1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->first_page: points to the first component (0-order) page
20  *	page->index (union with page->freelist): offset of the first object
21  *		starting in this page. For the first page, this is
22  *		always 0, so we use this field (aka freelist) to point
23  *		to the first free object in zspage.
24  *	page->lru: links together all component pages (except the first page)
25  *		of a zspage
26  *
27  *	For _first_ page only:
28  *
29  *	page->private (union with page->first_page): refers to the
30  *		component page after the first page
31  *		If the page is first_page for huge object, it stores handle.
32  *		Look at size_class->huge.
33  *	page->freelist: points to the first free object in zspage.
34  *		Free objects are linked together using in-place
35  *		metadata.
36  *	page->objects: maximum number of objects we can store in this
37  *		zspage (class->zspage_order * PAGE_SIZE / class->size)
38  *	page->lru: links together first pages of various zspages.
39  *		Basically forming list of zspages in a fullness group.
40  *	page->mapping: class index and fullness group of the zspage
41  *
42  * Usage of struct page flags:
43  *	PG_private: identifies the first component page
44  *	PG_private2: identifies the last component page
45  *
46  */
47 
48 #ifdef CONFIG_ZSMALLOC_DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <linux/module.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/bitops.h>
56 #include <linux/errno.h>
57 #include <linux/highmem.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <asm/tlbflush.h>
61 #include <asm/pgtable.h>
62 #include <linux/cpumask.h>
63 #include <linux/cpu.h>
64 #include <linux/vmalloc.h>
65 #include <linux/hardirq.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/debugfs.h>
69 #include <linux/zsmalloc.h>
70 #include <linux/zpool.h>
71 
72 /*
73  * This must be power of 2 and greater than of equal to sizeof(link_free).
74  * These two conditions ensure that any 'struct link_free' itself doesn't
75  * span more than 1 page which avoids complex case of mapping 2 pages simply
76  * to restore link_free pointer values.
77  */
78 #define ZS_ALIGN		8
79 
80 /*
81  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83  */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86 
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88 
89 /*
90  * Object location (<PFN>, <obj_idx>) is encoded as
91  * as single (unsigned long) handle value.
92  *
93  * Note that object index <obj_idx> is relative to system
94  * page <PFN> it is stored in, so for each sub-page belonging
95  * to a zspage, obj_idx starts with 0.
96  *
97  * This is made more complicated by various memory models and PAE.
98  */
99 
100 #ifndef MAX_PHYSMEM_BITS
101 #ifdef CONFIG_HIGHMEM64G
102 #define MAX_PHYSMEM_BITS 36
103 #else /* !CONFIG_HIGHMEM64G */
104 /*
105  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
106  * be PAGE_SHIFT
107  */
108 #define MAX_PHYSMEM_BITS BITS_PER_LONG
109 #endif
110 #endif
111 #define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
112 
113 /*
114  * Memory for allocating for handle keeps object position by
115  * encoding <page, obj_idx> and the encoded value has a room
116  * in least bit(ie, look at obj_to_location).
117  * We use the bit to synchronize between object access by
118  * user and migration.
119  */
120 #define HANDLE_PIN_BIT	0
121 
122 /*
123  * Head in allocated object should have OBJ_ALLOCATED_TAG
124  * to identify the object was allocated or not.
125  * It's okay to add the status bit in the least bit because
126  * header keeps handle which is 4byte-aligned address so we
127  * have room for two bit at least.
128  */
129 #define OBJ_ALLOCATED_TAG 1
130 #define OBJ_TAG_BITS 1
131 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
132 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
133 
134 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
135 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
136 #define ZS_MIN_ALLOC_SIZE \
137 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
138 /* each chunk includes extra space to keep handle */
139 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
140 
141 /*
142  * On systems with 4K page size, this gives 255 size classes! There is a
143  * trader-off here:
144  *  - Large number of size classes is potentially wasteful as free page are
145  *    spread across these classes
146  *  - Small number of size classes causes large internal fragmentation
147  *  - Probably its better to use specific size classes (empirically
148  *    determined). NOTE: all those class sizes must be set as multiple of
149  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
150  *
151  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
152  *  (reason above)
153  */
154 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
155 
156 /*
157  * We do not maintain any list for completely empty or full pages
158  */
159 enum fullness_group {
160 	ZS_ALMOST_FULL,
161 	ZS_ALMOST_EMPTY,
162 	_ZS_NR_FULLNESS_GROUPS,
163 
164 	ZS_EMPTY,
165 	ZS_FULL
166 };
167 
168 enum zs_stat_type {
169 	OBJ_ALLOCATED,
170 	OBJ_USED,
171 	CLASS_ALMOST_FULL,
172 	CLASS_ALMOST_EMPTY,
173 	NR_ZS_STAT_TYPE,
174 };
175 
176 #ifdef CONFIG_ZSMALLOC_STAT
177 
178 static struct dentry *zs_stat_root;
179 
180 struct zs_size_stat {
181 	unsigned long objs[NR_ZS_STAT_TYPE];
182 };
183 
184 #endif
185 
186 /*
187  * number of size_classes
188  */
189 static int zs_size_classes;
190 
191 /*
192  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
193  *	n <= N / f, where
194  * n = number of allocated objects
195  * N = total number of objects zspage can store
196  * f = fullness_threshold_frac
197  *
198  * Similarly, we assign zspage to:
199  *	ZS_ALMOST_FULL	when n > N / f
200  *	ZS_EMPTY	when n == 0
201  *	ZS_FULL		when n == N
202  *
203  * (see: fix_fullness_group())
204  */
205 static const int fullness_threshold_frac = 4;
206 
207 struct size_class {
208 	/*
209 	 * Size of objects stored in this class. Must be multiple
210 	 * of ZS_ALIGN.
211 	 */
212 	int size;
213 	unsigned int index;
214 
215 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
216 	int pages_per_zspage;
217 	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
218 	bool huge;
219 
220 #ifdef CONFIG_ZSMALLOC_STAT
221 	struct zs_size_stat stats;
222 #endif
223 
224 	spinlock_t lock;
225 
226 	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
227 };
228 
229 /*
230  * Placed within free objects to form a singly linked list.
231  * For every zspage, first_page->freelist gives head of this list.
232  *
233  * This must be power of 2 and less than or equal to ZS_ALIGN
234  */
235 struct link_free {
236 	union {
237 		/*
238 		 * Position of next free chunk (encodes <PFN, obj_idx>)
239 		 * It's valid for non-allocated object
240 		 */
241 		void *next;
242 		/*
243 		 * Handle of allocated object.
244 		 */
245 		unsigned long handle;
246 	};
247 };
248 
249 struct zs_pool {
250 	char *name;
251 
252 	struct size_class **size_class;
253 	struct kmem_cache *handle_cachep;
254 
255 	gfp_t flags;	/* allocation flags used when growing pool */
256 	atomic_long_t pages_allocated;
257 
258 #ifdef CONFIG_ZSMALLOC_STAT
259 	struct dentry *stat_dentry;
260 #endif
261 };
262 
263 /*
264  * A zspage's class index and fullness group
265  * are encoded in its (first)page->mapping
266  */
267 #define CLASS_IDX_BITS	28
268 #define FULLNESS_BITS	4
269 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
270 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
271 
272 struct mapping_area {
273 #ifdef CONFIG_PGTABLE_MAPPING
274 	struct vm_struct *vm; /* vm area for mapping object that span pages */
275 #else
276 	char *vm_buf; /* copy buffer for objects that span pages */
277 #endif
278 	char *vm_addr; /* address of kmap_atomic()'ed pages */
279 	enum zs_mapmode vm_mm; /* mapping mode */
280 	bool huge;
281 };
282 
create_handle_cache(struct zs_pool * pool)283 static int create_handle_cache(struct zs_pool *pool)
284 {
285 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
286 					0, 0, NULL);
287 	return pool->handle_cachep ? 0 : 1;
288 }
289 
destroy_handle_cache(struct zs_pool * pool)290 static void destroy_handle_cache(struct zs_pool *pool)
291 {
292 	if (pool->handle_cachep)
293 		kmem_cache_destroy(pool->handle_cachep);
294 }
295 
alloc_handle(struct zs_pool * pool)296 static unsigned long alloc_handle(struct zs_pool *pool)
297 {
298 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
299 		pool->flags & ~__GFP_HIGHMEM);
300 }
301 
free_handle(struct zs_pool * pool,unsigned long handle)302 static void free_handle(struct zs_pool *pool, unsigned long handle)
303 {
304 	kmem_cache_free(pool->handle_cachep, (void *)handle);
305 }
306 
record_obj(unsigned long handle,unsigned long obj)307 static void record_obj(unsigned long handle, unsigned long obj)
308 {
309 	/*
310 	 * lsb of @obj represents handle lock while other bits
311 	 * represent object value the handle is pointing so
312 	 * updating shouldn't do store tearing.
