup_thread(mddev->thread);
7652 	}
7653 	return check_reshape(mddev);
7654 }
7655 
raid6_check_reshape(struct mddev * mddev)7656 static int raid6_check_reshape(struct mddev *mddev)
7657 {
7658 	int new_chunk = mddev->new_chunk_sectors;
7659 
7660 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7661 		return -EINVAL;
7662 	if (new_chunk > 0) {
7663 		if (!is_power_of_2(new_chunk))
7664 			return -EINVAL;
7665 		if (new_chunk < (PAGE_SIZE >> 9))
7666 			return -EINVAL;
7667 		if (mddev->array_sectors & (new_chunk-1))
7668 			/* not factor of array size */
7669 			return -EINVAL;
7670 	}
7671 
7672 	/* They look valid */
7673 	return check_reshape(mddev);
7674 }
7675 
raid5_takeover(struct mddev * mddev)7676 static void *raid5_takeover(struct mddev *mddev)
7677 {
7678 	/* raid5 can take over:
7679 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7680 	 *  raid1 - if there are two drives.  We need to know the chunk size
7681 	 *  raid4 - trivial - just use a raid4 layout.
7682 	 *  raid6 - Providing it is a *_6 layout
7683 	 */
7684 	if (mddev->level == 0)
7685 		return raid45_takeover_raid0(mddev, 5);
7686 	if (mddev->level == 1)
7687 		return raid5_takeover_raid1(mddev);
7688 	if (mddev->level == 4) {
7689 		mddev->new_layout = ALGORITHM_PARITY_N;
7690 		mddev->new_level = 5;
7691 		return setup_conf(mddev);
7692 	}
7693 	if (mddev->level == 6)
7694 		return raid5_takeover_raid6(mddev);
7695 
7696 	return ERR_PTR(-EINVAL);
7697 }
7698 
raid4_takeover(struct mddev * mddev)7699 static void *raid4_takeover(struct mddev *mddev)
7700 {
7701 	/* raid4 can take over:
7702 	 *  raid0 - if there is only one strip zone
7703 	 *  raid5 - if layout is right
7704 	 */
7705 	if (mddev->level == 0)
7706 		return raid45_takeover_raid0(mddev, 4);
7707 	if (mddev->level == 5 &&
7708 	    mddev->layout == ALGORITHM_PARITY_N) {
7709 		mddev->new_layout = 0;
7710 		mddev->new_level = 4;
7711 		return setup_conf(mddev);
7712 	}
7713 	return ERR_PTR(-EINVAL);
7714 }
7715 
7716 static struct md_personality raid5_personality;
7717 
raid6_takeover(struct mddev * mddev)7718 static void *raid6_takeover(struct mddev *mddev)
7719 {
7720 	/* Currently can only take over a raid5.  We map the
7721 	 * personality to an equivalent raid6 personality
7722 	 * with the Q block at the end.
7723 	 */
7724 	int new_layout;
7725 
7726 	if (mddev->pers != &raid5_personality)
7727 		return ERR_PTR(-EINVAL);
7728 	if (mddev->degraded > 1)
7729 		return ERR_PTR(-EINVAL);
7730 	if (mddev->raid_disks > 253)
7731 		return ERR_PTR(-EINVAL);
7732 	if (mddev->raid_disks < 3)
7733 		return ERR_PTR(-EINVAL);
7734 
7735 	switch (mddev->layout) {
7736 	case ALGORITHM_LEFT_ASYMMETRIC:
7737 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7738 		break;
7739 	case ALGORITHM_RIGHT_ASYMMETRIC:
7740 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7741 		break;
7742 	case ALGORITHM_LEFT_SYMMETRIC:
7743 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7744 		break;
7745 	case ALGORITHM_RIGHT_SYMMETRIC:
7746 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7747 		break;
7748 	case ALGORITHM_PARITY_0:
7749 		new_layout = ALGORITHM_PARITY_0_6;
7750 		break;
7751 	case ALGORITHM_PARITY_N:
7752 		new_layout = ALGORITHM_PARITY_N;
7753 		break;
7754 	default:
7755 		return ERR_PTR(-EINVAL);
7756 	}
7757 	mddev->new_level = 6;
7758 	mddev->new_layout = new_layout;
7759 	mddev->delta_disks = 1;
7760 	mddev->raid_disks += 1;
7761 	return setup_conf(mddev);
7762 }
7763 
7764 static struct md_personality raid6_personality =