313 	 */
314 	WRITE_ONCE(*(unsigned long *)handle, obj);
315 }
316 
317 /* zpool driver */
318 
319 #ifdef CONFIG_ZPOOL
320 
zs_zpool_create(char * name,gfp_t gfp,struct zpool_ops * zpool_ops)321 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
322 {
323 	return zs_create_pool(name, gfp);
324 }
325 
zs_zpool_destroy(void * pool)326 static void zs_zpool_destroy(void *pool)
327 {
328 	zs_destroy_pool(pool);
329 }
330 
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)331 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
332 			unsigned long *handle)
333 {
334 	*handle = zs_malloc(pool, size);
335 	return *handle ? 0 : -1;
336 }
zs_zpool_free(void * pool,unsigned long handle)337 static void zs_zpool_free(void *pool, unsigned long handle)
338 {
339 	zs_free(pool, handle);
340 }
341 
zs_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)342 static int zs_zpool_shrink(void *pool, unsigned int pages,
343 			unsigned int *reclaimed)
344 {
345 	return -EINVAL;
346 }
347 
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)348 static void *zs_zpool_map(void *pool, unsigned long handle,
349 			enum zpool_mapmode mm)
350 {
351 	enum zs_mapmode zs_mm;
352 
353 	switch (mm) {
354 	case ZPOOL_MM_RO:
355 		zs_mm = ZS_MM_RO;
356 		break;
357 	case ZPOOL_MM_WO:
358 		zs_mm = ZS_MM_WO;
359 		break;
360 	case ZPOOL_MM_RW: /* fallthru */
361 	default:
362 		zs_mm = ZS_MM_RW;
363 		break;
364 	}
365 
366 	return zs_map_object(pool, handle, zs_mm);
367 }
zs_zpool_unmap(void * pool,unsigned long handle)368 static void zs_zpool_unmap(void *pool, unsigned long handle)
369 {
370 	zs_unmap_object(pool, handle);
371 }
372 
zs_zpool_total_size(void * pool)373 static u64 zs_zpool_total_size(void *pool)
374 {
375 	return zs_get_total_pages(pool) << PAGE_SHIFT;
376 }
377 
378 static struct zpool_driver zs_zpool_driver = {
379 	.type =		"zsmalloc",
380 	.owner =	THIS_MODULE,
381 	.create =	zs_zpool_create,
382 	.destroy =	zs_zpool_destroy,
383 	.malloc =	zs_zpool_malloc,
384 	.free =		zs_zpool_free,
385 	.shrink =	zs_zpool_shrink,
386 	.map =		zs_zpool_map,
387 	.unmap =	zs_zpool_unmap,
388 	.total_size =	zs_zpool_total_size,
389 };
390 
391 MODULE_ALIAS("zpool-zsmalloc");
392 #endif /* CONFIG_ZPOOL */
393 
get_maxobj_per_zspage(int size,int pages_per_zspage)394 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
395 {
396 	return pages_per_zspage * PAGE_SIZE / size;
397 }
398 
399 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
400 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
401 
is_first_page(struct page * page)402 static int is_first_page(struct page *page)
403 {
404 	return PagePrivate(page);
405 }
406 
is_last_page(struct page * page)407 static int is_last_page(struct page *page)
408 {
409 	return PagePrivate2(page);
410 }
411 
get_zspage_mapping(struct page * page,unsigned int * class_idx,enum fullness_group * fullness)412 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
413 				enum fullness_group *fullness)
414 {
415 	unsigned long m;
416 	BUG_ON(!is_first_page(page));
417 
418 	m = (unsigned long)page->mapping;
419 	*fullness = m & FULLNESS_MASK;
420 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
421 }
422 
set_zspage_mapping(struct page * page,unsigned int class_idx,enum fullness_group fullness)423 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
424 				enum fullness_group fullness)
425 {
426 	unsigned long m;
427 	BUG_ON(!is_first_page(page));
428 
429 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
430 			(fullness & FULLNESS_MASK);
431 	page->mapping = (struct address_space *)m;
432 }
433 
434 /*
435  * zsmalloc divides the pool into various size classes where each
436  * class maintains a list of zspages where each zspage is divided
437  * into equal sized chunks. Each allocation falls into one of these
438  * classes depending on its size. This function returns index of the
439  * size class which has chunk size big enough to hold the give size.
440  */
get_size_class_index(int size)441 static int get_size_class_index(int size)
442 {
443 	int idx = 0;
444 
445 	if (likely(size > ZS_MIN_ALLOC_SIZE))
446 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
447 				ZS_SIZE_CLASS_DELTA);
448 
449 	return min(zs_size_classes - 1, idx);
450 }
451 
452 #ifdef CONFIG_ZSMALLOC_STAT
453 
zs_stat_inc(struct size_class * class,enum zs_stat_type type,unsigned long cnt)454 static inline void zs_stat_inc(struct size_class *class,
455 				enum zs_stat_type type, unsigned long cnt)
456 {
457 	class->stats.objs[type] += cnt;
458 }
459 
zs_stat_dec(struct size_class * class,enum zs_stat_type type,unsigned long cnt)460 static inline void zs_stat_dec(struct size_class *class,
461 				enum zs_stat_type type, unsigned long cnt)
462 {
463 	class->stats.objs[type] -= cnt;
464 }
465 
zs_stat_get(struct size_class * class,enum zs_stat_type type)466 static inline unsigned long zs_stat_get(struct size_class *class,
467 				enum zs_stat_type type)
468 {
469 	return class->stats.objs[type];
470 }
471 
zs_stat_init(void)472 static int __init zs_stat_init(void)
473 {
474 	if (!debugfs_initialized())
475 		return -ENODEV;
476 
477 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
478 	if (!zs_stat_root)
479 		return -ENOMEM;
480 
481 	return 0;
482 }
483 
zs_stat_exit(void)484 static void __exit zs_stat_exit(void)
485 {
486 	debugfs_remove_recursive(zs_stat_root);
487 }
488 
zs_stats_size_show(struct seq_file * s,void * v)489 static int zs_stats_size_show(struct seq_file *s, void *v)
490 {
491 	int i;
492 	struct zs_pool *pool = s->private;
493 	struct size_class *class;
494 	int objs_per_zspage;
495 	unsigned long class_almost_full, class_almost_empty;
496 	unsigned long obj_allocated, obj_used, pages_used;
497 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
498 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
499 
500 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
501 			"class", "size", "almost_full", "almost_empty",
502 			"obj_allocated", "obj_used", "pages_used",
503 			"pages_per_zspage");
504 
505 	for (i = 0; i < zs_size_classes; i++) {
506 		class = pool->size_class[i];
507 
508 		if (class->index != i)
509 			continue;
510 
511 		spin_lock(&class->lock);
512 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
513 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
514 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
515 		obj_used = zs_stat_get(class, OBJ_USED);
516 		spin_unlock(&class->lock);
517 
518 		objs_per_zspage = get_maxobj_per_zspage(class->size,
519 				class->pages_per_zspage);
520 		pages_used = obj_allocated / objs_per_zspage *
521 				class->pages_per_zspage;
522 
523 		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
524 			i, class->size, class_almost_full, class_almost_empty,
525 			obj_allocated, obj_used, pages_used,
526 			class->pages_per_zspage);
527 
528 		total_class_almost_full += class_almost_full;
529 		total_class_almost_empty += class_almost_empty;
530 		total_objs += obj_allocated;
531 		total_used_objs += obj_used;
532 		total_pages += pages_used;
533 	}
534 
535 	seq_puts(s, "\n");
536 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
537 			"Total", "", total_class_almost_full,
538 			total_class_almost_empty, total_objs,
539 			total_used_objs, total_pages);
540 
541 	return 0;
542 }
543 
zs_stats_size_open(struct inode * inode,struct file * file)544 static int zs_stats_size_open(struct inode *inode, struct file *file)