7765 {
7766 	.name		= "raid6",
7767 	.level		= 6,
7768 	.owner		= THIS_MODULE,
7769 	.make_request	= make_request,
7770 	.run		= run,
7771 	.free		= raid5_free,
7772 	.status		= status,
7773 	.error_handler	= error,
7774 	.hot_add_disk	= raid5_add_disk,
7775 	.hot_remove_disk= raid5_remove_disk,
7776 	.spare_active	= raid5_spare_active,
7777 	.sync_request	= sync_request,
7778 	.resize		= raid5_resize,
7779 	.size		= raid5_size,
7780 	.check_reshape	= raid6_check_reshape,
7781 	.start_reshape  = raid5_start_reshape,
7782 	.finish_reshape = raid5_finish_reshape,
7783 	.quiesce	= raid5_quiesce,
7784 	.takeover	= raid6_takeover,
7785 	.congested	= raid5_congested,
7786 	.mergeable_bvec	= raid5_mergeable_bvec,
7787 };
7788 static struct md_personality raid5_personality =
7789 {
7790 	.name		= "raid5",
7791 	.level		= 5,
7792 	.owner		= THIS_MODULE,
7793 	.make_request	= make_request,
7794 	.run		= run,
7795 	.free		= raid5_free,
7796 	.status		= status,
7797 	.error_handler	= error,
7798 	.hot_add_disk	= raid5_add_disk,
7799 	.hot_remove_disk= raid5_remove_disk,
7800 	.spare_active	= raid5_spare_active,
7801 	.sync_request	= sync_request,
7802 	.resize		= raid5_resize,
7803 	.size		= raid5_size,
7804 	.check_reshape	= raid5_check_reshape,
7805 	.start_reshape  = raid5_start_reshape,
7806 	.finish_reshape = raid5_finish_reshape,
7807 	.quiesce	= raid5_quiesce,
7808 	.takeover	= raid5_takeover,
7809 	.congested	= raid5_congested,
7810 	.mergeable_bvec	= raid5_mergeable_bvec,
7811 };
7812 
7813 static struct md_personality raid4_personality =
7814 {
7815 	.name		= "raid4",
7816 	.level		= 4,
7817 	.owner		= THIS_MODULE,
7818 	.make_request	= make_request,
7819 	.run		= run,
7820 	.free		= raid5_free,
7821 	.status		= status,
7822 	.error_handler	= error,
7823 	.hot_add_disk	= raid5_add_disk,
7824 	.hot_remove_disk= raid5_remove_disk,
7825 	.spare_active	= raid5_spare_active,
7826 	.sync_request	= sync_request,
7827 	.resize		= raid5_resize,
7828 	.size		= raid5_size,
7829 	.check_reshape	= raid5_check_reshape,
7830 	.start_reshape  = raid5_start_reshape,
7831 	.finish_reshape = raid5_finish_reshape,
7832 	.quiesce	= raid5_quiesce,
7833 	.takeover	= raid4_takeover,
7834 	.congested	= raid5_congested,
7835 	.mergeable_bvec	= raid5_mergeable_bvec,
7836 };
7837 
raid5_init(void)7838 static int __init raid5_init(void)
7839 {
7840 	raid5_wq = alloc_workqueue("raid5wq",
7841 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7842 	if (!raid5_wq)
7843 		return -ENOMEM;
7844 	register_md_personality(&raid6_personality);
7845 	register_md_personality(&raid5_personality);
7846 	register_md_personality(&raid4_personality);
7847 	return 0;
7848 }
7849 
raid5_exit(void)7850 static void raid5_exit(void)
7851 {
7852 	unregister_md_personality(&raid6_personality);
7853 	unregister_md_personality(&raid5_personality);
7854 	unregister_md_personality(&raid4_personality);
7855 	destroy_workqueue(raid5_wq);
7856 }
7857 
7858 module_init(raid5_init);
7859 module_exit(raid5_exit);
7860 MODULE_LICENSE("GPL");
7861 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7862 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7863 MODULE_ALIAS("md-raid5");
7864 MODULE_ALIAS("md-raid4");
7865 MODULE_ALIAS("md-level-5");
7866 MODULE_ALIAS("md-level-4");
7867 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7868 MODULE_ALIAS("md-raid6");
7869 MODULE_ALIAS("md-level-6");
7870 
7871 /* This used to be two separate modules, they were: */
7872 MODULE_ALIAS("raid5");
7873 MODULE_ALIAS("raid6");
7874