545 {
546 	return single_open(file, zs_stats_size_show, inode->i_private);
547 }
548 
549 static const struct file_operations zs_stat_size_ops = {
550 	.open           = zs_stats_size_open,
551 	.read           = seq_read,
552 	.llseek         = seq_lseek,
553 	.release        = single_release,
554 };
555 
zs_pool_stat_create(char * name,struct zs_pool * pool)556 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
557 {
558 	struct dentry *entry;
559 
560 	if (!zs_stat_root)
561 		return -ENODEV;
562 
563 	entry = debugfs_create_dir(name, zs_stat_root);
564 	if (!entry) {
565 		pr_warn("debugfs dir <%s> creation failed\n", name);
566 		return -ENOMEM;
567 	}
568 	pool->stat_dentry = entry;
569 
570 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
571 			pool->stat_dentry, pool, &zs_stat_size_ops);
572 	if (!entry) {
573 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
574 				name, "classes");
575 		return -ENOMEM;
576 	}
577 
578 	return 0;
579 }
580 
zs_pool_stat_destroy(struct zs_pool * pool)581 static void zs_pool_stat_destroy(struct zs_pool *pool)
582 {
583 	debugfs_remove_recursive(pool->stat_dentry);
584 }
585 
586 #else /* CONFIG_ZSMALLOC_STAT */
587 
zs_stat_inc(struct size_class * class,enum zs_stat_type type,unsigned long cnt)588 static inline void zs_stat_inc(struct size_class *class,
589 				enum zs_stat_type type, unsigned long cnt)
590 {
591 }
592 
zs_stat_dec(struct size_class * class,enum zs_stat_type type,unsigned long cnt)593 static inline void zs_stat_dec(struct size_class *class,
594 				enum zs_stat_type type, unsigned long cnt)
595 {
596 }
597 
zs_stat_get(struct size_class * class,enum zs_stat_type type)598 static inline unsigned long zs_stat_get(struct size_class *class,
599 				enum zs_stat_type type)
600 {
601 	return 0;
602 }
603 
zs_stat_init(void)604 static int __init zs_stat_init(void)
605 {
606 	return 0;
607 }
608 
zs_stat_exit(void)609 static void __exit zs_stat_exit(void)
610 {
611 }
612 
zs_pool_stat_create(char * name,struct zs_pool * pool)613 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
614 {
615 	return 0;
616 }
617 
zs_pool_stat_destroy(struct zs_pool * pool)618 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
619 {
620 }
621 
622 #endif
623 
624 
625 /*
626  * For each size class, zspages are divided into different groups
627  * depending on how "full" they are. This was done so that we could
628  * easily find empty or nearly empty zspages when we try to shrink
629  * the pool (not yet implemented). This function returns fullness
630  * status of the given page.
631  */
get_fullness_group(struct page * page)632 static enum fullness_group get_fullness_group(struct page *page)
633 {
634 	int inuse, max_objects;
635 	enum fullness_group fg;
636 	BUG_ON(!is_first_page(page));
637 
638 	inuse = page->inuse;
639 	max_objects = page->objects;
640 
641 	if (inuse == 0)
642 		fg = ZS_EMPTY;
643 	else if (inuse == max_objects)
644 		fg = ZS_FULL;
645 	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
646 		fg = ZS_ALMOST_EMPTY;
647 	else
648 		fg = ZS_ALMOST_FULL;
649 
650 	return fg;
651 }
652 
653 /*
654  * Each size class maintains various freelists and zspages are assigned
655  * to one of these freelists based on the number of live objects they
656  * have. This functions inserts the given zspage into the freelist
657  * identified by <class, fullness_group>.
658  */
insert_zspage(struct page * page,struct size_class * class,enum fullness_group fullness)659 static void insert_zspage(struct page *page, struct size_class *class,
660 				enum fullness_group fullness)
661 {
662 	struct page **head;
663 
664 	BUG_ON(!is_first_page(page));
665 
666 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
667 		return;
668 
669 	head = &class->fullness_list[fullness];
670 	if (*head)
671 		list_add_tail(&page->lru, &(*head)->lru);
672 
673 	*head = page;
674 	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
675 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
676 }
677 
678 /*
679  * This function removes the given zspage from the freelist identified
680  * by <class, fullness_group>.
681  */
remove_zspage(struct page * page,struct size_class * class,enum fullness_group fullness)682 static void remove_zspage(struct page *page, struct size_class *class,
683 				enum fullness_group fullness)
684 {
685 	struct page **head;
686 
687 	BUG_ON(!is_first_page(page));
688 
689 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
690 		return;
691 
692 	head = &class->fullness_list[fullness];
693 	BUG_ON(!*head);
694 	if (list_empty(&(*head)->lru))
695 		*head = NULL;
696 	else if (*head == page)
697 		*head = (struct page *)list_entry((*head)->lru.next,
698 					struct page, lru);
699 
700 	list_del_init(&page->lru);
701 	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
702 			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
703 }
704 
705 /*
706  * Each size class maintains zspages in different fullness groups depending
707  * on the number of live objects they contain. When allocating or freeing
708  * objects, the fullness status of the page can change, say, from ALMOST_FULL
709  * to ALMOST_EMPTY when freeing an object. This function checks if such
710  * a status change has occurred for the given page and accordingly moves the
711  * page from the freelist of the old fullness group to that of the new
712  * fullness group.
713  */
fix_fullness_group(struct size_class * class,struct page * page)714 static enum fullness_group fix_fullness_group(struct size_class *class,
715 						struct page *page)
716 {
717 	int class_idx;
718 	enum fullness_group currfg, newfg;
719 
720 	BUG_ON(!is_first_page(page));
721 
722 	get_zspage_mapping(page, &class_idx, &currfg);
723 	newfg = get_fullness_group(page);
724 	if (newfg == currfg)
725 		goto out;
726 
727 	remove_zspage(page, class, currfg);
728 	insert_zspage(page, class, newfg);
729 	set_zspage_mapping(page, class_idx, newfg);
730 
731 out:
732 	return newfg;
733 }
734 
735 /*
736  * We have to decide on how many pages to link together
737  * to form a zspage for each size class. This is important
738  * to reduce wastage due to unusable space left at end of
739  * each zspage which is given as:
740  *     wastage = Zp % class_size
741  *     usage = Zp - wastage
742  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
743  *
744  * For example, for size class of 3/8 * PAGE_SIZE, we should
745  * link together 3 PAGE_SIZE sized pages to form a zspage
746  * since then we can perfectly fit in 8 such objects.
747  */
get_pages_per_zspage(int class_size)748 static int get_pages_per_zspage(int class_size)
749 {
750 	int i, max_usedpc = 0;
751 	/* zspage order which gives maximum used size per KB */
752 	int max_usedpc_order = 1;
753 
754 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
755 		int zspage_size;
756 		int waste, usedpc;
757 
758 		zspage_size = i * PAGE_SIZE;
759 		waste = zspage_size % class_size;
760 		usedpc = (zspage_size - waste) * 100 / zspage_size;
761 
762 		if (usedpc > max_usedpc) {
763 			max_usedpc = usedpc;
764 			max_usedpc_order = i;
765 		}
766 	}
767 
768 	return max_usedpc_order;
769 }
770 
771 /*
772  * A single 'zspage' is composed of many system pages which are
773  * linked together using fields in struct page. This function finds
774  * the first/head page, given any component page of a zspage.
775  */
get_first_page(struct page * page)776 static struct page *get_first_page(struct page *page)
777 {
778 	if (is_first_page(page))
779 		return page;
780 	else
781 		return page->first_page;
782 }
783 
get_next_page(struct page * page)784 static struct page *get_next_page(struct page *page)
785 {
786 	struct page *next;
787 
788 	if (is_last_page(page))
789 		next = NULL;
790 	else if (is_first_page(page))
791 		next = (struct page *)page_private(page);
792 	else
793 		next = list_entry(page->lru.next, struct page, lru);
794 
795 	return next;
796 }
797 
798 /*
799  * Encode <page, obj_idx> as a single handle value.
800  * We use the least bit of handle for tagging.
801  */
location_to_obj(struct page * page,unsigned long obj_idx)802 static void *location_to_obj(struct page *page, unsigned long obj_idx)
803 {
804 	unsigned long obj;
805 
806 	if (!page) {
807 		BUG_ON(obj_idx);
808 		return NULL;
809 	}
810 
811 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
812 	obj |= ((obj_idx) & OBJ_INDEX_MASK);
813 	obj <<= OBJ_TAG_BITS;
814 
815 	return (void *)obj;
816 }
817 
818 /*
819  * Decode <page, obj_idx> pair from the given object handle. We adjust the
820  * decoded obj_idx back to its original value since it was adjusted in
821  * location_to_obj().
822  */
obj_to_location(unsigned long obj,struct page ** page,unsigned long * obj_idx)823 static void obj_to_location(unsigned long obj, struct page **page,
824 				unsigned long *obj_idx)
825 {
826 	obj >>= OBJ_TAG_BITS;
827 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
828 	*obj_idx = (obj & OBJ_INDEX_MASK);
829 }
830 
handle_to_obj(unsigned long handle)831 static unsigned long handle_to_obj(unsigned long handle)
832 {
833 	return *(unsigned long *)handle;
834 }
835 
obj_to_head(struct size_class * class,struct page * page,void * obj)836 static unsigned long obj_to_head(struct size_class *class, struct page *page,
837 			void *obj)
838 {
839 	if (class->huge) {
840 		VM_BUG_ON(!is_first_page(page));
841 		return *(unsigned long *)page_private(page);
842 	} else
843 		return *(unsigned long *)obj;
844 }
845 
obj_idx_to_offset(struct page * page,unsigned long obj_idx,int class_size)846 static unsigned long obj_idx_to_offset(struct page *page,
847 				unsigned long obj_idx, int class_size)
848 {
849 	unsigned long off = 0;
850 
851 	if (!is_first_page(page))
852 		off = page->index;
853 
854 	return off + obj_idx * class_size;
855 }
856 
trypin_tag(unsigned long handle)857 static inline int trypin_tag(unsigned long handle)
858 {
859 	unsigned long *ptr = (unsigned long *)handle;
860 
861 	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
862 }
863 
pin_tag(unsigned long handle)864 static void pin_tag(unsigned long handle)
865 {
866 	while (!trypin_tag(handle));
867 }
868 
unpin_tag(unsigned long handle)869 static void unpin_tag(unsigned long handle)
870 {
871 	unsigned long *ptr = (unsigned long *)handle;
872 
873 	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
874 }
875 
reset_page(struct page * page)876 static void reset_page(struct page *page)
877 {
878 	clear_bit(PG_private, &page->flags);
879 	clear_bit(PG_private_2, &page->flags);
880 	set_page_private(page, 0);
881 	page->mapping = NULL;
882 	page->freelist = NULL;
883 	page_mapcount_reset(page);
884 }
885 
free_zspage(struct page * first_page)886 static void free_zspage(struct page *first_page)
887 {
888 	struct page *nextp, *tmp, *head_extra;
889 
890 	BUG_ON(!is_first_page(first_page));
891 	BUG_ON(first_page->inuse);
892 
893 	head_extra = (struct page *)page_private(first_page);
894 
895 	reset_page(first_page);
896 	__free_page(first_page);
897 
898 	/* zspage with only 1 system page */
899 	if (!head_extra)
900 		return;
901 
902 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
903 		list_del(&nextp->lru);
904 		reset_page(nextp);
905 		__free_page(nextp);
906 	}
907 	reset_page(head_extra);
908 	__free_page(head_extra);
909 }
910 
911 /* Initialize a newly allocated zspage */
init_zspage(struct page * first_page,struct size_class * class)912 static void init_zspage(struct page *first_page, struct size_class *class)
913 {
914 	unsigned long off = 0;
915 	struct page *page = first_page;
916 
917 	BUG_ON(!is_first_page(first_page));
918 	while (page) {
919 		struct page *next_page;
920 		struct link_free *link;
921 		unsigned int i = 1;
922 		void *vaddr;
923 
924 		/*
925 		 * page->index stores offset of first object starting
926 		 * in the page. For the first page, this is always 0,
927 		 * so we use first_page->index (aka ->freelist) to store
928 		 * head of corresponding zspage's freelist.
929 		 */
930 		if (page != first_page)
931 			page->index = off;
932 
933 		vaddr = kmap_atomic(page);
934 		link = (struct link_free *)vaddr + off / sizeof(*link);
935 
936 		while ((off += class->size) < PAGE_SIZE) {
937 			link->next = location_to_obj(page, i++);
938 			link += class->size / sizeof(*link);
939 		}
940 
941 		/*
942 		 * We now come to the last (full or partial) object on this
943 		 * page, which must point to the first object on the next
944 		 * page (if present)
945 		 */
946 		next_page = get_next_page(page);
947 		link->next = location_to_obj(next_page, 0);
948 		kunmap_atomic(vaddr);
949 		page = next_page;
950 		off %= PAGE_SIZE;
951 	}
952 }
953 
954 /*
955  * Allocate a zspage for the given size class
956  */
alloc_zspage(struct size_class * class,gfp_t flags)957 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
958 {
959 	int i, error;
960 	struct page *first_page = NULL, *uninitialized_var(prev_page);
961 
962 	/*
963 	 * Allocate individual pages and link them together as:
964 	 * 1. first page->private = first sub-page
965 	 * 2. all sub-pages are linked together using page->lru
966 	 * 3. each sub-page is linked to the first page using page->first_page
967 	 *
968 	 * For each size class, First/Head pages are linked together using
969 	 * page->lru. Also, we set PG_private to identify the first page
970 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
971 	 * identify the last page.
972 	 */
973 	error = -ENOMEM;
974 	for (i = 0; i < class->pages_per_zspage; i++) {
975 		struct page *page;
976 
977 		page = alloc_page(flags);
978 		if (!page)
979 			goto cleanup;
980 
981 		INIT_LIST_HEAD(&page->lru);
982 		if (i == 0) {	/* first page */
983 			SetPagePrivate(page);
984 			set_page_private(page, 0);
985 			first_page = page;
986 			first_page->inuse = 0;
987 		}
988 		if (i == 1)
989 			set_page_private(first_page, (unsigned long)page);
990 		if (i >= 1)
991 			page->first_page = first_page;
992 		if (i >= 2)
993 			list_add(&page->lru, &prev_page->lru);
994 		if (i == class->pages_per_zspage - 1)	/* last page */
995 			SetPagePrivate2(page);
996 		prev_page = page;
997 	}
998 
999 	init_zspage(first_page, class);
1000 
1001 	first_page->freelist = location_to_obj(first_page, 0);
1002 	/* Maximum number of objects we can store in this zspage */
1003 	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1004 
1005 	error = 0; /* Success */
1006 
1007 cleanup:
1008 	if (unlikely(error) && first_page) {
1009 		free_zspage(first_page);
1010 		first_page = NULL;
1011 	}
1012 
1013 	return first_page;
1014 }
1015 
find_get_zspage(struct size_class * class)1016 static struct page *find_get_zspage(struct size_class *class)
1017 {
1018 	int i;
1019 	struct page *page;
1020 
1021 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1022 		page = class->fullness_list[i];
1023 		if (page)
1024 			break;
1025 	}
1026 
1027 	return page;
1028 }
1029 
1030 #ifdef CONFIG_PGTABLE_MAPPING
__zs_cpu_up(struct mapping_area * area)1031 static inline int __zs_cpu_up(struct mapping_area *area)
1032 {
1033 	/*
1034 	 * Make sure we don't leak memory if a cpu UP notification
1035 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1036 	 */
1037 	if (area->vm)
1038 		return 0;
1039 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1040 	if (!area->vm)
1041 		return -ENOMEM;
1042 	return 0;
1043 }
1044 
__zs_cpu_down(struct mapping_area * area)1045 static inline void __zs_cpu_down(struct mapping_area *area)
1046 {
1047 	if (area->vm)
1048 		free_vm_area(area->vm);
1049 	area->vm = NULL;
1050 }
1051 
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1052 static inline void *__zs_map_object(struct mapping_area *area,
1053 				struct page *pages[2], int off, int size)
1054 {
1055 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1056 	area->vm_addr = area->vm->addr;
1057 	return area->vm_addr + off;
1058 }
1059 
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1060 static inline void __zs_unmap_object(struct mapping_area *area,
1061 				struct page *pages[2], int off, int size)
1062 {
1063 	unsigned long addr = (unsigned long)area->vm_addr;
1064 
1065 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1066 }
1067 
1068 #else /* CONFIG_PGTABLE_MAPPING */
1069 
__zs_cpu_up(struct mapping_area * area)1070 static inline int __zs_cpu_up(struct mapping_area *area)
1071 {
1072 	/*
1073 	 * Make sure we don't leak memory if a cpu UP notification
1074 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1075 	 */
1076 	if (area->vm_buf)
1077 		return 0;
1078 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1079 	if (!area->vm_buf)
1080 		return -ENOMEM;
1081 	return 0;
1082 }
1083 
__zs_cpu_down(struct mapping_area * area)1084 static inline void __zs_cpu_down(struct mapping_area *area)
1085 {
1086 	kfree(area->vm_buf);
1087 	area->vm_buf = NULL;
1088 }
1089 
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1090 static void *__zs_map_object(struct mapping_area *area,
1091 			struct page *pages[2], int off, int size)
1092 {
1093 	int sizes[2];
1094 	void *addr;
1095 	char *buf = area->vm_buf;
1096 
1097 	/* disable page faults to match kmap_atomic() return conditions */
1098 	pagefault_disable();
1099 
1100 	/* no read fastpath */
1101 	if (area->vm_mm == ZS_MM_WO)
1102 		goto out;
1103 
1104 	sizes[0] = PAGE_SIZE - off;
1105 	sizes[1] = size - sizes[0];
1106 
1107 	/* copy object to per-cpu buffer */
1108 	addr = kmap_atomic(pages[0]);
1109 	memcpy(buf, addr + off, sizes[0]);
1110 	kunmap_atomic(addr);
1111 	addr = kmap_atomic(pages[1]);
1112 	memcpy(buf + sizes[0], addr, sizes[1]);
1113 	kunmap_atomic(addr);
1114 out:
1115 	return area->vm_buf;
1116 }
1117 
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1118 static void __zs_unmap_object(struct mapping_area *area,
1119 			struct page *pages[2], int off, int size)
1120 {
1121 	int sizes[2];
1122 	void *addr;
1123 	char *buf;
1124 
1125 	/* no write fastpath */
1126 	if (area->vm_mm == ZS_MM_RO)
1127 		goto out;
1128 
1129 	buf = area->vm_buf;
1130 	if (!area->huge) {
1131 		buf = buf + ZS_HANDLE_SIZE;
1132 		size -= ZS_HANDLE_SIZE;
1133 		off += ZS_HANDLE_SIZE;
1134 	}
1135 
1136 	sizes[0] = PAGE_SIZE - off;
1137 	sizes[1] = size - sizes[0];
1138 
1139 	/* copy per-cpu buffer to object */
1140 	addr = kmap_atomic(pages[0]);
1141 	memcpy(addr + off, buf, sizes[0]);
1142 	kunmap_atomic(addr);
1143 	addr = kmap_atomic(pages[1]);
1144 	memcpy(addr, buf + sizes[0], sizes[1]);
1145 	kunmap_atomic(addr);
1146 
1147 out:
1148 	/* enable page faults to match kunmap_atomic() return conditions */
1149 	pagefault_enable();
1150 }
1151 
1152 #endif /* CONFIG_PGTABLE_MAPPING */
1153 
zs_cpu_notifier(struct notifier_block * nb,unsigned long action,void * pcpu)1154 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1155 				void *pcpu)
1156 {
1157 	int ret, cpu = (long)pcpu;
1158 	struct mapping_area *area;
1159 
1160 	switch (action) {
1161 	case CPU_UP_PREPARE:
1162 		area = &per_cpu(zs_map_area, cpu);
1163 		ret = __zs_cpu_up(area);
1164 		if (ret)
1165 			return notifier_from_errno(ret);
1166 		break;
1167 	case CPU_DEAD:
1168 	case CPU_UP_CANCELED:
1169 		area = &per_cpu(zs_map_area, cpu);
1170 		__zs_cpu_down(area);
1171 		break;
1172 	}
1173 
1174 	return NOTIFY_OK;
1175 }
1176 
1177 static struct notifier_block zs_cpu_nb = {
1178 	.notifier_call = zs_cpu_notifier
1179 };
1180 
zs_register_cpu_notifier(void)1181 static int zs_register_cpu_notifier(void)
1182 {
1183 	int cpu, uninitialized_var(ret);
1184 
1185 	cpu_notifier_register_begin();
1186 
1187 	__register_cpu_notifier(&zs_cpu_nb);
1188 	for_each_online_cpu(cpu) {
1189 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1190 		if (notifier_to_errno(ret))
1191 			break;
1192 	}
1193 
1194 	cpu_notifier_register_done();
1195 	return notifier_to_errno(ret);
1196 }
1197 
zs_unregister_cpu_notifier(void)1198 static void zs_unregister_cpu_notifier(void)
1199 {
1200 	int cpu;
1201 
1202 	cpu_notifier_register_begin();
1203 
1204 	for_each_online_cpu(cpu)
1205 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1206 	__unregister_cpu_notifier(&zs_cpu_nb);
1207 
1208 	cpu_notifier_register_done();
1209 }
1210 
init_zs_size_classes(void)1211 static void init_zs_size_classes(void)
1212 {
1213 	int nr;
1214 
1215 	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1216 	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1217 		nr += 1;
1218 
1219 	zs_size_classes = nr;
1220 }
1221 
can_merge(struct size_class * prev,int size,int pages_per_zspage)1222 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1223 {
1224 	if (prev->pages_per_zspage != pages_per_zspage)
1225 		return false;
1226 
1227 	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1228 		!= get_maxobj_per_zspage(size, pages_per_zspage))
1229 		return false;
1230 
1231 	return true;
1232 }
1233 
zspage_full(struct page * page)1234 static bool zspage_full(struct page *page)
1235 {
1236 	BUG_ON(!is_first_page(page));
1237 
1238 	return page->inuse == page->objects;
1239 }
1240 
zs_get_total_pages(struct zs_pool * pool)1241 unsigned long zs_get_total_pages(struct zs_pool *pool)
1242 {
1243 	return atomic_long_read(&pool->pages_allocated);
1244 }
1245 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1246 
1247 /**
1248  * zs_map_object - get address of allocated object from handle.
1249  * @pool: pool from which the object was allocated
1250  * @handle: handle returned from zs_malloc
1251  *
1252  * Before using an object allocated from zs_malloc, it must be mapped using
1253  * this function. When done with the object, it must be unmapped using
1254  * zs_unmap_object.
1255  *
1256  * Only one object can be mapped per cpu at a time. There is no protection
1257  * against nested mappings.
1258  *
1259  * This function returns with preemption and page faults disabled.
1260  */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1261 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1262 			enum zs_mapmode mm)
1263 {
1264 	struct page *page;
1265 	unsigned long obj, obj_idx, off;
1266 
1267 	unsigned int class_idx;
1268 	enum fullness_group fg;
1269 	struct size_class *class;
1270 	struct mapping_area *area;
1271 	struct page *pages[2];
1272 	void *ret;
1273 
1274 	BUG_ON(!handle);
1275 
1276 	/*
1277 	 * Because we use per-cpu mapping areas shared among the
1278 	 * pools/users, we can't allow mapping in interrupt context
1279 	 * because it can corrupt another users mappings.
1280 	 */
1281 	BUG_ON(in_interrupt());
1282 
1283 	/* From now on, migration cannot move the object */
1284 	pin_tag(handle);
1285 
1286 	obj = handle_to_obj(handle);
1287 	obj_to_location(obj, &page, &obj_idx);
1288 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1289 	class = pool->size_class[class_idx];
1290 	off = obj_idx_to_offset(page, obj_idx, class->size);
1291 
1292 	area = &get_cpu_var(zs_map_area);
1293 	area->vm_mm = mm;
1294 	if (off + class->size <= PAGE_SIZE) {
1295 		/* this object is contained entirely within a page */
1296 		area->vm_addr = kmap_atomic(page);
1297 		ret = area->vm_addr + off;
1298 		goto out;
1299 	}
1300 
1301 	/* this object spans two pages */
1302 	pages[0] = page;
1303 	pages[1] = get_next_page(page);
1304 	BUG_ON(!pages[1]);
1305 
1306 	ret = __zs_map_object(area, pages, off, class->size);
1307 out:
1308 	if (!class->huge)
1309 		ret += ZS_HANDLE_SIZE;
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(zs_map_object);
1314 
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1315 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1316 {
1317 	struct page *page;
1318 	unsigned long obj, obj_idx, off;
1319 
1320 	unsigned int class_idx;
1321 	enum fullness_group fg;
1322 	struct size_class *class;
1323 	struct mapping_area *area;
1324 
1325 	BUG_ON(!handle);
1326 
1327 	obj = handle_to_obj(handle);
1328 	obj_to_location(obj, &page, &obj_idx);
1329 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1330 	class = pool->size_class[class_idx];
1331 	off = obj_idx_to_offset(page, obj_idx, class->size);
1332 
1333 	area = this_cpu_ptr(&zs_map_area);
1334 	if (off + class->size <= PAGE_SIZE)
1335 		kunmap_atomic(area->vm_addr);
1336 	else {
1337 		struct page *pages[2];
1338 
1339 		pages[0] = page;
1340 		pages[1] = get_next_page(page);
1341 		BUG_ON(!pages[1]);
1342 
1343 		__zs_unmap_object(area, pages, off, class->size);
1344 	}
1345 	put_cpu_var(zs_map_area);
1346 	unpin_tag(handle);
1347 }
1348 EXPORT_SYMBOL_GPL(zs_unmap_object);
1349 
obj_malloc(struct page * first_page,struct size_class * class,unsigned long handle)1350 static unsigned long obj_malloc(struct page *first_page,
1351 		struct size_class *class, unsigned long handle)
1352 {
1353 	unsigned long obj;
1354 	struct link_free *link;
1355 
1356 	struct page *m_page;
1357 	unsigned long m_objidx, m_offset;
1358 	void *vaddr;
1359 
1360 	handle |= OBJ_ALLOCATED_TAG;
1361 	obj = (unsigned long)first_page->freelist;
1362 	obj_to_location(obj, &m_page, &m_objidx);
1363 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1364 
1365 	vaddr = kmap_atomic(m_page);
1366 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1367 	first_page->freelist = link->next;
1368 	if (!class->huge)
1369 		/* record handle in the header of allocated chunk */
1370 		link->handle = handle;
1371 	else
1372 		/* record handle in first_page->private */
1373 		set_page_private(first_page, handle);
1374 	kunmap_atomic(vaddr);
1375 	first_page->inuse++;
1376 	zs_stat_inc(class, OBJ_USED, 1);
1377 
1378 	return obj;
1379 }
1380 
1381 
1382 /**
1383  * zs_malloc - Allocate block of given size from pool.
1384  * @pool: pool to allocate from
1385  * @size: size of block to allocate
1386  *
1387  * On success, handle to the allocated object is returned,
1388  * otherwise 0.
1389  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1390  */
zs_malloc(struct zs_pool * pool,size_t size)1391 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1392 {
1393 	unsigned long handle, obj;
1394 	struct size_class *class;
1395 	struct page *first_page;
1396 
1397 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1398 		return 0;
1399 
1400 	handle = alloc_handle(pool);
1401 	if (!handle)
1402 		return 0;
1403 
1404 	/* extra space in chunk to keep the handle */
1405 	size += ZS_HANDLE_SIZE;
1406 	class = pool->size_class[get_size_class_index(size)];
1407 
1408 	spin_lock(&class->lock);
1409 	first_page = find_get_zspage(class);
1410 
1411 	if (!first_page) {
1412 		spin_unlock(&class->lock);
1413 		first_page = alloc_zspage(class, pool->flags);
1414 		if (unlikely(!first_page)) {
1415 			free_handle(pool, handle);
1416 			return 0;
1417 		}
1418 
1419 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1420 		atomic_long_add(class->pages_per_zspage,
1421 					&pool->pages_allocated);
1422 
1423 		spin_lock(&class->lock);
1424 		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1425 				class->size, class->pages_per_zspage));
1426 	}
1427 
1428 	obj = obj_malloc(first_page, class, handle);
1429 	/* Now move the zspage to another fullness group, if required */
1430 	fix_fullness_group(class, first_page);
1431 	record_obj(handle, obj);
1432 	spin_unlock(&class->lock);
1433 
1434 	return handle;
1435 }
1436 EXPORT_SYMBOL_GPL(zs_malloc);
1437 
obj_free(struct zs_pool * pool,struct size_class * class,unsigned long obj)1438 static void obj_free(struct zs_pool *pool, struct size_class *class,
1439 			unsigned long obj)
1440 {
1441 	struct link_free *link;
1442 	struct page *first_page, *f_page;
1443 	unsigned long f_objidx, f_offset;
1444 	void *vaddr;
1445 	int class_idx;
1446 	enum fullness_group fullness;
1447 
1448 	BUG_ON(!obj);
1449 
1450 	obj &= ~OBJ_ALLOCATED_TAG;
1451 	obj_to_location(obj, &f_page, &f_objidx);
1452 	first_page = get_first_page(f_page);
1453 
1454 	get_zspage_mapping(first_page, &class_idx, &fullness);
1455 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1456 
1457 	vaddr = kmap_atomic(f_page);
1458 
1459 	/* Insert this object in containing zspage's freelist */
1460 	link = (struct link_free *)(vaddr + f_offset);
1461 	link->next = first_page->freelist;
1462 	if (class->huge)
1463 		set_page_private(first_page, 0);
1464 	kunmap_atomic(vaddr);
1465 	first_page->freelist = (void *)obj;
1466 	first_page->inuse--;
1467 	zs_stat_dec(class, OBJ_USED, 1);
1468 }
1469 
zs_free(struct zs_pool * pool,unsigned long handle)1470 void zs_free(struct zs_pool *pool, unsigned long handle)
1471 {
1472 	struct page *first_page, *f_page;
1473 	unsigned long obj, f_objidx;
1474 	int class_idx;
1475 	struct size_class *class;
1476 	enum fullness_group fullness;
1477 
1478 	if (unlikely(!handle))
1479 		return;
1480 
1481 	pin_tag(handle);
1482 	obj = handle_to_obj(handle);
1483 	obj_to_location(obj, &f_page, &f_objidx);
1484 	first_page = get_first_page(f_page);
1485 
1486 	get_zspage_mapping(first_page, &class_idx, &fullness);
1487 	class = pool->size_class[class_idx];
1488 
1489 	spin_lock(&class->lock);
1490 	obj_free(pool, class, obj);
1491 	fullness = fix_fullness_group(class, first_page);
1492 	if (fullness == ZS_EMPTY) {
1493 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1494 				class->size, class->pages_per_zspage));
1495 		atomic_long_sub(class->pages_per_zspage,
1496 				&pool->pages_allocated);
1497 		free_zspage(first_page);
1498 	}
1499 	spin_unlock(&class->lock);
1500 	unpin_tag(handle);
1501 
1502 	free_handle(pool, handle);
1503 }
1504 EXPORT_SYMBOL_GPL(zs_free);
1505 
zs_object_copy(unsigned long src,unsigned long dst,struct size_class * class)1506 static void zs_object_copy(unsigned long src, unsigned long dst,
1507 				struct size_class *class)
1508 {
1509 	struct page *s_page, *d_page;
1510 	unsigned long s_objidx, d_objidx;
1511 	unsigned long s_off, d_off;
1512 	void *s_addr, *d_addr;
1513 	int s_size, d_size, size;
1514 	int written = 0;
1515 
1516 	s_size = d_size = class->size;
1517 
1518 	obj_to_location(src, &s_page, &s_objidx);
1519 	obj_to_location(dst, &d_page, &d_objidx);
1520 
1521 	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1522 	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1523 
1524 	if (s_off + class->size > PAGE_SIZE)
1525 		s_size = PAGE_SIZE - s_off;
1526 
1527 	if (d_off + class->size > PAGE_SIZE)
1528 		d_size = PAGE_SIZE - d_off;
1529 
1530 	s_addr = kmap_atomic(s_page);
1531 	d_addr = kmap_atomic(d_page);
1532 
1533 	while (1) {
1534 		size = min(s_size, d_size);
1535 		memcpy(d_addr + d_off, s_addr + s_off, size);
1536 		written += size;
1537 
1538 		if (written == class->size)
1539 			break;
1540 
1541 		s_off += size;
1542 		s_size -= size;
1543 		d_off += size;
1544 		d_size -= size;
1545 
1546 		if (s_off >= PAGE_SIZE) {
1547 			kunmap_atomic(d_addr);
1548 			kunmap_atomic(s_addr);
1549 			s_page = get_next_page(s_page);
1550 			BUG_ON(!s_page);
1551 			s_addr = kmap_atomic(s_page);
1552 			d_addr = kmap_atomic(d_page);
1553 			s_size = class->size - written;
1554 			s_off = 0;
1555 		}
1556 
1557 		if (d_off >= PAGE_SIZE) {
1558 			kunmap_atomic(d_addr);
1559 			d_page = get_next_page(d_page);
1560 			BUG_ON(!d_page);
1561 			d_addr = kmap_atomic(d_page);
1562 			d_size = class->size - written;
1563 			d_off = 0;
1564 		}
1565 	}
1566 
1567 	kunmap_atomic(d_addr);
1568 	kunmap_atomic(s_addr);
1569 }
1570 
1571 /*
1572  * Find alloced object in zspage from index object and
1573  * return handle.
1574  */
find_alloced_obj(struct page * page,int index,struct size_class * class)1575 static unsigned long find_alloced_obj(struct page *page, int index,
1576 					struct size_class *class)
1577 {
1578 	unsigned long head;
1579 	int offset = 0;
1580 	unsigned long handle = 0;
1581 	void *addr = kmap_atomic(page);
1582 
1583 	if (!is_first_page(page))
1584 		offset = page->index;
1585 	offset += class->size * index;
1586 
1587 	while (offset < PAGE_SIZE) {
1588 		head = obj_to_head(class, page, addr + offset);
1589 		if (head & OBJ_ALLOCATED_TAG) {
1590 			handle = head & ~OBJ_ALLOCATED_TAG;
1591 			if (trypin_tag(handle))
1592 				break;
1593 			handle = 0;
1594 		}
1595 
1596 		offset += class->size;
1597 		index++;
1598 	}
1599 
1600 	kunmap_atomic(addr);
1601 	return handle;
1602 }
1603 
1604 struct zs_compact_control {
1605 	/* Source page for migration which could be a subpage of zspage. */
1606 	struct page *s_page;
1607 	/* Destination page for migration which should be a first page
1608 	 * of zspage. */
1609 	struct page *d_page;
1610 	 /* Starting object index within @s_page which used for live object
1611 	  * in the subpage. */
1612 	int index;
1613 	/* how many of objects are migrated */
1614 	int nr_migrated;
1615 };
1616 
migrate_zspage(struct zs_pool * pool,struct size_class * class,struct zs_compact_control * cc)1617 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1618 				struct zs_compact_control *cc)
1619 {
1620 	unsigned long used_obj, free_obj;
1621 	unsigned long handle;
1622 	struct page *s_page = cc->s_page;
1623 	struct page *d_page = cc->d_page;
1624 	unsigned long index = cc->index;
1625 	int nr_migrated = 0;
1626 	int ret = 0;
1627 
1628 	while (1) {
1629 		handle = find_alloced_obj(s_page, index, class);
1630 		if (!handle) {
1631 			s_page = get_next_page(s_page);
1632 			if (!s_page)
1633 				break;
1634 			index = 0;
1635 			continue;
1636 		}
1637 
1638 		/* Stop if there is no more space */
1639 		if (zspage_full(d_page)) {
1640 			unpin_tag(handle);
1641 			ret = -ENOMEM;
1642 			break;
1643 		}
1644 
1645 		used_obj = handle_to_obj(handle);
1646 		free_obj = obj_malloc(d_page, class, handle);
1647 		zs_object_copy(used_obj, free_obj, class);
1648 		index++;
1649 		/*
1650 		 * record_obj updates handle's value to free_obj and it will
1651 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1652 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1653 		 * let's keep the lock bit.
1654 		 */
1655 		free_obj |= BIT(HANDLE_PIN_BIT);
1656 		record_obj(handle, free_obj);
1657 		unpin_tag(handle);
1658 		obj_free(pool, class, used_obj);
1659 		nr_migrated++;
1660 	}
1661 
1662 	/* Remember last position in this iteration */
1663 	cc->s_page = s_page;
1664 	cc->index = index;
1665 	cc->nr_migrated = nr_migrated;
1666 
1667 	return ret;
1668 }
1669 
alloc_target_page(struct size_class * class)1670 static struct page *alloc_target_page(struct size_class *class)
1671 {
1672 	int i;
1673 	struct page *page;
1674 
1675 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1676 		page = class->fullness_list[i];
1677 		if (page) {
1678 			remove_zspage(page, class, i);
1679 			break;
1680 		}
1681 	}
1682 
1683 	return page;
1684 }
1685 
putback_zspage(struct zs_pool * pool,struct size_class * class,struct page * first_page)1686 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1687 				struct page *first_page)
1688 {
1689 	enum fullness_group fullness;
1690 
1691 	BUG_ON(!is_first_page(first_page));
1692 
1693 	fullness = get_fullness_group(first_page);
1694 	insert_zspage(first_page, class, fullness);
1695 	set_zspage_mapping(first_page, class->index, fullness);
1696 
1697 	if (fullness == ZS_EMPTY) {
1698 		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1699 			class->size, class->pages_per_zspage));
1700 		atomic_long_sub(class->pages_per_zspage,
1701 				&pool->pages_allocated);
1702 
1703 		free_zspage(first_page);
1704 	}
1705 }
1706 
isolate_source_page(struct size_class * class)1707 static struct page *isolate_source_page(struct size_class *class)
1708 {
1709 	struct page *page;
1710 
1711 	page = class->fullness_list[ZS_ALMOST_EMPTY];
1712 	if (page)
1713 		remove_zspage(page, class, ZS_ALMOST_EMPTY);
1714 
1715 	return page;
1716 }
1717 
__zs_compact(struct zs_pool * pool,struct size_class * class)1718 static unsigned long __zs_compact(struct zs_pool *pool,
1719 				struct size_class *class)
1720 {
1721 	int nr_to_migrate;
1722 	struct zs_compact_control cc;
1723 	struct page *src_page;
1724 	struct page *dst_page = NULL;
1725 	unsigned long nr_total_migrated = 0;
1726 
1727 	spin_lock(&class->lock);
1728 	while ((src_page = isolate_source_page(class))) {
1729 
1730 		BUG_ON(!is_first_page(src_page));
1731 
1732 		/* The goal is to migrate all live objects in source page */
1733 		nr_to_migrate = src_page->inuse;
1734 		cc.index = 0;
1735 		cc.s_page = src_page;
1736 
1737 		while ((dst_page = alloc_target_page(class))) {
1738 			cc.d_page = dst_page;
1739 			/*
1740 			 * If there is no more space in dst_page, try to
1741 			 * allocate another zspage.
1742 			 */
1743 			if (!migrate_zspage(pool, class, &cc))
1744 				break;
1745 
1746 			putback_zspage(pool, class, dst_page);
1747 			nr_total_migrated += cc.nr_migrated;
1748 			nr_to_migrate -= cc.nr_migrated;
1749 		}
1750 
1751 		/* Stop if we couldn't find slot */
1752 		if (dst_page == NULL)
1753 			break;
1754 
1755 		putback_zspage(pool, class, dst_page);
1756 		putback_zspage(pool, class, src_page);
1757 		spin_unlock(&class->lock);
1758 		nr_total_migrated += cc.nr_migrated;
1759 		cond_resched();
1760 		spin_lock(&class->lock);
1761 	}
1762 
1763 	if (src_page)
1764 		putback_zspage(pool, class, src_page);
1765 
1766 	spin_unlock(&class->lock);
1767 
1768 	return nr_total_migrated;
1769 }
1770 
zs_compact(struct zs_pool * pool)1771 unsigned long zs_compact(struct zs_pool *pool)
1772 {
1773 	int i;
1774 	unsigned long nr_migrated = 0;
1775 	struct size_class *class;
1776 
1777 	for (i = zs_size_classes - 1; i >= 0; i--) {
1778 		class = pool->size_class[i];
1779 		if (!class)
1780 			continue;
1781 		if (class->index != i)
1782 			continue;
1783 		nr_migrated += __zs_compact(pool, class);
1784 	}
1785 
1786 	return nr_migrated;
1787 }
1788 EXPORT_SYMBOL_GPL(zs_compact);
1789 
1790 /**
1791  * zs_create_pool - Creates an allocation pool to work from.
1792  * @flags: allocation flags used to allocate pool metadata
1793  *
1794  * This function must be called before anything when using
1795  * the zsmalloc allocator.
1796  *
1797  * On success, a pointer to the newly created pool is returned,
1798  * otherwise NULL.
1799  */
zs_create_pool(char * name,gfp_t flags)1800 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1801 {
1802 	int i;
1803 	struct zs_pool *pool;
1804 	struct size_class *prev_class = NULL;
1805 
1806 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1807 	if (!pool)
1808 		return NULL;
1809 
1810 	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1811 			GFP_KERNEL);
1812 	if (!pool->size_class) {
1813 		kfree(pool);
1814 		return NULL;
1815 	}
1816 
1817 	pool->name = kstrdup(name, GFP_KERNEL);
1818 	if (!pool->name)
1819 		goto err;
1820 
1821 	if (create_handle_cache(pool))
1822 		goto err;
1823 
1824 	/*
1825 	 * Iterate reversly, because, size of size_class that we want to use
1826 	 * for merging should be larger or equal to current size.
1827 	 */
1828 	for (i = zs_size_classes - 1; i >= 0; i--) {
1829 		int size;
1830 		int pages_per_zspage;
1831 		struct size_class *class;
1832 
1833 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1834 		if (size > ZS_MAX_ALLOC_SIZE)
1835 			size = ZS_MAX_ALLOC_SIZE;
1836 		pages_per_zspage = get_pages_per_zspage(size);
1837 
1838 		/*
1839 		 * size_class is used for normal zsmalloc operation such
1840 		 * as alloc/free for that size. Although it is natural that we
1841 		 * have one size_class for each size, there is a chance that we
1842 		 * can get more memory utilization if we use one size_class for
1843 		 * many different sizes whose size_class have same
1844 		 * characteristics. So, we makes size_class point to
1845 		 * previous size_class if possible.
1846 		 */
1847 		if (prev_class) {
1848 			if (can_merge(prev_class, size, pages_per_zspage)) {
1849 				pool->size_class[i] = prev_class;
1850 				continue;
1851 			}
1852 		}
1853 
1854 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1855 		if (!class)
1856 			goto err;
1857 
1858 		class->size = size;
1859 		class->index = i;
1860 		class->pages_per_zspage = pages_per_zspage;
1861 		if (pages_per_zspage == 1 &&
1862 			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1863 			class->huge = true;
1864 		spin_lock_init(&class->lock);
1865 		pool->size_class[i] = class;
1866 
1867 		prev_class = class;
1868 	}
1869 
1870 	pool->flags = flags;
1871 
1872 	if (zs_pool_stat_create(name, pool))
1873 		goto err;
1874 
1875 	return pool;
1876 
1877 err:
1878 	zs_destroy_pool(pool);
1879 	return NULL;
1880 }
1881 EXPORT_SYMBOL_GPL(zs_create_pool);
1882 
zs_destroy_pool(struct zs_pool * pool)1883 void zs_destroy_pool(struct zs_pool *pool)
1884 {
1885 	int i;
1886 
1887 	zs_pool_stat_destroy(pool);
1888 
1889 	for (i = 0; i < zs_size_classes; i++) {
1890 		int fg;
1891 		struct size_class *class = pool->size_class[i];
1892 
1893 		if (!class)
1894 			continue;
1895 
1896 		if (class->index != i)
1897 			continue;
1898 
1899 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1900 			if (class->fullness_list[fg]) {
1901 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1902 					class->size, fg);
1903 			}
1904 		}
1905 		kfree(class);
1906 	}
1907 
1908 	destroy_handle_cache(pool);
1909 	kfree(pool->size_class);
1910 	kfree(pool->name);
1911 	kfree(pool);
1912 }
1913 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1914 
zs_init(void)1915 static int __init zs_init(void)
1916 {
1917 	int ret = zs_register_cpu_notifier();
1918 
1919 	if (ret)
1920 		goto notifier_fail;
1921 
1922 	init_zs_size_classes();
1923 
1924 #ifdef CONFIG_ZPOOL
1925 	zpool_register_driver(&zs_zpool_driver);
1926 #endif
1927 
1928 	ret = zs_stat_init();
1929 	if (ret) {
1930 		pr_err("zs stat initialization failed\n");
1931 		goto stat_fail;
1932 	}
1933 	return 0;
1934 
1935 stat_fail:
1936 #ifdef CONFIG_ZPOOL
1937 	zpool_unregister_driver(&zs_zpool_driver);
1938 #endif
1939 notifier_fail:
1940 	zs_unregister_cpu_notifier();
1941 
1942 	return ret;
1943 }
1944 
zs_exit(void)1945 static void __exit zs_exit(void)
1946 {
1947 #ifdef CONFIG_ZPOOL
1948 	zpool_unregister_driver(&zs_zpool_driver);
1949 #endif
1950 	zs_unregister_cpu_notifier();
1951 
1952 	zs_stat_exit();
1953 }
1954 
1955 module_init(zs_init);
1956 module_exit(zs_exit);
1957 
1958 MODULE_LICENSE("Dual BSD/GPL");
1959 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1960